星载微波成像仪灵敏度稳定性分析
Long-term sensitivity stability of space-borne microwave imager using the Allan method
- 2021年25卷第10期 页码:2076-2082
纸质出版日期: 2021-10-07
DOI: 10.11834/jrs.20219492
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-10-07 ,
扫 描 看 全 文
董克松,谢鑫新,何嘉恺,李雪,孟婉婷,王平凯.2021.星载微波成像仪灵敏度稳定性分析.遥感学报,25(10): 2076-2082
Dong K S, Xie X X, He J K, Li X, Meng W T and Wang P K. 2021. Long-term sensitivity stability of space-borne microwave imager using the Allan method. National Remote Sensing Bulletin, 25(10):2076-2082
微波成像仪是中国第二代极轨气象卫星风云三号卫星的主要载荷之一,灵敏度是评价成像仪系统性能的关键参数之一,可以衡量辐射探测精度,因此该参数的准确计算及其长期稳定性会直接影响遥感数据业务应用效果。经过地面及在轨数据验证,与传统均方根标准差方法相比,利用Allan标准差方法计算星载微波成像仪的在轨灵敏度,首先获得每条扫描线的遥感电压数据,然后分析相邻扫描线之间的电压偏差,最后再结合微波成像仪系统增益,即可获得在轨灵敏度参数。利用Allan方法分析灵敏度,可以有效去除环境噪声的影响,有助于反应星载微波成像仪在轨灵敏度的长期稳定性,更加真实地反映仪器本身的在轨性能演变。分析结果表明:3台微波成像仪在轨性能稳定,长时间观测过程中,FY-3 C\D星成像仪在轨灵敏度的标准差≤0.01 K,FY-3 B星成像仪灵敏度标准差≤0.012 K;3台仪器在10.65 GHz、18.7 GHz、23.8 GHz及36.5 GHz频点8个通道的灵敏度均优于0.5 K;对于89 GHz频点的两个接收通道,FY-3 C\D星微波成像仪的灵敏度优于0.5 K,B星微波成像仪优于0.6 K。本文利用Allan方法获得了风云三号微波成像仪的在轨灵敏度参数,证明该方法适用于微波辐射计在轨灵敏度的计算,同时针对微波成像仪的相关分析结果为国产星载微波成像仪在轨定量应用奠定了基础。
The Microwave Radiation Imager (MWRI) is a main payload of the second-generation Chinese polar-orbiting meteorological satellite Fengyun-3. The MWRI observes the Earth radiation at 10.65 GHz
18.7 GHz
23.8 GHz
36.5 GHz
and 89 GHz with dual polarization. Sensitivity is the minimum transformation amount of the brightness temperature that can be detected by the radiometer
that is
the equivalent noise temperature of the radiometer system; it is expressed as the Root Mean Square (RMS) standard deviation of the output temperatures when the radiometer observes a target with a fixed bright temperature. Therefore
sensitivity is a key parameter for evaluating the performance of the MWRI
and the long-term stability of this parameter could directly affect the application of remote sensing data. At present
the brightness temperature data of the hot load (black body) equipped on the MWRI are used to evaluate the on-orbit sensitivity of the instrument. However
when the spaceborne microwave imager is in flight
the hot load measurements could be affected by environmental noise
such as receiver temperature and ground Radio Frequency Interference (RFI)
resulting in errors in the on-orbit sensitivity obtained by the RMS method. The validity of the Allan standard deviation method is studied to calculate the sensitivity and accurately evaluate the on-orbit sensitivity of the spaceborne microwave imager
and then the Allan method is used to evaluate the long-term stability of the on-orbit sensitivity of the MWRIs on board FY-3 B
C
and D satellites.
Combining the ground and on-orbit observations of the MWRI
two methods of root mean square standard deviation and Allan standard deviation were used to calculate the sensitivities of the imager. The comparison found that: (1) The deviation between the results obtained by Allan method and the ground test is less than 0.03 K
indicating that under the vacuum calibration test
the Allan method can effectively calculate the sensitivity parameters of the radiometers. (2) When the observation area of the space-borne microwave imager is different
the on-orbit sensitivity obtained by Allan method is unchanged
indicating that the Allan method can eliminate the interference of RFI. (3) The on-orbit sensitivity obtained by Allan standard deviation is unaffected by the receiver’s ambient temperature change. Therefore
the Allan method could be used to calculate the on-orbit sensitivity of a space-borne microwave imager.
The Allan method was used to analyze the long-term stability of the on-orbit sensitivity of MWRIs on board FY-3B
C
and D satellites
and concluded that: (1) The on-orbit sensitivities of the three microwave imagers were stable
and the stability of FY-3C and FY-3D MWRIs is better than that of FY-3B MWRI. The standard deviation of the on-orbit sensitivity of the FY-3B MWRI is ≤ 0.015 K
and the standard deviation of the on-orbit sensitivity of the FY-3C and FY-3D MWRIs is ≤ 0.01 K. (2) FY-3C and FY-3D MWRI sensitivities are the same
and the sensitivities of the 89 GHz receiving channels of the FY-3C and FY-3D MWRIs are significantly better than that of the FY-3B MWRI. The sensitivity of each receiving channel of the FY-3C and FY-3D MWRIs is better than 0.5 K
and that of the FY-3B MWRI is better than 0.6 K.
The comparison of the ground test data and on-orbit observations confirmed that the Allan method can effectively calculate the sensitivity of the spaceborne radiometers. In addition
the calculation results of the FY-3 MWRIs show that the on-orbit sensitivity of the MWRIs is good
and the long-term on-orbit working state is stable.
风云三号微波成像仪灵敏度均方根标准差Allan标准差长期稳定性
FY-3 MWRIsensitivityRMS methodAllan methodlong-term stability
Allan D W. 1987. Should the classical variance be used as a basic measure in standards metrology? IEEE Transactions on Instrumentation and Measurement, IM-36(2): 646-654 [DOI: 10.1109/TIM.1987.6312761http://dx.doi.org/10.1109/TIM.1987.6312761]
Chen W X, Chi J D, Li Y M and Li H. 2013. Microwave temperature sounding(MWTS)for FY-3 meteorology satellite. Engineering Science, 15(7): 88-91
陈文新, 迟吉东. 李延明, 李浩. 2013. 风云三号气象卫星微波温度计(MWTS). 中国工程科学, 15(7): 88-91 [DOI: 10.3969/j.issn.1009-1742.2013.07.013http://dx.doi.org/10.3969/j.issn.1009-1742.2013.07.013]
Draper D W, Newell D A, Wentz F J, Krimchansky S and Skofronick-Jackson G M. 2015. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): instrument overview and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3452-3462 [DOI: 10.1109/JSTARS.2015.2403303http://dx.doi.org/10.1109/JSTARS.2015.2403303]
Gao H, Xu R H and Wu S L. 2018. Accuracy evaluation of the FengYun-3C global land surface temperature products retrieval from microwave radiation imager. Meteorological and Environmental Sciences, 41(4): 1-8
高浩, 徐榕焓, 武胜利. 2018. 风云三号C星微波全球地表温度产品精度评估. 气象与环境科学, 41(4): 1-8 [DOI: 10.16765/j.cnki.1673-7148.2018.04.001http://dx.doi.org/10.16765/j.cnki.1673-7148.2018.04.001]
Kunkee D B, Poe G A, Boucher D J, Swadley S D, Hong Y, Wessel J E and Uliana E A. 2008. Design and evaluation of the first special sensor microwave imager/sounder. IEEE Transactions on Geoscience and Remote Sensing, 46(4): 863-883 [DOI: 10.1109/TGRS.2008.917980http://dx.doi.org/10.1109/TGRS.2008.917980]
Qiao M, Yang H, He J K and Lyu L Q. 2012. On-orbit performance stability analysis of microwave radiometer imager onboard FY-3 Satellite. Journal of Remote Sensing, 16(6): 1246-1261
乔木, 杨虎, 何嘉恺, 吕利清. 2012. 风云三号卫星微波成像仪在轨性能稳定性分析. 遥感学报, 16(6): 1246-1261 [DOI: 10.11834/jrs.20121318http://dx.doi.org/10.11834/jrs.20121318]
Skou N and Le Vine D. 2006. Microwave Radiometer Systems: Design and Analysis. 2nd ed. Norwood: Artech House
Tian M, Zou X L and Weng F Z. 2015. Use of Allan deviation for characterizing satellite microwave sounder Noise Equivalent Differential Temperature (NEDT). IEEE Geoscience and Remote Sensing Letters, 12(12): 2377-2480 [DOI: 10.1109/LGRS.2015.2485945http://dx.doi.org/10.1109/LGRS.2015.2485945]
Ulaby F T, Moore R K and Fung A K. 1988. Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry. Beijing: Science Press
Wang Z Z, Zhang S W, Li J, Li Y and Wu Q. 2013. Thermal/vacuum calibration of microwave humidity sounder on FY-3B satellite. Engineering Science, 15(10): 33-46, 53
王振占, 张升伟, 李靖, 李芸, 吴琼. 2013. FY-3B卫星微波湿度计热真空定标方法和结果分析. 中国工程科学, 15(10): 33-46, 53 [DOI: 10.3969/j.issn.1009-1742.2013.10.005http://dx.doi.org/10.3969/j.issn.1009-1742.2013.10.005]
Yang H, Li X Q, You R and Wu S L. 2013. Environmental data records from FengYun-3B Microwave Radiation Imager. Advances in Meteorological Science and Technology, 3(4): 136-143
杨虎, 李小青, 游然, 武胜利. 2013. 风云三号微波成像仪定标精度评价及业务产品介绍. 气象科技进展, 3(4): 136-143 [DOI: 10.3969/j.issn.2095-1973.2013.04.014http://dx.doi.org/10.3969/j.issn.2095-1973.2013.04.014]
Yang H, Weng F Z, Lv L Q, Lu N M, Liu G F, Bai M, Qian Q Y, He J K and Xu H X. 2011. The FengYun-3 Microwave radiation imager on-orbit verification. IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4552-4560 [DOI: 10.1109/TGRS.2011.2148200http://dx.doi.org/10.1109/TGRS.2011.2148200]
Zhang P, Yang H, Qiu H, Ma G, Yang Z D, Lu N M and Yang J. 2012. Advances in Meteorological Science and Technology, 2(4): 6-11
张鹏, 杨虎, 邱红, 马刚, 杨忠东, 卢乃锰, 杨军. 2012. 风云三号卫星的定量遥感应用能力. 气象科技进展, 2(4): 6-11 [DOI: 10.3969/j.issn.2095-1973.2012.04.001http://dx.doi.org/10.3969/j.issn.2095-1973.2012.04.001]
相关文章
相关作者
相关机构