近40年(1982年—2018年)中国草原区干湿变化趋势分析
Spatial and temporal variation characteristics of the drought index in China grasslands in the recent 40 years (1982—2018)
- 2022年26卷第12期 页码:2629-2641
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20220433
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
底凯,胡中民,郝珖存,曹若臣,梁敏琪,韩道瑞,吴戈男.2022.近40年(1982年—2018年)中国草原区干湿变化趋势分析.遥感学报,26(12): 2629-2641
Di K,Hu Z M,Hao G C,Cao R C,Liang M Q,Han D R and Wu G N. 2022. Spatial and temporal variation characteristics of the drought index in China grasslands in the recent 40 years (1982—2018). National Remote Sensing Bulletin, 26(12):2629-2641
在全球变暖影响下,由降水、气温等气象要素所主导的干湿条件在全球或区域上均发生了明显变化,中国草原区对气候变化敏感、具有明显的生态脆弱性特征,因此研究中国草原区的干湿变化趋势非常重要。本研究基于干旱指数分析了1982年—2018年中国草原区的干湿程度时空变化趋势。结果表明,1982年—2018年中国草原区的干旱指数呈不显著上升趋势。2005年前后两个时期中国草原区表现出显著的趋势差异,1982年—2005年中国草原区干旱指数呈下降趋势,即干旱程度增加,而2006年—2018年呈增加趋势,该时段湿润化明显。2006年之后的中国草原区湿润化趋势源于该地区降水持续增多,而增温停滞导致潜在蒸散发不再升高。分区域来看,1982年—2005年内蒙古草原区干旱指数呈下降趋势,2006年—2018年呈上升趋势;西北草原区在1982年—2005年和2006年—2018年两个时间段干旱指数均呈上升趋势;青藏草原区在1982年—1994年干旱指数呈下降趋势,1995年—2018年呈上升趋势。
The dry/wet conditions dominated by precipitation
air temperature
and other meteorological factors have globally or regionally changed as a result of global warming. Grasslands cover around 40% of China and are vulnerable to climate change and ecological susceptibility. Accordingly
the dry/wet condition change trend of grasslands in China must be studied. Many studies on drought have been conducted in China
but two defects continue to persist: (1) most studies did not take into account the dry and wet changes of grassland in China as a whole; (2) the time range of research has not been extended to recent years. This study analyzed the temporal variation of drought-wet degree and its causes in this region during 1982—2018 based on the drought index and meteorological factors. The optimal drought index is the maximum correlation coefficient of soil moisture and multi drought index
and the optimal drought index was used for subsequent analysis. The piecewise regression approach was used to examine whether a turning point of the trend of drought index developed
and ordinary least squares was used to test the significance. The least square method was used to estimate the trend of the drought index. Pearson correlation analyses were conducted to quantify the relationship between drought index and climatic factors. Our results indicated the drought index based on the station ratio of precipitation and GLEAM potential evapotranspiration
which can reflect the change of dry/wet degree in China’s grasslands. The drought index had no significant increase trend from 1982 to 2018
and a trend shift occurred in 2005. The drought index of grasslands in China decreased by -0.0005 a
-1
from 1982 to 2005 and increased by 0.009 a
-1
from 2006 to 2018. The reason is that the increased water consumption causes increased the temperature and enhanced the evapotranspiration from 1982 to 2005. The water consumption of evapotranspiration was alleviated from 2006 to 2018 due to the continuous increase in precipitation and stagnation of temperature increase. The drought index of Mongolia grasslands showed a decreasing trend from 1982 to 2005 and an increasing trend from 2006 to 2018. Meanwhile
the drought index of Northwest grasslands showed an increasing trend from 1982 to 2005 and 2006 to 2018
respectively. The drought index of the Tibetan plateau showed a decreasing trend from 1982 to1994
and an increasing trend from 1995 to 2018. The drought index trend change was positively correlated with precipitation in China grasslands. The drought index was a ratio of precipitation on station and GLEAM PET
which can reflect the temporal dynamics of the dry/wet conditions of grasslands in China. The grasslands in China showed a drought trend from 1982 to 2005 and a wet trend from 2006 to 2018. The turning point year of Mongolia and Northwest grasslands are the same. The Mongolia grasslands and Tibetan plateau transitioned from dry to wet between before and after turning point in two periods. Meanwhile
the Northwest grasslands experienced continuous wetness in two periods. The changes of dry/wet in China grasslands was mainly dominated by Mongolia grasslands. Moreover
the change of trend is mainly dominated by precipitation.
遥感中国草原区干旱指数动态变化转变气候变化
remote sensingChina grasslandsdrought indexdynamic changeshiftclimate change
Akumaga U and Alderman P D. 2019. Comparison of Penman-Monteith and Priestley-Taylor evapotranspiration methods for crop modeling in Oklahoma. Agronomy Journal, 111(3): 1171-1180 [DOI: 10.2134/agronj2018.10.0694http://dx.doi.org/10.2134/agronj2018.10.0694]
Asadi Zarch M A, Sivakumar B and Sharma A. 2015. Assessment of global aridity change. Journal of Hydrology, 520: 300-313 [DOI: 10.1016/j.jhydrol.2014.11.033http://dx.doi.org/10.1016/j.jhydrol.2014.11.033]
Cao R C, Hu Z M, Jiang Z Y, Yang Y T, Zhao W, Wu G N, Feng X M, Chen R R and Hao G C. 2020. Shifts in ecosystem water use efficiency on China’s loess plateau caused by the interaction of climatic and biotic factors over 1985—2015. Agricultural and Forest Meteorology, 291: 1-9 [DOI: 10.1016/j.agrformet.2020.108100http://dx.doi.org/10.1016/j.agrformet.2020.108100]
Chan S K, Bindlish R, O’Neill P E, Njoku E, Jackson T, Colliander A, Chen F, Burgin M, Dunbar S, Piepmeier J, Yueh S, Entekhabi D, Cosh M H, Caldwell T, Walker J, Wu X L, Berg A, Rowlandson T, Pacheco A, Mcnairn H, Thibeault M, Martínez-Fernández J, González-Zamora Á, Seyfried M, Bosch D, Starks P, Goodrich D, Prueger J, Palecki M, Small E E, Zreda M, Calvet J C, Crow W T and Kerr Y. 2016. Assessment of the SMAP passive soil moisture product. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4994-5007 [DOI: 10.1109/tgrs.2016.2561938http://dx.doi.org/10.1109/tgrs.2016.2561938]
Chen H P and Sun J Q. 2015. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. Journal of Climate, 28(13): 5430-5447 [DOI: 10.1175/jcli-d-14-00707.1http://dx.doi.org/10.1175/jcli-d-14-00707.1]
Chen B Z, Xu G, Coops N C, Ciais P, Innes J L, Wang G Y, Myneni R B, Wang T L, Krzyzanowski J, Li Q L, Cao L and Liu Y. 2014. Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over the last three decades. Remote Sensing of Environment, 144: 28-41 [DOI: 10.1016/j.rse.2013.12.018http://dx.doi.org/10.1016/j.rse.2013.12.018]
Dai A G. 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52-58 [DOI: 10.1038/nclimate1633http://dx.doi.org/10.1038/nclimate1633]
Fu C B and Ma Z G. 2008. Global change and regional aridification. Chinese Journal of Atmospheric Sciences, 32(4): 752-760
符淙斌, 马柱国. 2008. 全球变化与区域干旱化. 大气科学, 32(4): 752-760 [DOI: 10.3878/j.issn.1006-9895.2008.04.05http://dx.doi.org/10.3878/j.issn.1006-9895.2008.04.05]
Gao Y H, Li X, Leung L R, Chen D L and Xu J W. 2015. Aridity changes in the Tibetan Plateau in a warming climate. Environmental Research Letters, 10(3): 1-13 [DOI: 10.1088/1748-9326/10/3/034013http://dx.doi.org/10.1088/1748-9326/10/3/034013]
Hu Z M, Guo Q, Li S G, Piao S L, Knapp A K, Ciais P, Li X R and Yu G R. 2018. Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecology Letters, 21(10): 1457-1466 [DOI: 10.1111/ele.13126http://dx.doi.org/10.1111/ele.13126]
Huang J P, Yu H P, Guan X D, Wang G Y and Guo R X. 2016. Accelerated dryland expansion under climate change. Nature Climate Change, 6(2): 166-171 [DOI: 10.1038/nclimate2837http://dx.doi.org/10.1038/nclimate2837]
Huo Z L, Dai X Q, Feng S Y, Kang S Z and Huang G H. 2013. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology, 492: 24-34 [DOI: 10.1016/j.jhydrol.2013.04.0111http://dx.doi.org/10.1016/j.jhydrol.2013.04.0111]
Hou Q, Zhang B, He H, Ma B and Ma S Q. 2019. Spatiotemporal variation of dry-hot wind events in the Hexi region in recent 50 years. Arid Zone Research, 36(2): 403-411
候启, 张勃, 何航, 马彬, 马尚谦. 2019. 近50多年河西地区干热风事件时空变化特征. 干旱区研究, 36(2): 403-411 [DOI: 10.13866/j.azr.2019.02.16http://dx.doi.org/10.13866/j.azr.2019.02.16]
Kim H, Parinussa R, Konings A G, Wagner W, Cosh M H, Lakshmi V, Zohaib M and Choi M. 2018. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204: 260-275 [DOI: 10.1016/j.rse.2017.10.026http://dx.doi.org/10.1016/j.rse.2017.10.026]
Li P L, Hu Z M and Liu Y W. 2020. Shift in the trend of browning in southwestern Tibetan Plateau in the past two decades. Agricultural and Forest Meteorology, 287: 1-9 [DOI: 10.1016/j.agrformet.2020.107950http://dx.doi.org/10.1016/j.agrformet.2020.107950]
Liu L B, Wang Y, You N S, Liang Z, Qin D H and Li S C. 2019. Changes in aridity and its driving factors in China during 1961—2016. International Journal of Climatology, 39(1): 50-60 [DOI: 10.1002/joc.5781http://dx.doi.org/10.1002/joc.5781]
Liu X M, Zhang D, Luo Y Z and Liu C M. 2013. Spatial and temporal changes in aridity index in Northwest China: 1960 to 2010. Theoretical and Applied Climatology, 112(1/2): 307-316 [DOI: 10.1007/s00704-012-0734-7http://dx.doi.org/10.1007/s00704-012-0734-7]
Ma H L, Zeng J Y, Chen N C, Zhang X, Cosh M H and Wang W. 2019. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: a comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231: 1-14 [DOI: 10.1016/j.rse.2019.111215http://dx.doi.org/10.1016/j.rse.2019.111215]
Ma Z G, Fu C B, Yang Q, Zheng Z Y, Lü M X, Li M X, Duan Y W and Chen L. 2018. Drying trend in northern China and its shift during 1951-2016. Chinese Journal of Atmospheric Sciences, 42(4): 951-961
马柱国, 符淙斌, 杨庆, 郑子彦, 吕美霞, 李明星, 段亚雯, 陈亮. 2018. 关于我国北方干旱化及其转折性变化. 大气科学, 42(4): 951-961 [DOI: 10.3878/j.issn.1006-9895.1802.18110http://dx.doi.org/10.3878/j.issn.1006-9895.1802.18110]
Martens B, Miralles D G, Lievens H, van der Schalie R, de Jeu R A M, Fernández-Prieto D, Beck H E, Dorigo W A and Verhoest N E C. 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5): 1903-1925 [DOI: 10.5194/gmd-10-1903-2017http://dx.doi.org/10.5194/gmd-10-1903-2017]
Mohanty B P, Cosh M H, Lakshmi V and Montzka C. 2017. Soil moisture remote sensing: state-of-the-science. Vadose Zone Journal, 16(1): 1-9 [DOI: 10.2136/vzj2016.10.0105http://dx.doi.org/10.2136/vzj2016.10.0105]
Piao S L, Wang X H, Ciais P, Zhu B, Wang T and Liu J. 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10): 3228-3239 [DOI: 10.1111/j.1365-2486.2011.02419.xhttp://dx.doi.org/10.1111/j.1365-2486.2011.02419.x]
Ramarao M V S, Sanjay J, Krishnan R, Mujumdar M, Bazaz A and Revi A. 2019. On observed aridity changes over the semiarid regions of India in a warming climate. Theoretical and Applied Climatology, 136(1/2): 693-702 [DOI: 10.1007/s00704-018-2513-6http://dx.doi.org/10.1007/s00704-018-2513-6]
Rodell M, Houser P R, Jambor U, Gottschalck J, Mitchell K, Meng C J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D and Toll D. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394 [DOI: 10.1175/bams-85-3-381http://dx.doi.org/10.1175/bams-85-3-381]
Seddon A W R, Macias-Fauria M, Long P R, Benz D and Willis K J. 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593): 229-232 [DOI: 10.1038/nature16986http://dx.doi.org/10.1038/nature16986]
Sheffield J, Wood E F and Roderick M L. 2012. Little change in global drought over the past 60 years. Nature, 491(7424): 435-438 [DOI: 10.1038/nature11575http://dx.doi.org/10.1038/nature11575]
Stanimirova R, Arévalo P, Kaufmann R K, Maus V, Lesiv M, Havlík P and Friedl M A. 2019. Sensitivity of global pasturelands to climate variation. Earth's Future, 7(12): 1353-1366 [DOI: 10.1029/2019ef001316http://dx.doi.org/10.1029/2019ef001316]
Sun B L, Ma L, Feng Q, Liu T X, Liang L T, Li H Y, Zhou Y and Liu Y. 2019. Response of the warming hiatus to changing influences over the Inner Mongolia Autonomous Region. China Environmental Science, 39(5): 2131-2142 [DOI: 10.1002/met.1937http://dx.doi.org/10.1002/met.1937]
Sun H,Zhou B C,Li H and Ruan L. 2021. A primary study on downscaling microwave soil moisture with MOD16 and SMAP. National Remote Sensing Bulletin, 25(3):776-790
孙灏, 周柏池, 李欢, 阮琳. 2021. 耦合MOD16和SMAP的微波土壤湿度降尺度研究. 遥感学报, 25(3): 776-790 [DOI: 10.11834/jrs.20209253http://dx.doi.org/10.11834/jrs.20209253]
Tan C P, Yang J P and Li M. 2015. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui autonomous region, China. Atmosphere, 6(10): 1399-1421 [DOI: 10.3390/atmos6101399http://dx.doi.org/10.3390/atmos6101399]
Tong S Q, Lai Q, Zhang J Q, Bao Y H, Lusi A, Ma Q Y, Li X Q and Zhang F. 2018. Spatiotemporal drought variability on the Mongolian Plateau from 1980—2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Science of the Total Environment, 615: 1557-1565 [DOI: 10.1016/j.scitotenv.2017.09.121http://dx.doi.org/10.1016/j.scitotenv.2017.09.121]
Van Der Schrier G, Barichivich J, Briffa K R and Jones P D. 2013. A scPDSI-based global data set of dry and wet spells for 1901—2009. Journal of Geophysical Research: Atmospheres, 118(10): 4025-4048 [DOI: 10.1002/jgrd.50355http://dx.doi.org/10.1002/jgrd.50355]
Van Der Schrier G, Jones P D and Briffa K R. 2011. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research: Atmospheres, 116(D3): 1-16 [DOI: 10.1029/2010jd015001http://dx.doi.org/10.1029/2010jd015001]
Vicente-Serrano S M, Beguería S, Lorenzo-Lacruz J, Camarero J J, López-Moreno J I, Azorin-Molina C, Revuelto J, Morán-Tejeda E and Sanchez-Lorenzo A. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10): 1-27 [DOI: 10.1175/2012ei000434.1http://dx.doi.org/10.1175/2012ei000434.1]
Wang X W, Liu M and Liu L. 2014. Responses of MODIS spectral indices to typical drought events from 2000 to 2012 in Southwest China. Journal of Remote Sensing, 18(2): 432-452
王先伟, 刘梅, 柳林. 2014. MODIS光谱指数在中国西南干旱监测中的应用. 遥感学报, 18(2): 432-452 [DOI: 10.11834/jrs.20143023http://dx.doi.org/10.11834/jrs.20143023]
Wang X H, Piao S L, Ciais P, Li J S, Friedlingstein P, Koven C and Chen A P. 2011. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 108(4): 1240-1245 [DOI: 10.1073/pnas.1014425108http://dx.doi.org/10.1073/pnas.1014425108]
Yang S C and Yang H S. 2019. Drought evolution and vegetation response in Inner Mongolia from 1982 to 2013. Journal of Natural Disasters, 28(1): 175-183
杨舒畅, 杨恒山. 2019. 1982—2013年内蒙古地区干旱变化及植被响应. 自然灾害学报, 28(1): 175-183 [DOI: 10.13577/j.jnd.2019.0121http://dx.doi.org/10.13577/j.jnd.2019.0121]
Yao J Q, Zhao Y, Chen Y N, Yu X J and Zhang R B. 2018. Multi-scale assessments of droughts: a case study in Xinjiang, China. Science of the Total Environment, 630: 444-452 [DOI: 10.1016/j.scitotenv.2018.02.200http://dx.doi.org/10.1016/j.scitotenv.2018.02.200]
Zhang L, Xiao J F, Zhou Y, Zheng Y, Li J and Xiao H. 2016. Drought events and their effects on vegetation productivity in China. Ecosphere, 7(12): 1-20 [DOI: 10.1002/ecs2.1591http://dx.doi.org/10.1002/ecs2.1591]
Zhao W, Hu Z M, Guo Q, Wu G N, Chen R R and Li S G. 2020. Contributions of climatic factors to interannual variability of the vegetation index in Northern China Grasslands. Journal of Climate, 33(1): 175-183 [DOI: 10.1175/jcli-d-18-0587.1http://dx.doi.org/10.1175/jcli-d-18-0587.1]
相关作者
相关机构