中国卫星遥感地表水资源监测能力分析与展望
Inspects and prospects of satellite remote sensing monitoring ability for land surface water in China
- 2023年27卷第7期 页码:1554-1573
纸质出版日期: 2023-07-07
DOI: 10.11834/jrs.20220576
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-07-07 ,
扫 描 看 全 文
李欢,万玮,冀锐,李国元,陈晓娜,朱思宇,刘宝剑,徐玥,罗增良,王胜蕾,崔要奎.2023.中国卫星遥感地表水资源监测能力分析与展望.遥感学报,27(7): 1554-1573
Li H,Wan W,Ji R,Li G Y,Chen X N,Zhu S Y,Liu B J,Xu Y,Luo Z L,Wang S L and Cui Y K. 2023. Inspects and prospects of satellite remote sensing monitoring ability for land surface water in China. National Remote Sensing Bulletin,27(7):1554-1573
在中国自然资源部水资源调查与确权登记的职能需求之下,面向中国“十四五”及二零三五年远景卫星发展规划,亟需厘清水资源属性卫星遥感监测国内外发展现状,并进一步剖析中国卫星地表水资源监测能力。本文在对国内外多种类型卫星(包括光学、激光、雷达、重力、GNSS-R等)水资源监测能力及属性反演前沿技术(以地表固液态水的范围、水位、体积变化等为主)进行总结分析的基础上,针对中国地表水资源卫星遥感监测的现状和不足,从观测体系、技术体系、产品体系和服务体系4个方面提出未来卫星遥感地表水资源监测规划设计建议。
We investigate the worldwide monitoring of land surface water by satellite remote sensing and the corresponding ability of Chinese satellites for the 14th five-year plan under the general goals of the Ministry of Natural Resources of the People’s Republic of China to plan for the new generation of satellites for water resource monitoring. First
this work reviews the current status of the water resource monitoring by the Chinese and international satellites from several perspectives
including liquid surface water (water extent
water level
water volume
water temperature
and water quality)
solid surface water (glacier
snow
and frozen ground)
and water vapor in the atmosphere. Then
the capability of land natural resources satellites for land surface water monitoring is inspected. Afterward
the ability of water resources monitoring with various types of remote sensing satellites
including optical
laser
RADAR
and gravity satellites
is summarized and analyzed. Advice and suggestions for Chinese satellite planning of water resources monitoring are proposed by concentrating on the current status and the shortage of water resource monitoring with satellite remote sensing in China. The advice and suggestions include planning the observation
technique
product
and service systems. First
a new generation of cloud water resources monitoring satellites combining infrared and active/passive microwaves is recommended to be developed for the observation system. Moreover
the evolution of radar satellites should be accelerated to make up for the deficiency of optical satellites. Altimetry satellites and gravity satellites must be vigorously cultivated. Furthermore
small satellite constellations for water resources monitoring integrating satellite “communication-navigation-remote sensing” should be promoted. Advanced thermal infrared and hyperspectral satellites with strong temporal and spatial resolution are also recommended to be developed. Second
for the technique system
exploring general remote sensing data processing technologies
including data correction/splicing technology and multisensor data fusion technology
are recommended to improve the quality of domestic satellite data for operational water resources monitoring. Moreover
water resource element extraction/retrieval models must be promoted. The techniques for high-quality long-term water resource products should be also developed. Finally
for the service system
providing a dataset-sharing service of the long-term global water cycle flux and storage elements with high spatiotemporal granularity is recommended. Moreover
the overall development of Chinese satellites for water resources monitoring has started from scratch toward boosting
and these natural resource satellites have basic capabilities for water resources survey. Natural resources satellite datasets are abundant. However
nationwide long-term series of water resources data mainly based on domestically made satellites remain lacking. This gap can be improved from two perspectives.
Developing operational natural resources retrieval models from the data perspective following the scientific concept of “remote sensing big data + artificial intelligence” is necessary for timely acquisition
processing
distribution
and providing service while ensuring the stability of satellite remote sensing data. It can realize all-time
all-weather
and all-element satellite remote sensing monitoring for natural resources based on cloud services. From the satellite perspective
the next step for on-orbit satellites is to produce application-oriented operational water resource element products
combining multisource satellite data on the premise of improving satellite data quality. For satellites under planning
relevant departments should work closely to establish goals with different priorities under the guidance of scientific and application issues and full consideration of costs.
地表水资源卫星遥感水资源监测遥感大数据卫星规划建议
land surface water resourceswater resource monitoring by satellite remote sensingremote sensing big datasatellite plan suggestions
Bennartz R and Fischer J. 2001. Retrieval of columnar water vapour over land from backscattered solar radiation using the medium resolution imaging spectrometer. Remote Sensing of Environment,78(3): 274-283 [DOI: 10.1016/S0034-4257(01)00218-8http://dx.doi.org/10.1016/S0034-4257(01)00218-8]
Berthier E,Arnaud Y,Vincent C and Rémy F. 2006. Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophysical Research Letters,33(8): L08502 [DOI: 10.1029/2006GL025862http://dx.doi.org/10.1029/2006GL025862]
Biancamaria S,Lettenmaier D P and Pavelsky T M. 2016. The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics,37(2): 307-337 [DOI: 10.1007/s10712-015-9346-yhttp://dx.doi.org/10.1007/s10712-015-9346-y]
Birkett C M, Ricko M, Beckley B D, Yang X and Tetrault R L. 2017. G-REALM: a lake/reservoir monitoring tool for drought monitoring and water resources management. [EB/OL]. [2021-12-13]. https://ui.adsabs.harvard.edu/abs/2017AGUFM.H23P..02B/abstracthttps://ui.adsabs.harvard.edu/abs/2017AGUFM.H23P..02B/abstract
Bolch T,Sørensen L S,Simonsen S B,Mölg N,Machguth H,Rastner P and Paul F. 2013. Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data. Geophysical Research Letters,40(5): 875-881 [DOI: 10.1002/grl.50270http://dx.doi.org/10.1002/grl.50270]
Brodzik M J and Armstrong R. 2013. Northern hemisphere EASE-Grid 2.0 weekly snow cover and sea ice extent,version in 4. NASANational Snow and Ice Data Center Distributed Active Archive Center. Boulder,ColoradoUSA [DOI: 10.5067/P7O0HGJLYUQUhttp://dx.doi.org/10.5067/P7O0HGJLYUQU]
Brunt K M,Neumann T A and Smith B E. 2019. Assessment of ICESat-2 ice sheet surface heights,based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters,46(22): 13072-13078 [DOI: 10.1029/2019GL084886http://dx.doi.org/10.1029/2019GL084886]
Che T,Li X,Jin R,Armstrong R and Zhang T J. 2008. Snow depth derived from passive microwave remote-sensing data in China. Annals of Glaciology,49: 145-154 [DOI: 10.3189/172756408787814690http://dx.doi.org/10.3189/172756408787814690]
Chen H,Shan X J,Zhang Y H,Li J H and Qu C Y. 2007. Correction of atmospheric water vapour effects on the repeat-pass spaceborne D-INSAR by using NOAA-16/FY-1C and ASAR data. Chinese Journal of Geophysics,50(3): 707-713
谌华,单新建,张云华,李建华,屈春燕. 2007. 利用NOAA-16/FY-1C和ASAR数据纠正大气水汽对重轨星载D-INSAR的影响. 地球物理学报,50(3): 707-713
Chen J,Chen J,Liao A P,Cao X,Chen L J,Chen X H,He C Y,Han G,Peng S,Lu M,Zhang W W,Tong X H and Mills J. 2015. Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing,103: 7-27 [DOI: 10.1016/j.isprsjprs.2014.09.002http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002]
Chen Q,Zheng L J,Li X J,Xu C B,Wu Y,Xie D H and Liu L. 2019. Water body extraction from high-resolution satellite remote sensing images based on deep learning. Geography and Geo-Information Science,35(4): 43-49
陈前,郑利娟,李小娟,徐崇斌,吴俣,谢东海,刘亮. 2019. 基于深度学习的高分遥感影像水体提取模型研究. 地理与地理信息科学,35(4): 43-49 [DOI: 10.3969/j.issn.1672-0504.2019.04.007http://dx.doi.org/10.3969/j.issn.1672-0504.2019.04.007]
Crétaux J F,Arsen A,Calmant S,Kouraev A,Vuglinski V,Bergé-Nguyen M,Gennero M C,Nino F,Del Rio R A,Cazenave A and Maisongrande P. 2011. SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research,47(9): 1497-1507 [DOI: 10.1016/j.asr.2011.01.004http://dx.doi.org/10.1016/j.asr.2011.01.004]
Cui W J,Li J G,Li Z,Zhu L,Wang D Z and Zhang N. 2020. Simulation of sea surface temperature retrieval based on GF-5 thermal infrared data. Journal of Remote Sensing,24(7): 852-866
崔文杰,李家国,李忠,朱利,王殿忠,张宁. 2020. 高分五号热红外传感器多通道SST反演. 遥感学报,24(7): 852-866 [DOI: 10.11834/jrs.20209062http://dx.doi.org/10.11834/jrs.20209062]
Deng R,Huang J F and Wang F M. 2011. Research on extraction method of water body with DS spectral enhancement based on HJ-1 images. Spectroscopy and Spectral Analysis,31(11): 3064-3068
邓睿,黄敬峰,王福民. 2011. 基于去相关拉伸光谱增强的HJ-1影像水体信息提取方法研究. 光谱学与光谱分析,31(11): 3064-3068 [DOI: 10.3964/j.issn.1000-0593(2011)11-3064-05http://dx.doi.org/10.3964/j.issn.1000-0593(2011)11-3064-05]
Domingos P. 2012. A few useful things to know about machine learning. Communications of the ACM,55(10): 78-87 [DOI: 10.1145/2347736.2347755http://dx.doi.org/10.1145/2347736.2347755]
Dong C Y. 2018. Remote sensing,hydrological modeling and in situ observations in snow cover research: a review. Journal of Hydrology,561: 573-583 [DOI: 10.1016/j.jhydrol.2018.04.027http://dx.doi.org/10.1016/j.jhydrol.2018.04.027]
Duan H T,Luo J H,Cao Z G,Xue K,Xiao Q T and Liu D. 2019. Progress in remote sensing of aquatic environments at the watershed scale. Progress in Geography,38(8): 1182-1195
段洪涛,罗菊花,曹志刚,薛坤,肖启涛,刘东. 2019. 流域水环境遥感研究进展与思考. 地理科学进展,38(8): 1182-1195 [DOI: 10.18306/dlkxjz.2019.08.007http://dx.doi.org/10.18306/dlkxjz.2019.08.007]
Duguay C R,Zhang T J,Leverington D W and Romanovsky V E. 2005. Satellite remote sensing of permafrost and seasonally frozen ground//Duguay C R and Pietroniro A,eds. Remote Sensing in Northern Hydrology: Measuring Environmental Change. American Geophysical Union [DOI: 10.1029/163gm06http://dx.doi.org/10.1029/163gm06]
Fang Y,Li H,Wan W,Zhu S Y,Wang Z J,Hong Y and Wang H. 2019. Assessment of water storage change in China’s lakes and reservoirs over the last three decades. Remote Sensing,11(12): 1467 [DOI: 10.3390/rs11121467http://dx.doi.org/10.3390/rs11121467]
Fisher A,Flood N and Danaher T. 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment,175: 167-182 [DOI: 10.1016/j.rse.2015.12.055http://dx.doi.org/10.1016/j.rse.2015.12.055]
Gao B C and Kaufman Y J. 2003. Water vapor retrievals using moderate resolution Imaging spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical Research: Atmospheres,108(D13): 4389 [DOI: 10.1029/2002jd003023http://dx.doi.org/10.1029/2002jd003023]
Gao H L,Birkett C and Lettenmaier D P. 2012. Global monitoring of large reservoir storage from satellite remote sensing. Water Resources Research,48(9): W09504 [DOI: 10.1029/2012wr012063http://dx.doi.org/10.1029/2012wr012063]
Gong P,Zhang W,Yu L,Li C C,Wang J,Liang L,Li X C,Ji L Y and Bai Y Q. 2016. New research paradigm for global land cover mapping. Journal of Remote Sensing,20(5): 1002-1016
宫鹏,张伟,俞乐,李丛丛,王杰,梁璐,李雪草,计璐艳,白玉琪. 2016. 全球地表覆盖制图研究新范式. 遥感学报,20(5): 1002-1016 [DOI: 10.11834/jrs.20166138http://dx.doi.org/10.11834/jrs.20166138]
Gong S Q,Lu P T,Sun D Y,Li Y M and Wu P F. 2016. Comparison of water surface temperature retrieval algorithms from HJ-1B/IRS thermal infrared data over Lake Taihu,China. Journal of Lake Sciences,28(3): 645-653
龚绍琦,陆品廷,孙德勇,李云梅,吴鹏飞. 2016. HJ-1B/IRS热红外数据反演太湖水温的方法比较. 湖泊科学,28(3): 645-653 [DOI: 10.18307/2016.0321http://dx.doi.org/10.18307/2016.0321]
Gorelick N,Hancher M,Dixon M,Ilyushchenko S,Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment,202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Gu X Z,Zeng Q W,Chen H,Chen E X,Zhao L,Yu F and Tu K. 2019. Study on water information extraction using domestic GF-3 image. Journal of Remote Sensing,23(3): 555-565
谷鑫志,曾庆伟,谌华,陈尔学,赵磊,于飞,涂宽. 2019. 高分三号影像水体信息提取. 遥感学报,23(3): 555-565 [DOI: 10.11834/jrs.20198171http://dx.doi.org/10.11834/jrs.20198171]
Guo W Q,Liu S Y,Xu J L,Wu L Z,Shangguan D H,Yao X J,Wei J F,Bao W J,Yu P C,Liu Q and Jiang Z L. 2015. The second Chinese glacier inventory: data,methods and results. Journal of Glaciology,61(226): 357-372 [DOI: 10.3189/2015JoG14J209http://dx.doi.org/10.3189/2015JoG14J209]
Han Q Q and Niu Z G. 2020. Construction of the long-term global surface water extent dataset based on water-NDVI spatio-temporal parameter set. Remote Sensing,12(17): 2675 [DOI: 10.3390/rs12172675http://dx.doi.org/10.3390/rs12172675]
Hansen M C,Potapov P V,Moore R,Hancher M,Turubanova S A,Tyukavina A,Thau D,Stehman S V,Goetz S J,Loveland T R,Kommareddy A,Egorov A,Chini L,Justice C O and Townshend J R G. 2013. High-resolution global maps of 21st-century forest cover change. Science,342(6160): 850-853 [DOI: 10.1126/science.1244693http://dx.doi.org/10.1126/science.1244693]
He J Y and Zhang S W. 2012. Humidity retrieval in mid-latitude and tropical regions using FY-3 MWHS. Journal of Remote Sensing,16(3): 562-578
何杰颖,张升伟. 2012. FY-3A星MWHS反演中纬度和热带大气水汽. 遥感学报,16(3): 562-578
Hong Y,Zhang Y and Khan S L. 2016. Hydrologic Remote Sensing: Capacity Building for Sustainability and Resilience. Boca: CRC Press [DOI: 10.1201/9781315370392http://dx.doi.org/10.1201/9781315370392]
Hori M,Sugiura K,Kobayashi K,Aoki T,Tanikawa T,Kuchiki K,Niwano M and Enomoto H. 2017. A 38-year (1978—2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sensing of Environment,191: 402-418 [DOI: 10.1016/j.rse.2017.01.023http://dx.doi.org/10.1016/j.rse.2017.01.023]
Hu C M,Lee Z,Ma R H,Yu K,Li D Q and Shang S L. 2010. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake,China. Journal of Geophysical Research: Oceans,115(C4): C04002 [DOI: 10.1029/2009jc005511http://dx.doi.org/10.1029/2009jc005511]
Hu W G,Meng L K,Zhang D Y,Fan Z W,Cheng J G and Li X H. 2014. Methods of water extraction from ZY-1 02C satellite imagery. Remote Sensing for Natural Resources,26(2): 43-47
胡卫国,孟令奎,张东映,樊志伟,成建国,李晓晖. 2014. 资源一号02C星图像水体信息提取方法. 国土资源遥感,26(2): 43-47 [DOI: 10.6046/gtzyyg.2014.02.08http://dx.doi.org/10.6046/gtzyyg.2014.02.08]
Huang L,Li Z,Zhou J M and Tian B S. 2014. Glacier change monitoring using SAR: an overview. Advances in Earth Science,29(9): 985-994
黄磊,李震,周建民,田帮森. 2014. SAR监测冰川变化研究进展. 地球科学进展,29(9): 985-994 [DOI: 10.11867/j.issn.1001-8166.2014.09.0985http://dx.doi.org/10.11867/j.issn.1001-8166.2014.09.0985]
Ji L Y,Gong P,Wang J,Shi J C and Zhu Z L. 2018. Construction of the 500-m resolution daily global surface water change database (2001—2016). Water Resources Research,54(12): 10270-10292 [DOI: 10.1029/2018wr023060http://dx.doi.org/10.1029/2018wr023060]
Jiang L G,Schneider R,Andersen O B and Bauer-Gottwein P. 2017. CryoSat-2 altimetry applications over rivers and lakes. Water,9(3): 211 [DOI: 10.3390/w9030211http://dx.doi.org/10.3390/w9030211]
Jiang Y Y,Du W T,Han T,Huang J,Hao X H,Liu W G. 2013. Analysis on NDSI threshold in mapping snow cover based on HJ-1B data——a case study of snow in the Qilian mountains. Journal of Glaciology and Geocryology,35(3): 648-655
蒋友严,杜文涛,韩涛,黄进,郝晓华,刘伟刚. 2013. 基于HJ-1B数据的积雪制图NDSI阈值分析——以祁连山积雪为例. 冰川冻土,35(3): 648-655 [DOI: 10.7522/j.issn.1000-0240.2013.0074http://dx.doi.org/10.7522/j.issn.1000-0240.2013.0074]
Jin J W,Li G Y,Sun W,Yang X D,Chang X T,Liu K and Liu Y. 2020. Application status and Prospect on water resources investigation and monitoring by satellite remote sensing. Bulletin of Surveying and Mapping,(5): 7-10
金建文,李国元,孙伟,杨雄丹,常晓涛,刘克,刘瑶. 2020. 卫星遥感水资源调查监测应用现状及展望. 测绘通报,(5): 7-10 [DOI: 10.13474/j.cnki.11-2246http://dx.doi.org/10.13474/j.cnki.11-2246]
Kim Y,Kimball J S,Glassy J and Du J Y. 2017. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing. Earth System Science Data,9(1): 133-147 [DOI: 10.5194/essd-9-133-2017http://dx.doi.org/10.5194/essd-9-133-2017]
Kou C. 2014. Mass balance estimation of glaciers based on satellite radar altimeter data. Nanjing: Nanjing University
寇程. 2014. 基于卫星雷达测高数据的冰川物质平衡研究. 南京: 南京大学
Lee H,Shum C K,Tseng K H,Huang Z W and Sohn H G. 2013. Elevation changes of Bering Glacier System,Alaska,from 1992 to 2010,observed by satellite radar altimetry. Remote Sensing of Environment,132: 40-48 [DOI: 10.1016/j.rse.2013.01.007http://dx.doi.org/10.1016/j.rse.2013.01.007]
Lehner B and Döll P. 2004. Development and validation of a global database of lakes,reservoirs and wetlands. Journal of Hydrology,296(1/4): 1-22 [DOI: 10.1016/j.jhydrol.2004.03.028http://dx.doi.org/10.1016/j.jhydrol.2004.03.028]
Lehner B,Liermann C R,Revenga C,Vörösmarty C,Fekete B,Crouzet P,Döll P,Endejan M,Frenken K,Magome J,Nilsson C,Robertson J C,Rödel R,Sindorf N and Wisser D. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment,9(9): 494-502 [DOI: 10.1890/100125http://dx.doi.org/10.1890/100125]
Li G Y,Gao X M,Chen J Y,Zhao Y M,Mo F and Zhang Y. 2019. Data quality analysis of ZY-3 02 satellite laser altimeter. Journal of Remote Sensing,23(6): 1159-1166
李国元,高小明,陈继溢,赵严铭,莫凡,张悦. 2019. 资源三号02星激光测高数据质量分析. 遥感学报,23(6): 1159-1166 [DOI: 10.11834/jrs.20197548http://dx.doi.org/10.11834/jrs.20197548]
Li H,Wan W,Fang Y,Zhu S Y,Chen X,Liu B J and Hong Y. 2019a. A Google Earth Engine-enabled software for efficiently generating high-quality user-ready Landsat mosaic images. Environmental Modelling and Software,112: 16-22 [DOI: 10.1016/j.envsoft.2018.11.004http://dx.doi.org/10.1016/j.envsoft.2018.11.004]
Li L Y. 2017. Study on variation and mass balance estimations of glacier in Yigong Zangbu basin,Tibet using multi-source remote sensing data. Nanjing: Nanjing University
李澜宇. 2017. 基于多源遥感数据的易贡藏布流域冰川变化与物质平衡研究. 南京: 南京大学
Li X D,Long D,Huang Q,Han P F,Zhao F Y and Wada Y. 2019b. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data,11(4): 1603-1627 [DOI: 10.5194/essd-11-1603-2019http://dx.doi.org/10.5194/essd-11-1603-2019]
Li X M,Zhang K,Li D L,Li D L,Li Z R and Zhang X. 2017. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau. Remote Sensing for Land and Resources,29(1): 57-64
李晓民,张焜,李冬玲,李得林,李宗仁,张兴. 2017. 青藏高原札达地区多年冻土遥感技术圈定方法与应用. 国土资源遥感,29(1): 57-64 [DOI: 10.6046/gtzyyg.2017.01.09http://dx.doi.org/10.6046/gtzyyg.2017.01.09]
Li Y. 2017. Inland water color parameters retrieval and algal bloom monitoring using multi-source remote sensing. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences) (李瑶. 2017. 内陆水体水色参数遥感反演及水华监测研究. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所))
Li Y,Gao H L,Zhao G and Tseng K H. 2020. A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry. Remote Sensing of Environment,244: 111831 [DOI: 10.1016/j.rse.2020.111831http://dx.doi.org/10.1016/j.rse.2020.111831]
Li Y H,Ding J L and Yan R H. 2015. Extraction of small river information based on China-made GF-1 remote sense images. Resources Science,37(3): 408-416
李艳华,丁建丽,闫人华. 2015. 基于国产GF-1遥感影像的山区细小水体提取方法研究. 资源科学,37(3): 408-416
Liang S L,Bai R,Chen X N,Cheng J,Fan W J,He T,Jia K,Jiang B,Jiang L M,Jiao Z T,Liu Y B,Ni W J,Qiu F,Song L L,Sun L,Tang B H,Wen J G,Wu G P,Xie D H,Yao Y J,Yuan W P,Zhang Y G,Zhang Y Z,Zhang Y T,Zhang X T,Zhao T J and Zhao X. 2020. Review of China's land surface quantitative remote sensing development in 2019. Journal of Remote Sensing,24(6): 618-671
梁顺林,白瑞,陈晓娜,程洁,范闻捷,何涛,贾坤,江波,蒋玲梅,焦子锑,刘元波,倪文俭,邱凤,宋柳霖,孙林,唐伯惠,闻建光,吴桂平,谢东辉,姚云军,袁文平,张永光,张玉珍,张云腾,张晓通,赵天杰,赵祥. 2020. 2019年中国陆表定量遥感发展综述. 遥感学报,24(6): 618-671 [DOI: 10.11834/jrs.20209476http://dx.doi.org/10.11834/jrs.20209476]
Liao A P,Chen L J,Chen J,He C Y,Cao X,Chen J,Peng S,Sun F D and Gong P. 2014. High-resolution remote sensing mapping of global land water. Science China Earth Sciences,57(10): 2305-2316
廖安平,陈利军,陈军,何超英,曹鑫,陈晋,彭舒,孙芳蒂,宫鹏. 2014. 全球陆表水体高分辨率遥感制图. 中国科学: 地球科学,44(8): 1634-1645 [DOI: 10.1007/s11430-014-4918-0http://dx.doi.org/10.1007/s11430-014-4918-0]
Liu B,Wang Y,Lou Z S and Zhan W. 2019. The MODIS PWV correction based on CMONOC in Chinese mainland. Acta Geodaetica et Cartographica Sinica,48(10): 1207-1215
刘备,王勇,娄泽生,占伟. 2019. CMONOC观测约束下的中国大陆地区MODIS PWV校正. 测绘学报,48(10): 1207-1215 [DOI: 10.11947/j.AGCS.2019.20180386http://dx.doi.org/10.11947/j.AGCS.2019.20180386]
Liu B J,Wan W,Xie H J,Li H,Zhu S Y,Zhang G Q,Wen L J and Hong Y. 2019. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981-2015. Scientific Data,6(1): 48 [DOI: 10.1038/s41597-019-0040-7http://dx.doi.org/10.1038/s41597-019-0040-7]
Liu S Y,Yao X J,Guo W Q,Xu J L,Shangguan D H,Wei J F,Bao W J and Wu L Z. 2015. The contemporary glaciers in China based on the second chinese glacier inventory. Acta Geographica Sinica,70(1): 3-16
刘时银,姚晓军,郭万钦,许君利,上官冬辉,魏俊锋,鲍伟佳,吴立宗. 2015. 基于第二次冰川编目的中国冰川现状. 地理学报,70(1): 3-16 [DOI: 10.11821/dlxb201501001http://dx.doi.org/10.11821/dlxb201501001]
Luojus K,Pulliainen J,Takala M,Lemmetyinen J and Moisander M. 2020. GlobSnow v3.0 snow water equivalent (SWE). PANGAEA [DOI: 10.1594/PANGAEA.911944http://dx.doi.org/10.1594/PANGAEA.911944]
Ma X Q,Lu S L,Ma J and Zhu L P. 2019. Lake water storage estimation method based on topographic parameters: a case study of Nam Co Lake. Remote Sensing for Land and Resources,31(4): 167-173
马小奇,卢善龙,马津,朱立平. 2019. 基于地形参数的湖泊水储量估算方法——以纳木错为例. 国土资源遥感,31(4): 167-173 [DOI: 10.6046/gtzyyg.2019.04.22http://dx.doi.org/10.6046/gtzyyg.2019.04.22]
MacCallum S N and Merchant C J. 2012. Surface water temperature observations of large lakes by optimal estimation. Canadian Journal of Remote Sensing,38(1): 25-45 [DOI: 10.5589/m12-010http://dx.doi.org/10.5589/m12-010]
Messager M L,Lehner B,Grill G,Nedeva I and Schmitt O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications,7: 13603 [DOI: 10.1038/ncomms13603http://dx.doi.org/10.1038/ncomms13603]
Metsämäki S,Pulliainen J,Salminen M,Luojus K,Wiesmann A,Solberg R,Böttcher K,Hiltunen M and Ripper E. 2015. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment,156: 96-108 [DOI: 10.1016/j.rse.2014.09.018http://dx.doi.org/10.1016/j.rse.2014.09.018]
Ministry of Natural Resources,People’s Republic of China. 2020. Overall plan for the construction of natural resources investigation and monitoring system[EB/OL]. [2021-12-13]. http://dkj.ah.gov.cn/public/7031/40401561.htmlhttp://dkj.ah.gov.cn/public/7031/40401561.html
自然资源部. 2020. 自然资源调查监测体系构建总体方案[EB/OL]. [2021-12-13]. http://dkj.ah.gov.cn/public/7031/40401561.htmlhttp://dkj.ah.gov.cn/public/7031/40401561.html
Moholdt G,Nuth C,Hagen J O and Kohler J. 2010. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment,114(11): 2756-2767 [DOI: 10.1016/j.rse.2010.06.008http://dx.doi.org/10.1016/j.rse.2010.06.008]
NSIDC. 2008. IMS daily northern hemisphere snow and ice analysis at 1 km,4 km,and 24 km Resolutions,Version 1. Boulder: NSIDC [DOI: 10.7265/N52R3PMChttp://dx.doi.org/10.7265/N52R3PMC]
Odermatt D,Danne O,Philipson P and Brockmann C. 2018. Diversity II water quality parameters from ENVISAT (2002—2012): a new global information source for lakes. Earth System Science Data,10(3): 1527-1549 [DOI: 10.5194/essd-10-1527-2018http://dx.doi.org/10.5194/essd-10-1527-2018]
Pekel J F,Cottam A,Gorelick N and Belward A S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature,540(7633): 418-422 [DOI: 10.1038/nature20584http://dx.doi.org/10.1038/nature20584]
Peng B F,Chen Z F,Li J H,Luo W J,Gan J and Zeng R L. 2018. Monitoring water quality of Dongting Lake region based on GF-1 image. Geographical Research,37(9): 1683-1691
彭保发,陈哲夫,李建辉,罗望军,甘洁,曾荣亮. 2018. 基于GF-1影像的洞庭湖区水体水质遥感监测. 地理研究,37(9): 1683-1691 [DOI: 10.11821/dlyj201809002http://dx.doi.org/10.11821/dlyj201809002]
Pickens A H,Hansen M C,Hancher M,Stehman S V,Tyukavina A,Potapov P,Marroquin B and Sherani Z. 2020. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sensing of Environment,243: 111792 [DOI: 10.1016/j.rse.2020.111792http://dx.doi.org/10.1016/j.rse.2020.111792]
Quan X F,Tang X M,Gao X M,Li G Y and Fu A M. 2019. Application and Prospect of satellite laser altimetry data in polar region. Geomatics and Spatial Information Technology,42(10): 19-24
权学烽,唐新明,高小明,李国元,付安民. 2019. 卫星激光测高数据在极地区域的应用及展望. 测绘与空间地理信息,42(10): 19-24
Ran Y H and Li X. 2019. Progress,challenges and opportunities of permafrost mapping in China. Advances in Earth Science,34(10): 1015-1027
冉有华,李新. 2019. 中国多年冻土制图: 进展、挑战与机遇. 地球科学进展,34(10): 1015-1027 [DOI: 10.11867/j.issn.1001-8166.2019.10.1015http://dx.doi.org/10.11867/j.issn.1001-8166.2019.10.1015]
Ran Y H,Li X,Cheng G D,Nan Z T,Che J X,Sheng Y,Wu Q B,Jin H J,Luo D L,Tang Z G and Wu X B. 2021. Mapping the permafrost stability on the Tibetan Plateau for 2005—2015. Science China Earth Sciences,64(1): 62-79
冉有华,李新,程国栋,南卓铜,车金星,盛煜,吴青柏,金会军,罗栋梁,唐志光,吴小波. 2021. 2005~2015年青藏高原多年冻土稳定性制图. 中国科学: 地球科学,51(2): 183-200
Randel D L,Haar T H V,Ringerud M A,Stephens G L,Greenwald T J and Combs C L. 1996. A new global water vapor dataset. Bulletin of the American Meteorological Society,77(6): 1233-1246 [DOI: 10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2]
Raup B H,Racoviteanu A,Khalsa S J S,Helm C,Armstrong R and Arnaud Y. 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change,56(1/2): 101-110 [DOI: 10.1016/j.gloplacha.2006.07.018http://dx.doi.org/10.1016/j.gloplacha.2006.07.018]
Riggs G A,Hall D K and Roman M O. 2017. Overview of NASA's MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth System Science Data,9(2): 765-777 [DOI: 10.5194/essd-9-765-2017http://dx.doi.org/10.5194/essd-9-765-2017]
Schaeffer B A,Schaeffer K G,Keith D,Lunetta R S,Conmy R and Gould R W. 2013. Barriers to adopting satellite remote sensing for water quality management. International Journal of Remote Sensing,34(21): 7534-7544 [DOI: 10.1080/01431161.2013.823524http://dx.doi.org/10.1080/01431161.2013.823524]
Schulz J,Albert P,Behr H D,Caprion D,Deneke H,Dewitte S,Dürr B,Fuchs P,Gratzki A,Hechler P,Hollmann R,Johnston S,Karlsson K G,Manninen T,Müller R,Reuter M,Riihelä A,Roebeling R,Selbach N,Tetzlaff A,Thomas W,Werscheck M,Wolters E and Zelenka A. 2009. Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmospheric Chemistry and Physics,9(5): 1687-1709 [DOI: 10.5194/acp-9-1687-2009http://dx.doi.org/10.5194/acp-9-1687-2009]
Schwatke C,Dettmering D,Bosch W and Seitz F. 2015. DAHITI-an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences,19(10): 4345-4364 [DOI: 10.5194/hess-19-4345-2015http://dx.doi.org/10.5194/hess-19-4345-2015]
Seemann S W,Li J,Menzel W P and Gumley L E. 2003. Operational retrieval of atmospheric temperature,moisture,and ozone from MODIS infrared radiances. Journal of Applied Meteorology,42(8): 1072-1091 [DOI: 10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2]
Shen Q,Yao Y,Li J S,Zhang F F,Wang S L,Wu Y H,Ye H P and Zhang B. 2019. A CIE color purity algorithm to detect black and odorous water in urban rivers using high-resolution multispectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing,57(9): 6577-6590 [DOI: 10.1109/Tgrs.2019.2907283http://dx.doi.org/10.1109/Tgrs.2019.2907283]
Shi H G,Liang C L,Zhang J Y,Wang B,Zhang C L,Cheng X and Song Z T. 2019. Remote sensing monitoring of thermal water discharge in Tianwan nuclear power plant based on CBERS-04. Geospatial Information,17(12): 75-79
石海岗,梁春利,张建永,汪冰,张春雷,程旭,宋振涛. 2019. 基于CBERS-04星田湾核电温排水遥感监测研究. 地理空间信息,17(12): 75-79 [DOI: 10.3969/j.issn.1672-4623.2019.12.021http://dx.doi.org/10.3969/j.issn.1672-4623.2019.12.021]
Shi J C,Guo H D,Dong X L,Liang S L,Chen J M,Gong P,Yang X F,Cheng J,Lin M S,Zhang P,Zhang W,Ju W M,Liu Y,Li Z Y and Zhao T J. 2021. Developments and future strategies of Earth science from space in China. Chinese Journal of Space Science,41(1): 95-117
施建成,郭华东,董晓龙,梁顺林,陈镜明,宫鹏,杨晓峰,程洁,林明森,张鹏,张伟,居为民,刘毅,李增元,赵天杰. 2021. 中国空间地球科学发展现状及未来策略. 空间科学学报,41(1): 95-117 [DOI: 10.11728/cjss2021.01.095http://dx.doi.org/10.11728/cjss2021.01.095]
Shi J C,Xiong C and Jiang L M. 2016. Review of snow water equivalent microwave remote sensing. Science China Earth Sciences,59(4): 731-745
施建成,熊川,蒋玲梅. 2016. 雪水当量主被动微波遥感研究进展. 中国科学: 地球科学,46(4): 529-543 [DOI: 10.1360/N072015-00031http://dx.doi.org/10.1360/N072015-00031]
Shi T T,Li F T and Zhang L. 2020. Preliminary study on the application of communication,navigation and remote sensing technology in natural resource management. Geospatial Information,18(8): 22-24
石婷婷,厉芳婷,张亮. 2020. 通导遥一体化在自然资源管理中的应用初探. 地理空间信息,18(8): 22-24 [DOI: 10.3969/j.issn.1672-4623.2020.08.006http://dx.doi.org/10.3969/j.issn.1672-4623.2020.08.006]
Shu R,Huang G H and Kong W. 2020. Development and review of space-based laser altimetry technology. Infrared and Laser Engineering,49(11): 20201047
舒嵘,黄庚华,孔伟. 2020. 空间激光测高技术发展及展望. 红外与激光工程,49(11): 20201047 [DOI: 10.3788/IRLA20201047http://dx.doi.org/10.3788/IRLA20201047]
Song C and Yin Q. 2021. Evaluation on vertical space characteristics of atmospheric water vapor and ozone for FY-4A GIIRS data sounding. Journal of Infrared and Millimeter Waves,40(4): 539-546
宋慈,尹球. 2021. FY-4A GIIRS数据探测大气水汽和臭氧的垂直空间特性评估. 红外与毫米波学报,40(4): 539-546 [DOI: 10.11972/j.issn.1001-9014.2021.04.013http://dx.doi.org/10.11972/j.issn.1001-9014.2021.04.013]
Song C Q,Ye Q H,Sheng Y W and Gong T L. 2015. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003—2014. Water,7(9): 4685-4700 [DOI: 10.3390/w7094685http://dx.doi.org/10.3390/w7094685]
Su Z,Fernández-Prieto D,Timmermans J,Chen X,Hungershoefer K,Roebeling R,Schröder M,Schulz J,Stammes P,Wang P and Wolters E. 2014. First results of the earth observation Water Cycle Multi-mission Observation Strategy (WACMOS). International Journal of Applied Earth Observation and Geoinformation,26: 270-285 [DOI: 10.1016/j.jag.2013.08.002http://dx.doi.org/10.1016/j.jag.2013.08.002]
Tang G Q,Long D,Wan W,Zeng Z Y,Guo X L and Hong Y. 2015. An overview and outlook of global water remote sensing technology and applications. Scientia Sinica (Technologica),45(10): 1013-1023
唐国强,龙笛,万玮,曾子悦,郭晓林,洪阳. 2015. 全球水遥感技术及其应用研究的综述与展望. 中国科学: 技术科学,45(10): 1013-1023 [DOI: 10.1360/N092015-00024http://dx.doi.org/10.1360/N092015-00024]
Tedesco M,Derksen C,Deems J S and Foster J L. 2014. Remote sensing of snow depth and snow water equivalent//TedescoM,ed. Remote Sensing of the Cryosphere. [s.l.]: John Wiley and Sons,Ltd [DOI: 10.1002/9781118368909.ch5http://dx.doi.org/10.1002/9781118368909.ch5]
Tsai Y L S,Dietz A,Oppelt N and Kuenzer C. 2019. Remote sensing of snow cover using spaceborne SAR: a review. Remote Sensing,11(2): 1456 [DOI: 10.3390/rs11121456http://dx.doi.org/10.3390/rs11121456]
Wan W,Long D,Hong Y,Ma Y Z,Yuan Y,Xiao P F,Duan H T,Han Z Y and Gu X F. 2016. A lake data set for the Tibetan Plateau from the 1960s,2005,and 2014. Scientific Data,3: 160039 [DOI: 10.1038/sdata.2016.39http://dx.doi.org/10.1038/sdata.2016.39]
Wan W,Zhao L,Xie H,Liu B,Li H,Cui Y,Ma Y and Hong Y. 2018. Lake surface water temperature change over the Tibetan Plateau from 2001 to 2015: a sensitive indicator of the warming climate. Geophysical Research Letters,45(10): 11177-11186 [DOI: 10.1029/2018GL078601http://dx.doi.org/10.1029/2018GL078601]
Wang G H,Pei L,Du Q Y and Li X. 2020. Spectral relation method for water body extraction from ZY-3 imagery. Remote Sensing Information,35(3): 117-121
王国华,裴亮,杜全叶,李旋. 2020. 针对资源三号卫星影像水体提取的谱间关系法. 遥感信息,35(3): 117-121
Wang Q,Zhang Y L,Fan J H and Fu Y H. 2020. Monitoring the motion of the Yiga glacier using GF‐3 images. Geomatics and Information Science of Wuhan University,45(3): 460-466
王群,张蕴灵,范景辉,傅宇浩. 2020. 利用高分三号影像监测依嘎冰川表面运动. 武汉大学学报(信息科学版),45(3): 460-466 [DOI: 10.13203/j.whugis20190036http://dx.doi.org/10.13203/j.whugis20190036]
Wang S L,Li J S,Zhang B,Spyrakos E,Tyler A N,Shen Q,Zhang F F,Kuster T,Lehmann M K,Wu Y H and Peng D L. 2018. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment,217: 444-460 [DOI: 10.1016/j.rse.2018.08.026http://dx.doi.org/10.1016/j.rse.2018.08.026]
Wang W M,Sun X M,Zhang R H,Tang X Z and Zhu Z L. 2005. The simulation analyze of the effect of surface reflective spectrum on the retrieval of water vapor with MODIS NIR data. Journal of Remote Sensing,9(1): 8-15
王伟民,孙晓敏,张仁华,唐新斋,朱治林. 2005. 地物反射光谱对MODIS近红外波段水汽反演影响的模拟分析. 遥感学报,9(1): 8-15
Wang X H,Tian H,Ji T M,Gong C L,Hu Y,Li L and He Z J. 2020. Remote sensing monitoring method for comprehensive water quality index in rivers based on Sentinel-2 satellite. Aerospace Shanghai (Chinese and English),37(5): 92-97,104
王歆晖,田华,季铁梅,巩彩兰,胡勇,李澜,何志杰. 2020. 哨兵2卫星综合水质指标的河流水质遥感监测方法. 上海航天(中英文),37(5): 92-97,104 [DOI: 10.19328/j.cnki.1006-1630.2020.05.014http://dx.doi.org/10.19328/j.cnki.1006-1630.2020.05.014]
Wang Y H,Li J G,Wang J,Zhu L,Tian S F and Tao Z. 2020. Remote sensing monitoring of water quality in Suzhou urban area based on GF-2 image. Science Technology and Engineering,20(14): 5875-5885
汪雨豪,李家国,汪洁,朱利,田淑芳,陶醉. 2020. 基于GF-2影像的苏州市区水质遥感监测. 科学技术与工程,20(14): 5875-5885 [DOI: 10.3969/j.issn.1671-1815.2020.14.062http://dx.doi.org/10.3969/j.issn.1671-1815.2020.14.062]
Wang Y Q,Shi J C,Liu Z H and Feng W L. 2015. Passive microwave remote sensing of precipitable water Vapor over Beijing-Tianjin-Hebei region based on AMSR-E. Geomatics and Information Science of Wuhan University,40(4): 479-486
王永前,施建成,刘志红,冯文兰. 2015. 利用微波辐射计AMSR-E的京津冀地区大气水汽反演. 武汉大学学报(信息科学版),40(4): 479-486 [DOI: 10.13203/j.whugis20130530http://dx.doi.org/10.13203/j.whugis20130530]
Wang Y Q,Shi J C,Wang H,Feng W L and Wang Y J. 2015. Physical statistical algorithm for precipitable water vapor inversion on land surface based on multi-source remotely sensed data. Science China Earth Sciences,58(12): 2340-2352
王永前,施建成,王皓,冯文兰,王雁君. 2016. 基于多源遥感数据陆面大气水汽反演的物理统计算法研究. 中国科学: 地球科学,46(1): 43-56 [DOI: 10.1007/s11430-015-5211-6http://dx.doi.org/10.1007/s11430-015-5211-6]
Wang Z M,Liu Z K,An J C and Lin G B. 2018. Snow depth detection and error analysis derived from SNR of GPS and BDS. Acta Geodaetica et Cartographica Sinica,47(1): 8-16
王泽民,刘智康,安家春,林国标. 2018. 基于GPS和北斗信噪比观测值的雪深反演及其误差分析. 测绘学报,47(1): 8-16 [DOI: 10.11947/j.AGCS.2018.20160644http://dx.doi.org/10.11947/j.AGCS.2018.20160644]
Wei H L,Wei G J,Dai S and Huang Y Y. 2021. Inversion of atmospheric water vapor content in Lanzhou based on MODIS data. Remote Sensing Information,36(4): 68-75
魏浩林,魏冠军,戴嵩,黄逸宇. 2021. 兰州市大气水汽含量及其时空特征分析. 遥感信息,36(4): 68-75 [DOI: 10.3969/j.issn.1000-3177.2021.04.010http://dx.doi.org/10.3969/j.issn.1000-3177.2021.04.010]
Westermann S,Duguay C R,Grosse G and Kääb A. 2015. Remote sensing of permafrost and frozen ground//Tedesco M,ed. Remote Sensing of the Cryosphere. Chichester: Wiley Blackwell [DOI: 10.1002/9781118368909.ch13http://dx.doi.org/10.1002/9781118368909.ch13]
WGMS. 2020. Fluctuations of Glaciers Database. Zurich: World Glacier Monitoring Service [DOI: 10.5904/wgms-fog-2020-08http://dx.doi.org/10.5904/wgms-fog-2020-08]
Wilkinson G G. 2005. Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Transactions on Geoscience and Remote Sensing,43(3): 433-440 [DOI: 10.1109/Tgrs.2004.837325http://dx.doi.org/10.1109/Tgrs.2004.837325]
Wouters B,Gardner A S and Moholdt G. 2019. Global glacier mass loss during the GRACE satellite mission (2002-2016). Frontiers in Earth Science,7: 96 [DOI: 10.3389/feart.2019.00096http://dx.doi.org/10.3389/feart.2019.00096]
Wu S L,Liu C and Chen J. 2018. Overview of FY-3 snow monitoring products and applications in remote sensing service. Aerospace Shanghai,35(2): 60-65
武胜利,刘畅,陈洁. 2018. FY-3卫星积雪监测产品概述及在遥感服务中的应用. 上海航天,35(2): 60-65 [DOI: 10.19328/j.cnki.1006-1630.2018.02.007http://dx.doi.org/10.19328/j.cnki.1006-1630.2018.02.007]
Wulfmeyer V,Hardesty R M,Turner D D,Behrendt A,Cadeddu M P,Di Girolamo P,Schlüssel P,Van Baelen J and Zus F. 2015. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Reviews of Geophysics,53(3): 819-895 [DOI: 10.1002/2014rg000476http://dx.doi.org/10.1002/2014rg000476]
Xie Z Y,Phinn S R,Game E T,Pannell D J,Hobbs R J,Briggs P R and McDonald-Madden E. 2019. Using Landsat observations (1988—2017) and Google Earth Engine to detect vegetation cover changes in rangelands-a first step towards identifying degraded lands for conservation. Remote Sensing of Environment,232: 111317 [DOI: 10.1016/j.rse.2019.111317http://dx.doi.org/10.1016/j.rse.2019.111317]
Xiong J,Thenkabail P S,Gumma M K,Teluguntla P,Poehnelt J,Congalton R G,Yadav K and Thau D. 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing,126: 225-244 [DOI: 10.1016/j.isprsjprs.2017.01.019http://dx.doi.org/10.1016/j.isprsjprs.2017.01.019]
Xu J H,Feng M,Wang J B,Ran Y H,Qi Y,Yang L A and Li X. 2020. Automatically identifying rock glacier based on Gaofen satellite image and deep learning——preliminary application in west Nyainqentanglha mountains. Remote Sensing Technology and Application,35(6): 1329-1336
徐瑾昊,冯敏,王建邦,冉有华,祁元,杨联安,李新. 2020. 基于高分遥感数据和深度学习的石冰川自动提取研究——以念青唐古拉山西段为例. 遥感技术与应用,35(6): 1329-1336 [DOI: 10.11873/j.issn.1004-0323.2020.6.1329http://dx.doi.org/10.11873/j.issn.1004-0323.2020.6.1329]
Yang B Y,Zhang L X,Gao Y,Xiang Y,Mou N X and Suolang D. 2016. An integrated method of glacier length extraction based on Gaofen satellite data. Journal of Glaciology and Geocryology,38(6): 1615-1623
杨佰义,张灵先,高杨,向洋,牟乃夏,索朗旦巴. 2016. 基于高分卫星数据的冰川长度综合提取方法. 冰川冻土,38(6): 1615-1623 [DOI: 10.7522/j.issn.1000-0240.2016.0189http://dx.doi.org/10.7522/j.issn.1000-0240.2016.0189]
Yang T,Wan W,Chen X W,Chu T X,Qiao Z,Liang H,Wei J H,Wang G Q and Hong Y. 2019. Land surface characterization using BeiDou signal-to-noise ratio observations. GPS Solutions,23(2): 32 [DOI: 10.1007/s10291-019-0824-4http://dx.doi.org/10.1007/s10291-019-0824-4]
Ye Q H,Cheng W M,Zhao Y L,Zong J B and Zhao R. 2016. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies. Journal of Geo-information Science,18(7): 920-930
叶庆华,程维明,赵永利,宗继彪,赵瑞. 2016. 青藏高原冰川变化遥感监测研究综述. 地球信息科学学报,18(7): 920-930
Ying Q,Hansen M C,Potapov P V,Tyukavina A,Wang L,Stehman S V,Moore R and Hancher M. 2017. Global bare ground gain from 2000 to 2012 using Landsat imagery. Remote Sensing of Environment,194: 161-176 [DOI: 10.1016/j.rse.2017.03.022http://dx.doi.org/10.1016/j.rse.2017.03.022]
Yuan C,Gong P and Bai Y Q. 2020. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sensing,12(5): 770 [DOI: 10.3390/rs12050770http://dx.doi.org/10.3390/rs12050770]
Zhai G J,Huang M T,Ouyang Y Z and Lu X P. 2002. The principle of satellite altimetry and its applications. Hydrographic Surveying and Charting,22(1): 57-62
翟国君,黄谟涛,欧阳永忠,陆秀平. 2002. 卫星测高原理及其应用. 海洋测绘,22(1): 57-62
Zhang G L,Wang J,Pan B T,Zhang C and Cao B. 2010. Progress in research on glacier changes using remote sensing. Journal of Lanzhou University (Natural Sciences),46(6): 1-10
张国梁,王杰,潘保田,张忱,曹泊. 2010. 冰川变化遥感监测的研究进展. 兰州大学学报(自然科学版),46(6): 1-10 [DOI: 10.13885/j.issn.0455-2059.2010.06.010http://dx.doi.org/10.13885/j.issn.0455-2059.2010.06.010]
Zhang G Q,Chen W F and Xie H J. 2019a. Tibetan plateau's lake level and volume changes from NASA's ICESat/ICESat-2 and landsat missions. Geophysical Research Letters,46(22): 13107-13118 [DOI: 10.1029/2019gl085032http://dx.doi.org/10.1029/2019gl085032]
Zhang G Q,Yao T D,Chen W F,Zheng G X,Shum C K,Yang K,Piao S L,Sheng Y W,Yi S,Li J L,O'Reilly C M,Qi S H,Shen S S P,Zhang H B and Jia Y Y. 2019b. Regional differences of lake evolution across China during 1960s—2015 and its natural and anthropogenic causes. Remote Sensing of Environment,221: 386-404 [DOI: 10.1016/j.rse.2018.11.038http://dx.doi.org/10.1016/j.rse.2018.11.038]
Zhang J Y,Yu X L,Lv H and Zhu J R. 2014. Analysis of atmospheric precipitable water vapor over Wuhan based on MODIS data in recent ten years. Acta Photonica Sinica,43(10): 1001003
张金业,于秀丽,吕辉,朱进容. 2014. 基于成像光谱仪MODIS的近十年武汉水汽含量变化分析. 光子学报,43(10): 1001003 [DOI: 10.3788/gzxb20144310.1001003http://dx.doi.org/10.3788/gzxb20144310.1001003]
Zhang T J,Jin R and Gao F. 2009a. Overview of the satellite remote sensing of frozen ground: visible-thermal infrared and radar sensor. Advances in Earth Science,24(9): 963-972
张廷军,晋锐,高峰. 2009a. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法. 地球科学进展,24(9): 963-972
Zhang T J,Jin R and Gao F. 2009b. Overview of the satellite remote sensing of frozen ground: passive microwave sensors. Advances in Earth Science,24(10): 1073-1083
张廷军,晋锐,高峰. 2009b. 冻土遥感研究进展: 被动微波遥感. 地球科学进展,24(10): 1073-1083
Zhang X W,He T,Zhao C G,Mo F,Guo A Y,Luo W B and Yang J K. 2020. Demonstration of surveying and mapping system and performance evaluation of GF-7 satellite. Spacecraft Engineering,29(3): 1-11
张新伟,贺涛,赵晨光,莫凡,国爱燕,罗文波,杨居奎. 2020. 高分七号卫星测绘体制与性能评估. 航天器工程,29(3): 1-11 [DOI: 10.3969/j.issn.1673-8748.2020.03.001http://dx.doi.org/10.3969/j.issn.1673-8748.2020.03.001]
Zhao X L. 2015. Experimental research on retrieval model for precipitable water vapor based on multi-source data. Beijing: China University of Geosciences (Beijing)
赵晓磊. 2015. 基于多源数据的大气可降水量反演模型试验研究. 北京: 中国地质大学(北京)
Zhou Q,Liu J Q,Wang J R,Deng S Q and Tian L Q. 2020. Water turbidity monitoring of Zhiyin and Huangjia lakes in Wuhan for COVID-19 Epidemic using HY-1C CZI data. Geomatics and Information Science of Wuhan University,45(5): 676-681
周屈,刘建强,王剑茹,邓实权,田礼乔. 2020. 利用HY-1C卫星CZI数据在COVID-19疫情期间武汉知音湖和黄家湖的浊度监测研究. 武汉大学学报(信息科学版),45(5): 676-681 [DOI: 10.13203/j.whugis20200101http://dx.doi.org/10.13203/j.whugis20200101]
Zhu L,Li Y M,Zhao S H and Guo Y L. 2015. Remote sensing monitoring of Taihu Lake water quality by using GF-1 satellite WFV data. Remote Sensing of Land and Resources,27(1): 113-120
朱利,李云梅,赵少华,郭宇龙. 2015. 基于GF-1号卫星WFV数据的太湖水质遥感监测. 国土资源遥感,27(1): 113-120 [DOI: 10.6046/gtzyyg.2015.01.18http://dx.doi.org/10.6046/gtzyyg.2015.01.18]
Zhu S Y,Liu B J,Wan W,Xie H J,Fang Y,Chen X,Li H,Fang W Z,Zhang G Q,Tao M W and Hong Y. 2019. A new digital lake bathymetry model using the step-wise water recession method to generate 3D lake bathymetric maps based on DEMs. Water,11(6): 1151 [DOI: 10.3390/w11061151http://dx.doi.org/10.3390/w11061151]
Zhu Y X,Zhang J,Liu R and Wang Y C. 2014. Study on remote sensing monitoring of water quality for Danjiangkou Reservoir by HJ-1 satellite data. Environmental Science and Technology,27(5): 52-58
朱玉霞,张杰,刘锐,王英才. 2014. 基于HJ-1卫星的丹江口库区水质遥感监测研究. 环境科技,27(5): 52-58 [DOI: 10.3969/j.issn.1674-4829.2014.05.012http://dx.doi.org/10.3969/j.issn.1674-4829.2014.05.012]
Zuo Z Q,Tang X M,Li G Y and Li S. 2020. Adaptive Gaussian filtering of the full waveform of GF-7 satellite laser altimeter. Infrared and Laser Engineering,49(11): 20200251
左志强,唐新明,李国元,李松. 2020. GF-7星载激光测高仪全波形自适应高斯滤波. 红外与激光工程,49(11): 20200251 [DOI: 10.3788/IRLA2020025http://dx.doi.org/10.3788/IRLA2020025]
相关作者
相关机构