基于深度学习的高分辨率卫星遥感影像条带噪声去除
Stripe noise removal in high resolution satellite remote sensing images based on deep learning
- 2023年27卷第3期 页码:610-622
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20221054
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
高浩博,卜桐,李欣,陆世东,钟慧敏,崔林.2023.基于深度学习的高分辨率卫星遥感影像条带噪声去除.遥感学报,27(3): 610-622
Gao H B,Bu T,Li X,Lu S D,Zhong H M and Cui L. 2023. Stripe noise removal in high resolution satellite remote sensing images based on deep learning. National Remote Sensing Bulletin, 27(3):610-622
受到成像环境、硬件条件等因素的限制,高分辨率卫星遥感影像上普遍存在条带噪声的现象,其严重影响了影像的辐射质量和可用性。本文针对传统条带去除方法存在的适应性差、去噪效率低、依靠先验知识等不足,提出了一种基于深度学习卷积神经网络的条带噪声去除方法。本方法首先利用不同尺度的卷积层进行特征提取,然后对多尺度的特征图进行特征融合得到去噪底图,通过残差学习的方法在底图上预测存在的噪声分量,最后用噪声影像减去条带噪声分量实现噪声的去除。以模拟和真实获取的噪声影像为实验数据,将本文提出的方法与一些经典的去噪方法进行实验结果对比分析,实验结果表明本文提出的基于深度学习的条带噪声去除方法能够在保留影像地物细节的情况下,能以优异的速度达到最高的定量指标和最好的视觉效果,充分证明了本文方法的优越性。
Affected by imaging conditions
data transmission
and other factors
stripe noise is common in satellite remote sensing images. It seriously restricts the quality and further use of images. In early studies
various denoising methods
such as statistics-based methods
filtering-based methods
and optimization-based methods
have been proposed to overcome the above problems. These proposed methods have achieved inspiring results in some aspects. However
they still suffer from poor adaptability
low denoising efficiency
and the need for prior knowledge. Therefore
stripe noise removal remains a challenging task.
In this study
we take advantage of the convolutional deep network while considering the characteristics of the stripe noise image itself. A deep-learning-based method is proposed
which includes three parts: a feature extraction module
a feature fusion module
and a stripe denoising module. The feature extraction module uses the convolutional layer of the same channel with different strides to extract features. As a result
different-scale feature maps of the noisy image are obtained for the following feature fusion module. The feature fusion module upsamples different-scale feature maps. It fuses these upsampled feature maps through the element-wise addition method. Finally
a denoising network is used to predict the components of stripe noise. The stripe component is subtracted from the noise image based on predictions. Given the difficulties in obtaining real noise samples
the network is trained by simulation samples. Then
it is extended to denoise real images.
Experiments on simulation and real images show the excellent performance of our network. In the quantitative assessment
the PSNR and the SSIM of our network when simulated images are used are higher than those of the four methods. In the visual assessment
our network performs well on homogeneous and nonhomogeneous objects. Our network denoises more efficiently and retains more details of ground features than traditional methods and other denoising networks. In real noise images
our method achieves the best denoising performance with the highest ICV and the lowest MRD. Compared with traditional methods
our network has a fast denoising speed
approximately 100 times faster than the denoising speed of the optimization-based denoising method. The above experimental results demonstrate that our network has the best denoising performance in simulated and real images.
In this study
a convolutional neural network denoising method based on multiscale feature fusion is proposed based on the fully convolutional neural network. The method uses residual learning to predict the strip-noise components on images. It achieves clean images by subtracting the strip components from noisy images. Experiments demonstrate that compared with traditional methods
deep learning denoising methods are adaptive for removing stripe noise of different intensities without losing image details. The strategy of feature fusion and residual learning can effectively improve the training speed and denoising accuracy of the network. In the future
skip-connected and batch normalization layers will be included to optimize training speed and improve denoising performance. Further studies will be conducted in terms of the transfer ability of the network and the extension of its application in other types of remote sensing images
such as aerial images and hyperspectral images.
高分影像深度学习条带噪声卷积神经网络特征融合
high-resolution imagedeep learningstripe noiseconvolutional neural networkfeature fusion
Bouali M and Ladjal S. 2011. Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Transactions on Geoscience and Remote Sensing, 49(8): 2924-2935 [DOI: 10.1109/TGRS.2011.2119399http://dx.doi.org/10.1109/TGRS.2011.2119399]
Carfantan H and Idier J. 2010. Statistical linear destriping of satellite-based pushbroom-type images. IEEE Transactions on Geoscience and Remote Sensing, 48(4): 1860-1871 [DOI: 10.1109/TGRS.2009.2033587http://dx.doi.org/10.1109/TGRS.2009.2033587]
Chang Y, Fang H Z, Yan L X and Liu H. 2013. Robust destriping method with unidirectional total variation and framelet regularization. Optics Express, 21(20): 23307-23323 [DOI: 10.1364/OE.21.023307http://dx.doi.org/10.1364/OE.21.023307]
Chang Y, Yan L X, Fang H Z, Zhong S and Liao W S. 2019. HSI-DeNet: hyperspectral image restoration via convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 667-682 [DOI: 10.1109/TGRS.2018.2859203http://dx.doi.org/10.1109/TGRS.2018.2859203]
Chang Y, Yan L X, Tao W and Zhong S. 2016. Remote sensing image stripe noise removal: from image decomposition perspective. IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7018-7031 [DOI: 10.1109/TGRS.2016.2594080http://dx.doi.org/10.1109/TGRS.2016.2594080]
Chen J S, Shao Y, Guo H D, Wang W M and Zhu B Q. 2003. Destriping CMODIS data by power filtering. IEEE Transactions on Geoscience and Remote Sensing, 41(9): 2119-2124 [DOI: 10.1109/TGRS.2003.817206http://dx.doi.org/10.1109/TGRS.2003.817206]
Fischel D. 1984. Validation of the thematic mapper radiometric and geometric correction algorithms. IEEE Transactions on Geoscience and Remote Sensing, GE-22(3): 237-242 [DOI: 10.1109/TGRS.1984.350616http://dx.doi.org/10.1109/TGRS.1984.350616]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Horn B K P and Woodham R J. 1979. Destriping LANDSAT MSS images by histogram modification. Computer Graphics and Image Processing, 10(1): 69-83 [DOI: 10.1016/0146-664X(79)90035-2http://dx.doi.org/10.1016/0146-664X(79)90035-2]
Kim J, Lee J K and Lee K M. 2016. Accurate image super-resolution using very deep convolutional networks//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1646-1654 [DOI: 10.1109/CVPR.2016.182http://dx.doi.org/10.1109/CVPR.2016.182]
Kuang X D, Sui X B, Chen Q and Gu G H. 2017. Single infrared image stripe noise removal using deep convolutional networks. IEEE Photonics Journal, 9(4): 3900913 [DOI: 10.1109/JPHOT.2017.2717948http://dx.doi.org/10.1109/JPHOT.2017.2717948]
Liu P and Fang R G. 2017. Wide inference network for image denoising. CoRR, abs/1707.05414.
Pande-Chhetri R and Abd-Elrahman A. 2011. De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5): 620-636 [DOI: 10.1016/j.isprsjprs.2011.04.003http://dx.doi.org/10.1016/j.isprsjprs.2011.04.003]
Rakwatin P, Takeuchi W and Yasuoka Y. 2007. Stripe noise reduction in MODIS data by combining histogram matching with facet filter. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1844-1856 [DOI: 10.1109/TGRS.2007.895841http://dx.doi.org/10.1109/TGRS.2007.895841]
Shen H F and Zhang L P. 2009. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing, 47(5): 1492-1502 [DOI: 10.1109/TGRS.2008.2005780http://dx.doi.org/10.1109/TGRS.2008.2005780]
Song Q, Wang Y H, Yan X Y and Gu H G. 2018. Remote sensing images stripe noise removal by double sparse regulation and region separation. Remote Sensing, 10(7): 998 [DOI: 10.3390/rs10070998http://dx.doi.org/10.3390/rs10070998]
Sun B, Li J L, Zhang X X and Ren J Y. 2014. Interleaving assembly of TDICCDs on 600 mm focal plane. Optics and Precision Engineering, 22(11): 2908-2913
孙斌, 李景林, 张星祥, 任建岳. 2014. 600 mm长焦平面时间延迟积分CCD的交错拼接. 光学 精密工程, 22(11): 2908-2913 [DOI: 10.3788/OPE.20142211.2908http://dx.doi.org/10.3788/OPE.20142211.2908]
Wang C, Wang X and Ji S. 2019. Stripe noise removal of remote images based on variation. Journal of Xi'an Jiaotong University, 53(3): 143-149
王昶, 王旭, 纪松. 2019. 采用变分法的遥感影像条带噪声去除. 西安交通大学学报, 53(3): 143-149 [DOI: 10.7652/xjtuxb201903020http://dx.doi.org/10.7652/xjtuxb201903020]
Wang M, Zheng X H, Pan J and Wang B. 2016. Unidirectional total variation destriping using difference curvature in MODIS emissive bands. Infrared Physics and Technology, 75: 1-11 [DOI: 10.1016/j.infrared.2015.12.004http://dx.doi.org/10.1016/j.infrared.2015.12.004]
Wang Z, Bovik A C, Sheikh H R and Simoncelli E P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600-612 [DOI: 10.1109/TIP.2003.819861http://dx.doi.org/10.1109/TIP.2003.819861]
Xiao P F, Guo Y C and Zhuang P X. 2018. Removing stripe noise from infrared cloud images via deep convolutional networks. IEEE Photonics Journal, 10(4): 7801114 [DOI: 10.1109/JPHOT.2018.2854303http://dx.doi.org/10.1109/JPHOT.2018.2854303]
Zhang K, Zuo W M, Chen Y J, Meng D Y and Zhang L. 2017. Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7): 3142-3155 [DOI: 10.1109/TIP.2017.2662206http://dx.doi.org/10.1109/TIP.2017.2662206]
Zhao B H, He B, Yang L H, Tao M H and Ren J Y. 2012. Destriping for TDI-CCD remote sensing images. Chinese Journal of Space Science, 32(2): 298-304
赵变红, 何斌, 杨利红, 陶明慧, 任建岳. 2012. TDI-CCD遥感图像条带噪声的消除. 空间科学学报, 32(2): 298-304 [DOI: 10.11728/cjss2012.02.298http://dx.doi.org/10.11728/cjss2012.02.298]
Zhong Y F, Li W Q, Wang X Y, Jin S Y and Zhang L P. 2020. Satellite-ground integrated destriping network: a new perspective for EO-1 Hyperion and Chinese hyperspectral satellite datasets. Remote Sensing of Environment, 237: 111416 [DOI: 10.1016/j.rse.2019.111416http://dx.doi.org/10.1016/j.rse.2019.111416]
相关作者
相关机构