GEE平台下多源遥感影像对洪灾的监测
Monitoring of floods using multi-source remote sensing images on the GEE platform
- 2023年27卷第9期 页码:2179-2190
纸质出版日期: 2023-09-07
DOI: 10.11834/jrs.20221063
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-09-07 ,
扫 描 看 全 文
刘小燕,崔耀平,史志方,付一鸣,闰亚迪,李梦迪,李楠,刘素洁.2023.GEE平台下多源遥感影像对洪灾的监测.遥感学报,27(9): 2179-2190
Liu X Y,Cui Y P,Shi Z F,Fu Y M,Run Y D,Li M D,Li N and Liu S J. 2023. Monitoring of floods using multi-source remote sensing images on the GEE platform. National Remote Sensing Bulletin, 27(9):2179-2190
受限于洪灾时期的天气,用于洪灾评估的遥感数据多为雷达影像或者航拍数据,而众多夜间灯光和光学影像数据在评估洪灾时发挥的作用亟待进一步挖掘。本研究以7—8月份的阜阳为研究对象,基于Sentinel-1、Sentinel-2及Landsat 8等卫星数据,借助遥感大数据平台GEE(Google Earth Engine)提取水体信息,并利用夜间灯光数据建立的夜间灯光总强度TNL(Total Night-time Light)和综合灯光指数CNLI(Compounded Night Light Index)来探讨水体变化与夜间灯光之间的关系,从而监测和评估洪灾动态。结果显示:(1)阜阳7—8月南部水体分布变化明显,特别是蒙洼蓄洪区水体面积明显增加,7月31日水体面积达到最大值323 km
2
,比洪灾前水体面积多出6倍,随后水体覆盖范围呈下降趋势,该趋势与王家坝开闸蓄洪和泄洪的时间对应。(2)基于夜间灯光指数TNL指数和CNLI指数对阜阳夜间灯光变化进行结合分析,发现灯光指数的变化趋势与水体的变化趋势相反,说明夜间灯光指数可以有效地反映出洪灾的变化过程。(3)对数据较完整的阜阳东部的水体及夜间灯光指数进行结合分析,进一步说明夜间灯光与水体数据均可用来监测洪灾。本研究以阜阳市今年的洪灾为例,拓展了夜间灯光数据和光学影像的应用范围,同时也证实了在经过严格的数据处理后,基于Sentinel-1的雷达影像、Sentinel-2和Landsat 8的光学影像等多源遥感数据均可有效监测洪灾的变化情况,在以后的洪灾监测中发挥重要的作用。
Limited by the weather during floods
the remote sensing data used for flood assessments are mostly radar images or aerial data
and the role of numerous night lights and optical image data in flood assessments needs to be further explored. This paper took Fuyang from July to August as the research area
based on the monitoring data of Sentinel-1
Sentinel-2
and Landsat 8 and extracted water body information with the help of Google Earth Engine. This paper used night light data (NPP-VIIRS DNB) to establish the total night-time light (TNL) and compounded night light (CNLI) to explore the relationship between water changes and night lights to monitor and evaluate the effect of floods. Results showed the following: (1) The distribution of water bodies in the southern part of Fuyang changed remarkably from July to August
especially the water bodies in the Mengwa Flood Diversion Project increased substantially. On July 31
the water body area reached the maximum of 323 km
2
which was six times larger than the water body area before the flood
and then the coverage of water bodies was declining. This trend corresponded to the time of flood storage and discharge of Wangjiaba gate. (2) The combined analysis of Fuyang night light index TNL index and CNLI index found the change trend of the light index was opposite to that of the water body
indicating the night light index can effectively reflect the changing of flood disasters. (3) Analyzing the water body and night light index of eastern Fuyang with relatively complete data further showed night light and water body data can be used to monitor floods. This paper expanded the application range of night light data and optical images and confirmed that after rigorous data processing
multisource remote sensing data such as radar image based on Sentinel-1
optical image based on Sentinel-2
and Landsat 8 can effectively monitor the change of flood disaster and play an important role in flood monitoring in the future.
Google Earth Engine(GEE)夜间灯光多源遥感洪灾哨兵NPP-VIIRS DNBLandsat
Google Earth Engine (GEE)night lightsmulti-source remote sensingflood disasterSentinelNPP-VIIRS DNBLandsat
Boccardo P and Tonolo F G. 2015. Remote sensing role in emergency mapping for disaster response//Engineering Geology for Society and Territory-Volume 5. Switzerland: Springer: 17-24 [DOI: 10.1007/978-3-319-09048-1_3http://dx.doi.org/10.1007/978-3-319-09048-1_3]
Cao C Y, Shao X and Uprety S. 2013. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances. IEEE Geoscience and Remote Sensing Letters, 10(6): 1582-1586 [DOI: 10.1109/lgrs.2013.2262258http://dx.doi.org/10.1109/lgrs.2013.2262258]
Feeny S, Trinh T A and De Silva A. 2022. Detecting disasters and disaster recovery in Southeast Asia: findings from space. Natural Hazards Review, 23(2): 04021065 [DOI: 10.1061/(ASCE)NH.1527-6996.0000532http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000532]
Feyisa G L, Meilby H, Fensholt R and Proud S R. 2014. Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23-35 [DOI: 10.1016/j.rse.2013.08.029http://dx.doi.org/10.1016/j.rse.2013.08.029]
Gao Y, Wang H, Wang P T, Sun X Y and Lü T T. 2013. Population spatial processing for Chinese coastal zones based on census and multiple night light data. Resources Science, 35(12): 2517-2523
高义, 王辉, 王培涛, 孙晓宇, 吕婷婷. 2013. 基于人口普查与多源夜间灯光数据的海岸带人口空间化分析. 资源科学, 35(12): 2517-2523
Guo L, Shu Q Y and Li J. 2020. Flood disaster loss assessment based on NPP-VIIRS night lights. Water Resources Development Research, 20(2): 62-68
郭磊, 舒全英, 李军. 2020. 基于NPP-VIIRS夜间灯光的洪水灾害损失评估. 水利发展研究, 20(2): 62-68 [DOI: 10.13928/j.cnki.wrdr.2020.02.014http://dx.doi.org/10.13928/j.cnki.wrdr.2020.02.014]
Huang P, Xu X H and Li D L. 2018. Rapid extraction of water area in Poyang Lake based on Sentinel-1 satellite images. Journal of Water Resources Research, 7(5): 483-491
黄萍, 许小华, 李德龙. 2018. 基于Sentinel-1卫星数据快速提取鄱阳湖水体面积. 水资源研究, 7(5): 483-491 [DOI: 10.12677/JWRR.2018.75054http://dx.doi.org/10.12677/JWRR.2018.75054]
Huang S E, Zhang Y Z and Gu X Q. 2003. Poyanghu flood disaster system study basing on remote sensing and geographical information system. Jiangxi Meteorological Science & Technology, 26(4): 44-46
黄淑娥, 章毅之, 辜晓青. 2003. 基于遥感(RS)和地理信息系统(GIS)的鄱阳湖区洪涝灾害研究. 江西气象科技, 26(4): 44-46 [DOI: 10.3969/j.issn.1007-9033.2003.04.014http://dx.doi.org/10.3969/j.issn.1007-9033.2003.04.014]
Kato S, Rose F G, Sun-Mack S, Miller W F, Chen Y, Rutan D A, Stephens G L, Loeb N G, Minnis P, Wielicki B A, Winker D M, Charlock T P, Stackhouse P W, Xu K M and Collins W D. 2011. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. Journal of Geophysical Research: Atmospheres, 116(D19): D19209 [DOI: 10.1029/2011jd016050http://dx.doi.org/10.1029/2011jd016050]
Li F, Mi X N, Liu J and Liu X Y. 2016. Spatialization of GDP in Beijing using NPP-VIIRS data. Remote Sensing for Land and Resources, 28(3): 19-24
李峰, 米晓楠, 刘军, 刘小阳. 2016. 基于NPP-VIIRS夜间灯光数据的北京市GDP空间化方法. 国土资源遥感, 28(3): 19-24 [DOI: 10.6046/gtzyyg.2016.03.04http://dx.doi.org/10.6046/gtzyyg.2016.03.04]
Li F, Yan Q W, Zou Y J and Liu B L. 2021. Extraction accuracy of urban built-up area based on nighttime light data and POI: a case study of Luojia 1-01 and NPP/VIIRS nighttime light images. Geomatics and Information Science of Wuhan University, 46(6): 825-835
厉飞, 闫庆武, 邹雅婧, 刘保丽. 2021. 利用夜间灯光POI的城市建成区提取精度研究——以珞珈一号01星和NPP/VIIRS夜间灯光影像为例. 武汉大学学报(信息科学版), 46(6): 825-835 [DOI: 10.13203/j.whugis20190266http://dx.doi.org/10.13203/j.whugis20190266]
Li N, Cui Y P, Fu Y M, Liu X Y, Run Y D, Li M D, Chen L Y, Xia H M and Lu H L. 2021. Contribution of anthropogenic CO2 in China to global radiative forcing and its offset by the ecosystem during 2000—2015. Annals of the New York Academy of Sciences, 1488(1): 56-66 [DOI: 10.1111/nyas.14505http://dx.doi.org/10.1111/nyas.14505]
Li X X, Ma X P, Liu A G and Zhu R. 2020. Variation of night light index based on NPP-VIIRS Data: a case study on the Xiahe MS5.7 earthquake. China Earthquake Engineering Journal, 42(5): 1232-1235, 1269
李晓雪, 马小平, 刘岸果, 朱瑞. 2020. 基于NPP-VIIRS数据的夜间灯光指数变化分析——以夏河MS5.7地震为例. 地震工程学报, 42(5): 1232-1235, 1269 [DOI: 10.3969/j.issn.1000-0844.2020.05.1232http://dx.doi.org/10.3969/j.issn.1000-0844.2020.05.1232]
Li Z Z, Qian C H and Sun C R. 2000. A priliminary analysis on the relationship between the cross-equatorial flow and the heavy rainfall over Yangtze and Huaihe river in 1991. Acta Meteorologica Sinica, 58(5): 628-636
李曾中, 钱传海, 孙除荣. 2000. 1991年江淮暴雨与越赤道气流关系初步分析. 气象学报, 58(5): 628-636 [DOI: 10.11676/qxxb2000.064http://dx.doi.org/10.11676/qxxb2000.064]
Liu Q Y, Zhan Q M, Li J S, Yang C and Liu W. 2021. Extracting built-up areas using Luojia-1A nighttime light imageries in Wuhan, China. Geomatics and Information Science of Wuhan University, 46(1): 30-39
刘权毅, 詹庆明, 李建松, 杨晨, 刘稳. 2021. 珞珈一号夜间灯光影像在建设用地提取中的应用: 以武汉市为例. 武汉大学学报(信息科学版), 46(1): 30-39 [DOI: 10.13203/j.whugis20190376http://dx.doi.org/10.13203/j.whugis20190376]
Liu Z F, He C Y, Zhang Q F, Huang Q X and Yang Y. 2012. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landscape and Urban Planning, 106(1): 62-72 [DOI: 10.1016/j.landurbplan.2012.02.013http://dx.doi.org/10.1016/j.landurbplan.2012.02.013]
Ma T, Zhou C H, Pei T, Haynie S and Fan J F. 2012. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities. Remote Sensing of Environment, 124: 99-107 [DOI: 10.1016/j.rse.2012.04.018http://dx.doi.org/10.1016/j.rse.2012.04.018]
Martinis S, Plank S and Ćwik K. 2018. The use of Sentinel-1 time-series data to improve flood monitoring in arid areas. Remote Sensing, 10(4): 583 [DOI: 10.3390/rs10040583http://dx.doi.org/10.3390/rs10040583]
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66 [DOI: 10.1109/tsmc.1979.4310076http://dx.doi.org/10.1109/tsmc.1979.4310076]
Perilla G A and Mas J F. 2020. Google earth engine-GEE: a powerful tool linking the potential of massive data and the efficiency of cloud processing. Investigaciones Geográficas, 101: e59929 [DOI: 10.14350/rig.59929http://dx.doi.org/10.14350/rig.59929]
Shi K F, Yu B L, Huang Y X, Hu Y J, Yin B, Chen Z Q, Chen L J and Wu J P. 2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data. Remote Sensing, 6(2): 1705-1724 [DOI: 10.3390/rs6021705http://dx.doi.org/10.3390/rs6021705]
Shikwambana L. 2021. Emissions of toxic gases and aerosols in southern Africa observed during the 2019 JJASO period. Air Quality, Atmosphere and Health, 14(4): 481-490 [DOI: 10.1007/s11869-020-00952-1http://dx.doi.org/10.1007/s11869-020-00952-1]
Sihler H, Wagner T, Beirle S, Grzegorski M, Hörmann C, Lang R, Lampel J and Penning de Vries M. 2017. Accurately retrieving effective cloud fractions and effective cloud height from GOME-2 and OMI measurements for the verification of Sentinel 5(P) algorithms//EGU General Assembly Conference Abstracts. [s.l.]: EGU
Skoufias E, Strobl E and Tveit T B. 2020. Flood and tsunami damage indices based on remotely sensed data: an application to Indonesia. Natural Hazards Review, 21(4): 04020042 [DOI: 10.1061/(ASCE)NH.1527-6996.0000325http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000325]
Su Y L. 2018. Research on Multi-Source Satellite Remote Sensing Monitoring Method of Cultivated Land Rainstorm and Flood Disaster. Xian: Xi’an University of Science and Technology (苏亚丽. 2018. 耕地暴雨洪水灾害多源卫星遥感监测方法研究. 西安: 西安科技大学)
Sun Y Y, Huang S F, Li J R, Li X T, Ma J W and Qu W. 2017. The downstream flood monitoring application of Myanmar Irrawaddy River based on Sentinel-1A SAR. Remote Sensing Technology and Application, 32(2): 282-288
孙亚勇, 黄诗峰, 李纪人, 李小涛, 马建威, 曲伟. 2017. Sentinel-1A SAR数据在缅甸伊洛瓦底江下游区洪水监测中的应用. 遥感技术与应用, 32(2): 282-288 [DOI: 10.11873/j.issn.1004-0323.2017.2.0282http://dx.doi.org/10.11873/j.issn.1004-0323.2017.2.0282]
Van Westen C J. 2013. Remote sensing and GIS for natural hazards assessment and disaster risk management//Treatise on Geomorphology. San Diego: Academic Press, 3: 259-298 [DOI: 10.1016/B978-0-12-374739-6.00051-8http://dx.doi.org/10.1016/B978-0-12-374739-6.00051-8]
Wang D Z, Wang S M and Huang C. 2019. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes. Remote Sensing for Land and Resources, 31(3): 157-165
王大钊, 王思梦, 黄昌. 2019. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比. 国土资源遥感, 31(3): 157-165 [DOI: 10.6046/gtzyyg.2019.03.20http://dx.doi.org/10.6046/gtzyyg.2019.03.20]
Wang L and Duan H C. 2008. Application of Otsu’ method in multi-threshold image segmentation. Computer Engineering and Design, 29(11): 2844-2845, 2972
王磊, 段会川. 2008. Otsu方法在多阈值图像分割中的应用. 计算机工程与设计, 29(11): 2844-2845, 2972 [DOI: 10.16208/j.issn1000-7024.2008.11.030http://dx.doi.org/10.16208/j.issn1000-7024.2008.11.030]
Wang X R. 2021. Rapid Assessment of Natural Disaster Impact based on NPP-VIIRS Nighttime Remote Sensing Data. Xiamen: Xiamen University of Technology
王晓荣. 2021. 基于NPP-VIIRS夜光遥感数据的自然灾害影响快速评估. 厦门: 厦门理工学院
Washaya P. 2018. Using Coherence Change-Detection with Sentinel-1 for Natural and Man-Made Disaster Monitoring in Urban Areas. Wuhan: Wuhan University
Washaya P. 2018. 使用Sentinel-1的相干变化检测技术实现城市地区的自然灾害和人为灾害监测. 武汉: 武汉大学
Wu X Y, Wang X Q, Ding L, Dou A X and Chen Z H. 2020. Monitoring and assessment of dam break flood disaster in Laos based on SAR images. Journal of Catastrophology, 35(1): 211-215
吴效勇, 王晓青, 丁玲, 窦爱霞, 陈子翰. 2020. 基于光学与SAR影像的老挝溃坝洪涝灾害监测与评估. 灾害学, 35(1): 211-215 [DOI: 10.3969/j.issn.1000-811X.2019.01.039http://dx.doi.org/10.3969/j.issn.1000-811X.2019.01.039]
Xia H M, Zhao J Y, Qin Y C, Yang J, Cui Y P, Song H Q, Ma L Q, Jin N and Meng Q M. 2019. Changes in water surface area during 1989-2017 in the Huai River Basin using Landsat data and Google Earth Engine. Remote Sensing, 11(15): 1824 [DOI: 10.3390/rs11151824http://dx.doi.org/10.3390/rs11151824]
Xu H Q. 2005. A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Yang K, Yang J B and Jang B R. 2015. Sentinel-1 satellite overview. Urban Geotechnical Investigation and Surveying, (2): 24-27
杨魁, 杨建兵, 江冰茹. 2015. Sentinel-1卫星综述. 城市勘测, (2): 24-27 [DOI: 10.3969/j.issn.1672-8262.2015.02.006http://dx.doi.org/10.3969/j.issn.1672-8262.2015.02.006]
Zeng L F, Li L and Wan L H. 2015. SAR-based fast flood mapping using Sentinel-1 imagery. Geomatics World, 22(5): 100-103, 107
曾玲方, 李霖, 万丽华. 2015. 基于Sentinel-1卫星SAR数据的洪水淹没范围快速提取. 地理信息世界, 22(5): 100-103, 107 [DOI: 10.3969/j.issn.1672-1586.2015.05.020http://dx.doi.org/10.3969/j.issn.1672-1586.2015.05.020]
Zhan N Y. 2020. Research on Remote Sensing Monitoring and Evaluation of “Typhoon-Heavy Rain” Flood Disaster. Chengdu: University of Electronic Science and Technology of China (湛南渝. 2020. “台风—暴雨”洪涝灾害遥感监测与评估研究. 成都: 电子科技大学) [DOI: 10.27005/d.cnki.gdzku.2020.001035]
Zhang B J. 2018. Analysis of the inter-annual variation of nighttime lights in the most affected area of Wenchuan earthquake from 2003 to 2013. Journal of Catastrophology, 33(1): 12-18, 22
张宝军. 2018. 2003-2013年汶川地震极重灾区夜间灯光年际变化分析. 灾害学, 33(1): 12-18, 22 [DOI: 10.3969/j.issn.1000-811X.2018.01.003http://dx.doi.org/10.3969/j.issn.1000-811X.2018.01.003]
Zhao X Z, Yu B L, Liu Y, Yao S J, Lian T, Chen L J, Yang C S, Chen Z Q and Wu J P. 2018. NPP-VIIRS DNB daily data in natural disaster assessment: evidence from selected case studies. Remote Sensing, 10(10): 1526 [DOI: 10.3390/rs10101526http://dx.doi.org/10.3390/rs10101526]
Zhao X Z. 2019. The Assessment of the Correlation between Poverty and Natural Disasters based on Multi-Source Data. Shanghai: East China Normal University
赵习枝. 2019. 基于多源数据的贫困度与自然灾害相关性评估. 上海: 华东师范大学
相关作者
相关机构