基于形态学序列和多源先验信息的城市建筑物高分遥感提取
High-resolution remote sensing extraction of urban buildings based on morphological sequences and multi-source a priori information
- 2023年27卷第4期 页码:998-1008
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20221077
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
李治,隋正伟,傅俏燕,郑琎琎,卜桐.2023.基于形态学序列和多源先验信息的城市建筑物高分遥感提取.遥感学报,27(4): 998-1008
Li Z, Sui Z W, Fu Q Y, Zheng J J and Bu T. 2023. High-resolution remote sensing extraction of urban buildings based on morphological sequences and multi-source a priori information. National Remote Sensing Bulletin, 27(4):998-1008
城市建筑物自动提取是高分辨率遥感影像理解的重要研究方向,其对于城市基础地理信息更新和城市生态保护均具有重要的应用价值和实际意义。然而由于城市场景的复杂性和建筑物形态的多样性降低了空间特征的综合表达能力,成为了制约城市建筑物自动提取的瓶颈问题。为此,本研究在综合分析城市建筑物不同模式空间特征的基础上,提出了一种多模式形态学序列特征和多源先验信息协同的城市建筑物高分遥感自动提取方法。该方法在提取高分遥感多模式形态学序列特征的基础上,引入多源先验信息构建自适应分割模型对其进行自适应分割与信息融合,从而实现城市建筑物信息的自动提取。实验结果表明,本文方法能够准确且自动的提取城市建筑物信息,结果的准确性均优于DMPs和DAPs算法。
Urban building extraction is an important research direction for the understanding and target recognition of high-resolution optical remote sensing images. Realizing accurate automatic building extraction has important application value and practical significance for the acquisition and update of basic urban geographic information. Given the complexity of urban scenes and the diversity of building forms
the characteristics of urban buildings are difficult to express fully
and the generalization ability of samples is insufficient
thus becoming a bottleneck problem for the automatic extraction of urban buildings. In this study
a multi-modal morphological-sequence-feature synergy method is proposed to utilize fully the advantages of each morphological sequence feature from different modes and mine the high-dimensional spatial information of urban buildings jointly. On this basis
we introduce multi-source a priori information and develop an adaptive segmentation model method based on multi-source a priori information to achieve the automatic recognition of urban buildings. This method can help avoid the limitations
such as errors and low efficiency
brought by manual threshold selection.
The process of the method for urban building extraction proposed in this study is mainly divided into four steps. First
the differential morphological structure sequence features and differential morphological attribute sequence features of remote sensing images are calculated on the basis of high-resolution remote sensing images. Second
the feature selection model is constructed to optimize the differential morphological structure sequence features and differential morphological attribute sequence features. Then
the adaptive segmentation model is constructed on the basis of the multi-source a priori information products. The adaptive segmentation of the preferred features is performed to obtain the initial information of urban buildings. Finally
the voting method is used to fuse the initial information of urban buildings at the decision level to obtain the final urban building extraction results.
The performance of the proposed method shows that the average extraction accuracy and kappa coefficient of the research method in this study are 91.3% and 0.87
which are 7.8% and 5.5% and 0.1 and 0.07 higher than the 85.7% and 83.5% and 0.81 and 0.78 of DMPs and DAPs extraction methods
respectively. Thus
the results demonstrate the effectiveness of the method in the automatic extraction of urban buildings in this study.
The method in this research achieves rapid
automated
and high-precision urban building information acquisition and update. Furthermore
it provides a method reference template for rapid building detection and update in more cities. In the subsequent research
further quantitative evaluation of each type of a priori information product is needed to clarify the role of different information products in automatic building extraction
as it can improve the accuracy and automation of building extraction further.
形态学结构序列形态学属性序列特征显著水平模型自适应分割模型决策级信息融合多源先验信息
morphological structural sequence featuresmorphological attribute sequence featuresfeature significance level modeladaptive segmentation modeldecision-level information fusiona priori information
Cavallaro G, Falco N, Mura M D and Benediktsson J A. 2017. Automatic attribute profiles. IEEE Transactions on Image Processing, 26(4): 1859-1872 [DOI: 10.1109/TIP.2017.2664667http://dx.doi.org/10.1109/TIP.2017.2664667]
Cué La Rosa L E, Queiroz Feitosa R, Nigri Happ P, Del’Arco Sanches I and Ostwald Pedro da Costa G A. 2019. Combining deep learning and prior knowledge for crop mapping in tropical regions from multitemporal SAR image sequences. Remote Sensing, 11(17): 2029 [DOI: 10.3390/rs11172029http://dx.doi.org/10.3390/rs11172029]
Dalla Mura M, Benediktsson J A, Waske B and Bruzzone L. 2010. Morphological attribute profiles for the analysis of very high resolution images. IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3747-3762 [DOI: 10.1109/TGRS.2010.2048116http://dx.doi.org/10.1109/TGRS.2010.2048116]
Du P J. 2020. Progress of high resolution remotely sensed image progressing and urban application examples. Modern Surveying and Mapping, 43(1): 1-9
杜培军. 2020. 高分辨率遥感影像处理进展与城市应用若干实例. 现代测绘, 43(1): 1-9 [DOI: 10.3969/j.issn.1672-4097.2020.01.001http://dx.doi.org/10.3969/j.issn.1672-4097.2020.01.001]
Du P J, Bai X Y, Luo J Q, Li E Z and Lin C. 2018. Advances of urban remote sensing. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 10(1): 16-29
杜培军, 白旭宇, 罗洁琼, 李二珠, 林聪. 2018. 城市遥感研究进展. 南京信息工程大学学报(自然科学版), 10(1): 16-29 [DOI: 10.13878/j.cnki.jnuist.2018.01.003http://dx.doi.org/10.13878/j.cnki.jnuist.2018.01.003]
Fauvel M, Benediktsson J A, Chanussot J and Sveinsson J R. 2008. Spectral and spatial classification of Hyperspectral data Using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11): 3804-3814 [DOI: 10.1109/TGRS.2008.922034http://dx.doi.org/10.1109/TGRS.2008.922034]
Geiß C, Klotz M, Schmitt A and Taubenböck H. 2016. Object-based morphological profiles for classification of remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(10): 5952-5963 [DOI: 10.1109/TGRS.2016.2576978http://dx.doi.org/10.1109/TGRS.2016.2576978]
Huang X and Zhang L P. 2012. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1): 161-172 [DOI: 10.1109/JSTARS.2011.2168195http://dx.doi.org/10.1109/JSTARS.2011.2168195]
Li D R. 2018. Brain cognition and spatial cognition: on integration of geo-spatial big data and artificial intelligence. Geomatics and Information Science of Wuhan University, 43(12): 1761-1767
李德仁. 2018. 脑认知与空间认知——论空间大数据与人工智能的集成. 武汉大学学报(信息科学版), 43(12): 1761-1767 [DOI: 10.13203/j.whugis20180411http://dx.doi.org/10.13203/j.whugis20180411]
Li J J, Cao J N, Feyissa M E and Yang X Q. 2020. Automatic building detection from very high-resolution images using multiscale morphological attribute profiles. Remote Sensing Letters, 11(7): 640-649 [DOI: 10.1080/2150704X.2020.1750729http://dx.doi.org/10.1080/2150704X.2020.1750729]
Lin X G and Zhang J X. 2017. Object-based morphological building index for building extraction from high resolution remote sensing imagery. Acta Geodaetica et Cartographica Sinica, 46(6): 724-733
林祥国, 张继贤. 2017. 面向对象的形态学建筑物指数及其高分辨率遥感影像建筑物提取应用. 测绘学报, 46(6): 724-733 [DOI: 10.11947/j.AGCS.2017.20170068http://dx.doi.org/10.11947/j.AGCS.2017.20170068]
Liu C R, Frazier P and Kumar L. 2007. Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4): 606-616 [DOI: 10.1016/j.rse.2006.10.010http://dx.doi.org/10.1016/j.rse.2006.10.010]
Lv Z Y, Zhang P L, Benediktsson J A and Shi W Z. 2014. Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12): 4644-4652 [DOI: 10.1109/JSTARS.2014.2328618http://dx.doi.org/10.1109/JSTARS.2014.2328618]
Ma W X, Wan Y C, Li J Y, Zhu S and Wang M W. 2019. An automatic morphological attribute building extraction approach for satellite high spatial resolution imagery. Remote Sensing, 11(3): 337 [DOI: 10.3390/rs11030337http://dx.doi.org/10.3390/rs11030337]
Marpu P R, Pedergnana M, Mura M D, Peeters S, Benediktsson J A and Bruzzone L. 2012. Classification of hyperspectral data using extended attribute profiles based on supervised and unsupervised feature extraction techniques. International Journal of Image and Data Fusion, 3(3): 269-298 [DOI: 10.1080/19479832.2012.702687http://dx.doi.org/10.1080/19479832.2012.702687]
Pesaresi M, Ouzounis G K and Gueguen L. 2012. A new compact representation of morphological profiles: report on first massive VHR image processing at the JRC//Proceedings of SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII. Baltimore: SPIE: 839025
Su Z H, Liang Q O and Zhu L J. 2015. Comparison of classification accuracy of remote sensing imagery base on different morphological profiles. Remote Sensing Information, 30(2): 36-42
苏志鹄, 梁勤欧, 朱榴骏. 2015. 不同形态学剖面线遥感影像分类精度比较. 遥感信息, 30(2): 36-42 [DOI: 10.3969/j.issn.1000-3177.2015.02.006http://dx.doi.org/10.3969/j.issn.1000-3177.2015.02.006]
Wang C, Shen Y, Liu H, Zhao K G, Xing H Y and Qiu X. 2019. Building extraction from high–resolution remote sensing images by adaptive morphological attribute profile under object boundary constraint. Sensors, 19: 3737 [DOI: 10.3390/s19173737http://dx.doi.org/10.3390/s19173737]
Wang C and Wang X. 2021. Building change detection from multi-source remote sensing images based on multi-feature fusion and extreme learning machine. International Journal of Remote Sensing, 42(6): 2246-2257 [DOI: 10.1080/2150704X.2020.1805134http://dx.doi.org/10.1080/2150704X.2020.1805134]
Wang J, Qin Q M, Ye X, Wang J H, Qin X B and Yang X C. 2016. A survey of building extraction methods from optical high resolution remote sensing imagery. Remote Sensing Technology and Application, 31(4): 653-662, 701
王俊, 秦其明, 叶昕, 王建华, 秦雪彬, 杨绣丞. 2016. 高分辨率光学遥感图像建筑物提取研究进展. 遥感技术与应用, 31(4): 653-662, 701 [DOI: 10.11873/j.issn.1004-0323.2016.4.0653http://dx.doi.org/10.11873/j.issn.1004-0323.2016.4.0653]
Wei D S and Zhou X G. 2019. Automatic sampling of remote sensing image change detection samples based on prior information of vector data. Journal of Remote Sensing, 23(3): 464-475
魏东升, 周晓光. 2019. 遥感影像变化检测样本自动抽样. 遥感学报, 23(3): 464-475 [DOI: 10.11834/jrs.20198013http://dx.doi.org/10.11834/jrs.20198013]
You Y F, Wang S Y, Ma Y X, Chen G S, Wang B, Shen M and Liu W H. 2018. Building detection from VHR remote sensing imagery based on the morphological building index. Remote Sensing, 10(8): 1287 [DOI: 10.3390/rs10081287http://dx.doi.org/10.3390/rs10081287]
Zhang Y Y, Fei X Y, Wang J, Wang X X and Chen Z. 2020. Survey of building extraction methods based on high resolution remote sensing images. Geomatics and Spatial Information Technology, 43(4): 76-79
张亚一, 费鲜芸, 王健, 王筱雪, 陈周. 2020. 基于高分辨率遥感影像的建筑物提取方法综述. 测绘与空间地理信息, 43(4): 76-79 [DOI: 10.3969/j.issn.1672-5867.2020.04.020http://dx.doi.org/10.3969/j.issn.1672-5867.2020.04.020]
相关文章
相关作者
相关机构