青藏高原湖泊面积、水位与水量变化遥感监测研究进展
Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau
- 2022年26卷第1期 页码:115-125
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221171
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
张国庆,王蒙蒙,周陶,陈文锋.2022.青藏高原湖泊面积、水位与水量变化遥感监测研究进展.遥感学报,26(1): 115-125
Zhang G Q,Wang M M,Zhou T and Chen W F. 2022. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. National Remote Sensing Bulletin, 26(1):115-125
青藏高原湖泊数量多、分布广、所占面积大,是亚洲水塔的重要组成部分,其受到人类活动的干扰较少,是理解高原生态环境变化机理的钥匙。青藏高原湖泊是气候变化敏感的指示器,在全球快速变暖背景下其对气候变化的响应如何?本研究基于多源遥感数据监测结果,系统地总结了青藏高原湖泊(大于1 km
2
)在过去近50 a(1976年—2018年)的面积、水位与水量变化等方面的研究进展。主要结论如下:(1)青藏高原湖泊总数量从1970s的1080个增加到2018年的1424个(+32%),湖泊总面积从4万km
2
扩张到5万km
2
(+25%),湖泊平均水位上升了约4 m,湖泊水储量增加了近1700亿吨;(2)时间上,湖泊面积、水位和水量变化在1970s—1995年略有下降,随后呈快速但非线性增加的态势;空间上,中—北部湖泊面积、水位与水量增长,南部减少;(3)基于多源遥感数据的湖泊水量平衡定量研究揭示了降水增加是湖泊扩张的主要驱动因素,冰川消融贡献次之。气候与冰冻圈控制的湖泊水量平衡的定量评估及湖泊变化驱动机制研究等是目前面临挑战的前沿科学问题。
Lakes are very sensitive to the impacts of climate change and human activities. The lakes over the Tibetan Plateau (TP) are numerous and extensively distributed; they are an important part of the Asian water towers. Understanding the interactions of the Earth system’s circles and the mechanism of environmental changes on the TP requires less disturbance from human activities. What is the response of TP’s lakes to climate change as sensitive indicators in the context of rapid global warming? Based on the lake area mapping with multispectral images
lake water level changes from satellite altimetry data
and lake water volume changes with digital elevation model. This study synthesizes the research progress of area
level
and water volume changes of lakes (larger than 1 km
2
) on the TP in the past nearly 50 years. The main conclusions are as follows: (1) the total number of lakes on the TP increased from 1080 in the 1970s to 1424 in 2018 (+32%)
the total lake area expanded from 40
000 km
2
to 50
000 km
2
(+25%)
the average water level of lakes increased by approximately 4 m
and the lake water storage increased by nearly 170 billion tons. (2) The changes in lake area
water level
and water volume decreased slightly from the 1970s to 1995
and then showed a rapid but nonlinear increase. The lake area
water level
and volume increased in the north-central plateau but decreased in the south. (3) A quantitative lake water balance based on multisource remote sensing data reveals that increased precipitation is the main driver of lake expansion
followed by glacier ablation contribution. Several scientific frontiers facing the challenge are also summarized as follows: (1) quantitative evaluation of the causes of individual lake change. At present
a quantitative study on the causes of lake change indicates the contribution of glacial mass loss to the increase in lake water volume
and precipitation
evaporation
and permafrost underground ice ablation that contribute to the increase in lake water. New driving data sets should be developed and hydrological models from the watershed scale should be further combined to estimate lake water balance. (2) Driving mechanisms of lake changes. The driving mechanisms of lake changes on the TP are currently analyzed mainly to enhance precipitation on the plateau. In the future
climate dynamics theory and hydrological models should be combined to further improve understanding of the driving mechanisms of spatial and temporal differences between the climate system and the cryosphere affecting lake changes on the TP. (3) New satellite remote sensing technology should be combined to understand the past
present
and future lake evolution on the TP. Remote sensing
as an indispensable modern technical means of air-sky-earth
plays a greater role with the implementation of the Second TP Scientific Expedition and Research plan on the TP
and more new satellites are launched one after another to improve understanding of the evolution pattern and change mechanism of lakes on the TP.
湖泊遥感面积水位水量青藏高原
lakeremote sensingarealevelvolumeTibetan Plateau
Alcântara E, Barbosa C, Stech J, Novo E and Shimabukuro Y. 2009. Improving the spectral unmixing algorithm to map water turbidity Distributions. Environmental Modelling and Software, 24(9): 1051-1061 [DOI: 10.1016/j.envsoft.2009.02.013http://dx.doi.org/10.1016/j.envsoft.2009.02.013]
Biskop S, Maussion F, Krause P and Fink M. 2016. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau. Hydrology and Earth System Sciences, 20(1): 209-225 [DOI: 10.5194/hess-20-209-2016http://dx.doi.org/10.5194/hess-20-209-2016]
Brun F, Treichler D, Shean D and Immerzeel W W. 2020. Limited contribution of glacier mass loss to the recent increase in Tibetan Plateau lake volume. Frontiers in Earth Science, 8: 582060 [DOI: 10.3389/feart.2020.582060http://dx.doi.org/10.3389/feart.2020.582060]
Cooley S W, Ryan J C and Smith L C. 2021. Human alteration of global surface water storage variability. Nature, 591(7848): 78-81 [DOI: 10.1038/s41586-021-03262-3http://dx.doi.org/10.1038/s41586-021-03262-3]
Crétaux J F, Abarca-Del-Río R, Bergé-Nguyen M, Arsen A, Drolon V, Clos G and Maisongrande P. 2016. Lake volume monitoring from space. Surveys in Geophysics, 37(2): 269-305 [DOI: 10.1007/s10712-016-9362-6http://dx.doi.org/10.1007/s10712-016-9362-6]
Crétaux J F, Arsen A, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M C, Nino F, Abarca Del Rio R, Cazenave A and Maisongrande P. 2011. SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47(9): 1497-1507 [DOI: 10.1016/j.asr.2011.01.004http://dx.doi.org/10.1016/j.asr.2011.01.004]
Feyisa G L, Meilby H, Fensholt R and Proud S R. 2014. Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23-35 [DOI: 10.1016/j.rse.2013.08.029http://dx.doi.org/10.1016/j.rse.2013.08.029]
Höhle J and Höhle M. 2009. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4): 398-406 [DOI: 10.1016/j.isprsjprs.2009.02.003http://dx.doi.org/10.1016/j.isprsjprs.2009.02.003]
Jain S K, Singh R D, Jain M K and Lohani A K. 2005. Delineation of flood-prone areas using remote sensing techniques. Water Resources Management, 19(4): 333-347 [DOI: 10.1007/s11269-005-3281-5http://dx.doi.org/10.1007/s11269-005-3281-5]
Ji L, Zhang L and Wylie B. 2009. Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 75(11): 1307-1317 [DOI: 10.14358/PERS.75.11.1307http://dx.doi.org/10.14358/PERS.75.11.1307]
Ji L Y, Gong P, Wang J, Shi J C and Zhu Z L. 2018. Construction of the 500-m resolution daily global surface water change database (2001-2016). Water Resources Research, 54(12): 10270-10292 [DOI: 10.1029/2018WR023060http://dx.doi.org/10.1029/2018WR023060]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2017. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 544: 109-124 [DOI: 10.1016/j.jhydrol.2016.11.024http://dx.doi.org/10.1016/j.jhydrol.2016.11.024]
Lei Y B, Yang K, Wang B, Sheng Y W, Bird B W, Zhang G Q and Tian L D. 2014. Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 125(2): 281-290 [DOI: 10.1007/s10584-014-1175-3http://dx.doi.org/10.1007/s10584-014-1175-3]
Lei Y B, Yao T D, Yang K, Sheng Y W, Kleinherenbrink M, Yi S, Bird B W, Zhang X W, Zhu L and Zhang G Q. 2017. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophysical Research Letters, 44(2): 892-900 [DOI: 10.1002/2016GL072062http://dx.doi.org/10.1002/2016GL072062]
Li B Q, Zhang J Y, Yu Z B, Liang Z M, Chen L and Acharya K. 2017. Climate change driven water budget dynamics of a Tibetan inland lake. Global and Planetary Change, 150: 70-80 [DOI: 10.1016/j.gloplacha.2017.02.003http://dx.doi.org/10.1016/j.gloplacha.2017.02.003]
Li J L and Sheng Y W. 2012. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas. International Journal of Remote Sensing, 33(16): 5194-5213 [DOI: 10.1080/01431161.2012.657370http://dx.doi.org/10.1080/01431161.2012.657370]
Li J L, Sheng Y W and Luo J C. 2011. Automatic extraction of himalayan glacial lakes with remote sensing. Journal of Remote Sensing, 15(1): 29-43
李均力, 盛永伟, 骆剑承. 2011. 喜马拉雅山地区冰湖信息的遥感自动化提取. 遥感学报, 15(1): 29-43 [DOI: 10.11834/jrs.20110103http://dx.doi.org/10.11834/jrs.20110103]
Li W B, Du Z Q, Ling F, Zhou D B, Wang H L, Gui Y M, Sun B Y and Zhang X M. 2013. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11): 5530-5549 [DOI: 10.3390/rs5115530http://dx.doi.org/10.3390/rs5115530]
Li X D, Long D, Huang Q, Han P F, Zhao F Y and Wada Y. 2019a. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 11(4): 1603-1627 [DOI: 10.5194/essd-11-1603-2019http://dx.doi.org/10.5194/essd-11-1603-2019]
Li X Y, Xu H Y, Sun Y L, Zhang D S and Yang Z P. 2007. Lake-level change and water balance analysis at lake Qinghai, west China during recent decades. Water Resources Management, 21(9): 1505-1516 [DOI: 10.1007/s11269-006-9096-1http://dx.doi.org/10.1007/s11269-006-9096-1]
Li Y, Gao H L, Jasinski M F, Zhang S and Stoll J D. 2019b. Deriving high-resolution reservoir bathymetry from ICESat-2 prototype photon-counting Lidar and landsat imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7883-7893 [DOI: 10.1109/TGRS.2019.2917012http://dx.doi.org/10.1109/TGRS.2019.2917012]
Lira J. 2006. Segmentation and morphology of open water bodies from multispectral images. International Journal of Remote Sensing, 27(18): 4015-4038 [DOI: 10.1080/01431160600702384http://dx.doi.org/10.1080/01431160600702384]
Liao J J, Xue H and Chen J M. 2020. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data. Journal of Remote Sensing (Chinese), 24(12): 1534-1547
廖静娟, 薛辉, 陈嘉明. 2020. 卫星测高数据监测青藏高原湖泊2010年-2018年水位变化. 遥感学报, 24(12): 1534-1547 [DOI: 10.11834/jrs.20209281http://dx.doi.org/10.11834/jrs.20209281]
Liu Y, Chen H P, Zhang G Q, Sun J Q and Wang H J. 2019. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau. Science Bulletin, 64(20): 1486-1489 [DOI: 10.1016/j.scib.2019.08.011http://dx.doi.org/10.1016/j.scib.2019.08.011]
Luo J C, Sheng Y W, Shen Z F, Li J L and Gao L J. 2009. High precision automatic extraction of multi-spectral remote sensing water information by step iteration. Journal of Remote Sensing, 13(4): 610-615
骆剑承, 盛永伟, 沈占锋, 李均力, 郜丽静. 2009. 分步迭代的多光谱遥感水体信息高精度自动提取. 遥感学报, 13(4): 610-615 [DOI: 10.11834/jrs.20090405http://dx.doi.org/10.11834/jrs.20090405]
Ma R H, Duan H T, Hu C M, Feng X Z, Li A N, Ju W M, Jiang J H and Yang G S. 2010. A half-century of changes in China’s lakes: global warming or human influence? Geophysical Research Letters, 37(24): L24106 [DOI: 10.1029/2010gl045514http://dx.doi.org/10.1029/2010gl045514]
Ma R H, Yang G S, Duan H T, Jiang J H, Wang S M, Feng X Z, Li A N, Kong F X, Xue B, Wu J L and Li S J. 2010. China’s lakes at present: number, area and spatial distribution. Science China Earth Sciences, 54(2): 283-289
马荣华, 杨桂山, 段洪涛, 姜加虎, 王苏民, 冯学智, 李爱农, 孔繁翔, 薛滨, 吴敬禄, 李世杰. 2011. 中国湖泊的数量、面积与空间分布. 中国科学: 地球科学, 41(3): 394-401 [DOI: 10.1007/s11430-010-4052-6http://dx.doi.org/10.1007/s11430-010-4052-6]
Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C K, Schutz B E, Smith B, Yang Y K and Zwally J. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sensing of Environment, 190: 260-273 [DOI: 10.1016/j.rse.2016.12.029http://dx.doi.org/10.1016/j.rse.2016.12.029]
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66 [DOI: 10.1109/TSMC.1979.4310076http://dx.doi.org/10.1109/TSMC.1979.4310076]
Phan V H, Lindenbergh R and Menenti M. 2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17: 12-22 [DOI: 10.1016/j.jag.2011.09.015http://dx.doi.org/10.1016/j.jag.2011.09.015]
Roy D P, Wulder M A, Loveland T R, Woodcock C E, Allen R G, Anderson M C, Helder D, Irons J R, Johnson D M, Kennedy R, Scambos T A, Schaaf C B, Schott J R, Sheng Y, Vermote E F, Belward A S, Bindschadler R, Cohen W B, Gao F, Hipple J D, Hostert P, Huntington J, Justice C O, Kilic A, Kovalskyy V, Lee Z P, Lymburner L, Masek J G, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne R H and Zhu Z. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154-172 [DOI: 10.1016/j.rse.2014.02.001http://dx.doi.org/10.1016/j.rse.2014.02.001]
Song C Q, Huang B and Ke L H. 2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 135: 25-35 [DOI: 10.1016/j.rse.2013.03.013http://dx.doi.org/10.1016/j.rse.2013.03.013]
Song C Q, Huang B, Richards K, Ke L H and Phan V H. 2014. Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resources Research, 50(4): 3170-3186 [DOI: 10.1002/2013WR014724http://dx.doi.org/10.1002/2013WR014724]
Sun J, Yang K, Guo W D, Wang Y, He J and Lu H. 2020. Why has the Inner Tibetan Plateau become wetter since the mid-1990s? Journal of Climate, 33(19): 8507-8522 [DOI: 10.1175/JCLI-D-19-0471.1http://dx.doi.org/10.1175/JCLI-D-19-0471.1]
Wang S M and Dou H S. 1998. Chinese Lakes Inventory. Science Press, Beijing, China (王苏民, 窦鸿身. 1998. 中国湖泊志. 北京: 科学出版社)
Wan W, Xiao P F, Feng X Z, Li H, Ma R H, Duan H T and Zhao L M. 2014. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chinese Science Bulletin, 59(10): 1021-1035 [DOI: 10.1007/s11434-014-0128-6http://dx.doi.org/10.1007/s11434-014-0128-6]
Wang W Z, Huang D, Liu J F, Liu H W and Wang H. 2020. Patterns and causes of changes in water level and volume in Tangra Yumco from 1988 to 2018 based on Landsat images and Sentinel-3A synthetic aperture radar. Journal of Lake Sciences, 32(5): 1552-1563
王文种, 黄对, 刘九夫, 刘宏伟, 王欢. 2020. 基于Landsat与Sentinel-3A卫星数据的当惹雍错1988-2018年湖泊水位-水量变化及归因. 湖泊科学, 32(5): 1552-1563 [DOI: 10.18307/2020.0526http://dx.doi.org/10.18307/2020.0526]
Yang K, Ye B S, Zhou D G, Wu B Y, Foken T, Qin J and Zhou Z Y. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109(3): 517-534 [DOI: 10.1007/s10584-011-0099-4http://dx.doi.org/10.1007/s10584-011-0099-4]
Yang R M, Zhu L P, Wang J B, Ju J T, Ma Q F, Turner F and Guo Y. 2017. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Climatic Change, 140(3/4): 621-633 [DOI: 10.1007/s10584-016-1877-9http://dx.doi.org/10.1007/s10584-016-1877-9]
Yang Y H, Liu Y X, Zhou M X, Zhang S Y, Zhan W F, Sun C and Duan Y W. 2015. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sensing of Environment, 171: 14-32 [DOI: 10.1016/j.rse.2015.10.005http://dx.doi.org/10.1016/j.rse.2015.10.005]
Yao T D, Wu F Y, Ding L, Sun J M, Zhu L P, Piao S L, Deng T, Ni X J, Zheng H B and Ouyang H. 2015. Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches. National Science Review, 2(4): 468-488 [DOI: 10.1093/nsr/nwv070http://dx.doi.org/10.1093/nsr/nwv070]
Yu J Y, Zhang G Q, Yao T D, Xie H J, Zhang H B, Ke C Q and Yao R Z. 2016. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2171-2180 [DOI: 10.1109/TGRS.2015.2496950http://dx.doi.org/10.1109/TGRS.2015.2496950]
Yuan C, Gong P and Bai Y Q. 2020. Performance assessment of ICESat-2 Laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sensing, 12(5): 770 [DOI: 10.3390/rs12050770http://dx.doi.org/10.3390/rs12050770]
Zhang G Q, Bolch T, Chen W F and Crétaux J F. 2021. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976-2019 and basin-wide glacier contribution. Science of the Total Environment, 772: 145463 [DOI: 10.1016/j.scitotenv.2021.145463http://dx.doi.org/10.1016/j.scitotenv.2021.145463]
Zhang G Q, Chen W F and Xie H J. 2019a. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46(22): 13107-13118 [DOI: 10.1029/2019GL085032http://dx.doi.org/10.1029/2019GL085032]
Zhang G Q, Li J L and Zheng G X. 2017a. Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods. International Journal of Remote Sensing, 38(3): 742-772 [DOI: 10.1080/01431161.2016.1271478http://dx.doi.org/10.1080/01431161.2016.1271478]
Zhang G Q, Luo W, Chen W F and Zheng G X. 2019b. A robust but variable lake expansion on the Tibetan Plateau. Science Bulletin, 64(18): 1306-1309 [DOI: 10.1016/j.scib.2019.07.018http://dx.doi.org/10.1016/j.scib.2019.07.018]
Zhang G Q, Xie H J, Kang S C, Yi D H and Ackley S F. 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115(7): 1733-1742 [DOI: 10.1016/j.rse.2011.03.005http://dx.doi.org/10.1016/j.rse.2011.03.005]
Zhang G Q, Yao T D, Chen W F, Zheng G X, Shum C K, Yang K, Piao S L, Sheng Y W, Yi S, Li J L, O'Reilly C M, Qi S H, Shen S S P, Zhang H B and Jia Y Y. 2019c. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sensing of Environment, 221: 386-404 [DOI: 10.1016/j.rse.2018.11.038http://dx.doi.org/10.1016/j.rse.2018.11.038]
Zhang G Q, Yao T D, Shum C K, Yi S, Yang K, Xie H J, Feng W, Bolch T, Wang L, Behrangi A, Zhang H B, Wang W C, Xiang Y and Yu J Y. 2017b. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophysical Research Letters, 44(11): 5550-5560 [DOI: 10.1002/2017GL073773http://dx.doi.org/10.1002/2017GL073773]
Zhang G Q, Yao T D, Xie H J, Kang S C and Lei Y B. 2013. Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophysical Research Letters, 40(10): 2125-2130 [DOI: 10.1002/grl.50462http://dx.doi.org/10.1002/grl.50462]
Zhang G Q, Yao T D, Xie H J, Yang K, Zhu L P, Shum C K, Bolch T, Yi S, Allen S, Jiang L G, Chen W F and Ke C Q. 2020a. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms. Earth-Science Reviews, 208: 103269 [DOI: 10.1016/j.earscirev.2020.103269http://dx.doi.org/10.1016/j.earscirev.2020.103269]
Zhang G Q, Yao T D, Xie H J, Zhang K X and Zhu F J. 2014. Lakes’ state and abundance across the Tibetan Plateau. Chinese Science Bulletin, 59(24): 3010-3021 [DOI: 10.1007/s11434-014-0258-xhttp://dx.doi.org/10.1007/s11434-014-0258-x]
Zhang G Q, Zheng G X, Gao Y, Xiang Y, Lei Y B and Li J L. 2017c. Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data. Photogrammetric Engineering and Remote Sensing, 83(7): 509-519 [DOI: 10.14358/PERS.83.7.509http://dx.doi.org/10.14358/PERS.83.7.509]
Zhang Y, Zhang G Q and Zhu T T. 2020b. Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data. Science of the Total Environment, 703: 135563 [DOI: 10.1016/j.scitotenv.2019.135563http://dx.doi.org/10.1016/j.scitotenv.2019.135563]
Zhou J, Wang L, Zhang Y S, Guo Y H, Li X P and Liu W B. 2015. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling. Water Resources Research, 51(10): 8060-8086 [DOI: 10.1002/2014WR015846http://dx.doi.org/10.1002/2014WR015846]
Zhu Z, Wang S X and Woodcock C E. 2015. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159: 269-277 [DOI: 10.1016/j.rse.2014.12.014http://dx.doi.org/10.1016/j.rse.2014.12.014]
Zhu Z, Wulder M A, Roy D P, Woodcock C E, Hansen M C, Radeloff V C, Healey S P, Schaaf C, Hostert P, Strobl P, Pekel J F, Lymburner L, Pahlevan N and Scambos T A. 2019. Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 224: 382-385 [DOI: 10.1016/j.rse.2019.02.016http://dx.doi.org/10.1016/j.rse.2019.02.016]
相关作者
相关机构