高分七号卫星激光测高数据大型湖泊水位测量精度评估
Accuracy evaluation of large lake water level measurement based on GF-7 laser altimetry data
- 2022年26卷第1期 页码:138-147
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221195
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
李国元,唐新明.2022.高分七号卫星激光测高数据大型湖泊水位测量精度评估.遥感学报,26(1): 138-147
Li G Y and Tang X M. 2022. Accuracy evaluation of large lake water level measurement based on GF-7 laser altimetry data. National Remote Sensing Bulletin, 26(1):138-147
卫星激光测高数据在湖泊水位测量方面具有重要的应用价值和独特优势,本文针对国产高分七号卫星上装备的线性体制全波形激光测高仪,开展在大型湖泊水位测量方面的应用探讨。介绍了高分七号卫星的基本参数,并与其他类卫星做了对比,分析了影响湖泊水位测量精度的卫星侧摆、大气散射、回波波形饱和等因素,研究了湖泊水面激光点的提取方法,结合ICESat、ICESat-2在青海湖和哈拉湖上的激光点开展了对比分析,并利用RTK-GPS测量方式对呼伦湖冰面激光点进行了实地精度验证。结果表明,高分七号卫星湖面激光点虽然稀疏,但内部一致性较好,其中青海湖面高分七号两波束激光高程标准偏差分别为0.056 m和0.080 m,与ICESat的0.079 m相当;相邻时间在哈拉湖同一湖面的高分七号两个波束与ICESat-2的高程均值相差分别为-5.2 cm和-8.0 cm;经实地测量评价两波束的湖面激光点绝对高程精度分别为:-0.030±0.109 m和-0.195±0.049 m。高分七号激光测高仪测量湖泊水位从精度上是可行的,但还存在激光重频率偏低、观测能力弱等问题。相关结论对于拓展高分七号卫星激光测高数据在大型湖泊水位测量的应用以及后续激光测高卫星的立项论证均具有参考价值。
Lake level elevation and variation are important indicators for the global climate change
and satellite altimetry especially the laser altimetry data is a valuable data source. GF-7 laser altimeter as the first business application load with full-waveform can be used to measure the lake level
except for elevation control points. To evaluate the GF-7 satellite laser altimetry data on the lake
the basic parameters are introduced
and the relative and elevation accuracy of ICESat and ICESat-2 laser points located on large lakes is compared. The absolute elevation accuracy is analyzed by the field surveying result.
A method to extract the GF-7 satellite laser altimetry points located on a large lake with high precision and reliability is presented
and the side-sway of the satellite
the atmospheric scatter
and echo waveform saturation that influence the elevation accuracy are discussed. The laser point with 1° side-angle can induce 0.106 m elevation error and the points on the lake less than 0.3° side-angle can be used to measure the lake level. The unique footprint image of GF-7 satellite is introduced to extract the laser points located on the lake. It can be used to judge the location of the laser point
whether it is in the lake or on the land and whether it is influenced by the cloud or dense fog and haze. Moreover
the saturation of echo waveform and the error elimination by median absolute deviation are introduced to ensure the reliability of the laser points.
The absolute elevation accuracies of beam 1 and beam 2 are -0.030±0.109 m and -0.195±0.049 m
respectively
according to the field RTK-GPS surveying on the frozen Hulun Lake. The internal consistency of GF-7 laser points is better than that of ICESat laser points on Qinghai Lake
and beam 1 is slightly better than beam 2
with standard deviation of 0.056 and 0.080 m
respectively
which are equal to ICESat’s 0.079 m. Compared with ICESat-2
the lake surface points of GF-7 are sparser
but the accuracy is the same. The mean difference between the two beams of GF-7 and ICESat-2 in the same area of Hala Lake in adjacent time is -5.2 and -8.0 cm
respectively.
The laser altimeter of GF-7 satellite can effectively obtain the water level of large lakes
and the relative and absolute elevation accuracy of GF-7 satellite laser altimetry points after extraction is equal to the ICESat and ICESat-2 laser points in the large lake. Under certain conditions
GF-7 laser altimeter can measure lake water level in terms of accuracy
but some problems
such as low repetition frequency of laser and weak observation ability
still exist. The conclusion can be viewed as reference for the next generation laser altimetry satellite
such as the land and sea laser satellite of China. Also
the combined of different satellite laser altimetry data on the lake maybe an effective way for the future application.
高分七号卫星激光测高ICESat-2湖泊水位精度评估
GF-7satellite laser altimetryICESat-2lake water levelaccuracy evaluation
Fayad I, Baghdadi N, Bailly J S, Frappart F and Zribi M. 2020. Analysis of GEDI elevation data accuracy for inland waterbodies altimetry. Remote Sensing, 12(17): 2714 [DOI: 10.3390/rs12172714http://dx.doi.org/10.3390/rs12172714]
Gao Y G, Guo J Y and Yue J P. 2008. Lake level variations measurement with satellite altimetry. Science of Surveying and Mapping, 33(6): 73-75, 29
) (高永刚, 郭金运, 岳建平. 2008. 卫星测高在陆地湖泊水位变化监测中的应用. 测绘科学, 33(6): 73-75, 29 [DOI: 10.3771/j.issn.1009-2307.2008.06.024http://dx.doi.org/10.3771/j.issn.1009-2307.2008.06.024]
Ge L, Xi X H, Wang C and Khuon K N. 2017. Research progress of ICESat-1/GLAS in lake level monitoring. Remote Sensing Technology and Application, 32(1): 14-19
葛莉, 习晓环, 王成, Khuon K N. 2017. ICESat-1/GLAS数据湖泊水位监测研究进展. 遥感技术与应用, 32(1): 14-19 [DOI: 10.11873/j.issn.1004-0323.2017.1.0014http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.0014]
Jin J W, Li G Y, Sun W, Yang X D, Chang X T, Liu K and Liu Y. 2020. Application status and prospect on water resources investigation and monitoring by satellite remote sensing. Bulletin of Surveying and Mapping, (5): 7-10
金建文, 李国元, 孙伟, 杨雄丹, 常晓涛, 刘克, 刘瑶. 2020. 卫星遥感水资源调查监测应用现状及展望. 测绘通报, (5): 7-10 [DOI: 10.13474/j.cnki.11-2246.2020.0135]
Kleinherenbrink M, Ditmar P G and Lindenbergh R C. 2014. Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sensing of Environment, 152: 38-50 [DOI: 10.1016/j.rse.2014.05.014http://dx.doi.org/10.1016/j.rse.2014.05.014]
Li G Y, Tang X M, Chen J Y, Yao J Q, Liu Z, Gao X M, Zuo Z Q and Zhou X Q. 2021. Processing and preliminary accuracy validation of the GF-7 satellite laser altimetry data. Acta Geodaetica et Cartographica Sinica, 50(10): 1338-1348
李国元, 唐新明, 陈继溢, 么嘉棋, 刘诏, 高小明, 左志强, 周晓青. 2021. 高分七号卫星激光测高数据处理与精度初步验证. 测绘学报, 50(10): 1338-1348
Li G Y. 2017. Earth Observing Satellite Laser Altimeter Data Processing Method and Engineer Practice. Wuhan: Wuhan University
李国元. 2017. 对地观测卫星激光测高数据处理方法与工程实践. 武汉: 武汉大学
Li G Y, Gao X M, Chen J Y, Zhao Y M, Mo F and Zhang Y. 2019. Data quality analysis of ZY-3 02 satellite laser altimeter. Journal of Remote Sensing, 23(6): 1159-1166
李国元, 高小明, 陈继溢, 赵严铭, 莫凡, 张悦. 2019. 资源三号02星激光测高数据质量分析. 遥感学报, 23(6): 1159-1166
Li G Y, Guo J Q, Tang X M, Ye F H, Zuo Z Q, Liu Z, Chen J Y and Xue Y C. 2020. Preliminary quality analysis of GF-7 satellite laser altimeter full waveform data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2020: 129-134 [DOI: 10.5194/isprs-archives-XLIII-B1-2020-129-2020http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2020-129-2020]
Li G Y and Tang X M. 2017. Analysis and validation of ZY-3 02 satellite laser altimetry data. Acta Geodaetica et Cartographica Sinica, 46(12): 1939-1949
李国元, 唐新明. 2017. 资源三号02星激光测高精度分析与验证. 测绘学报, 46(12): 1939-1949 [DOI: 10.11947/j.AGCS.2017.20170174http://dx.doi.org/10.11947/j.AGCS.2017.20170174]
Li G Y, Tang X M, Fan W F, Dou X H and Ma Y. 2017. On-orbit geometric calibration of satellite laser altimeter using ground-based IR detectors. Infrared and Laser Engineering, 46(11): 1117004
李国元, 唐新明, 樊文锋, 窦显辉, 马跃. 2017. 基于地面红外探测器的星载激光测高仪在轨几何定标. 红外与激光工程, 46(11): 1117004 [DOI: 10.3788/IRLA201746.1117004http://dx.doi.org/10.3788/IRLA201746.1117004]
Li G Y, Yao J Q, Zhao Y M, Li Z Q, Li X and Tang H Z. 2020. Progress and prospect of atmospheric scattering correction for laser altimetry satellite. Infrared and Laser Engineering, 49(11): 20200234
李国元, 么嘉棋, 赵一鸣, 李正强, 李旭, 唐洪钊. 2020. 激光测高卫星大气散射延迟改正现状及展望. 红外与激光工程, 49(11): 20200234 [DOI: 10.3788/IRLA20200234http://dx.doi.org/10.3788/IRLA20200234]
Li J C, Chu Y H, Jiang W P and Xu X Y. 2007. Monitoring level fluctuation of lakes in Yangtze River basin by altimetry. Geomatics and Information Science of Wuhan University, 32(2): 144-147
李建成, 褚永海, 姜卫平, 徐新禹. 2007. 利用卫星测高资料监测长江中下游湖泊水位变化. 武汉大学学报(信息科学版), 32(2): 144-147 [DOI: 10.3969/j.issn.1671-8860.2007.02.013http://dx.doi.org/10.3969/j.issn.1671-8860.2007.02.013]
Liao J J. 2020. Space-Borne Radar Altimetry Data Processing and Land Application. Beijing: Science Press
廖静娟. 2020. 星载雷达高度计数据处理及陆地应用. 北京: 科学出版社
Liao J J, Shen G Z and Zhao Y. 2018. Dataset of global lake level changes using multi-altimeter data (2002-2016). Journal of Global Change Data and Discovery, 7(3): 295-302
廖静娟, 沈国状, 赵云. 2018. 多源雷达高度计全球典型湖泊水位变化数据集(2002-2016). 全球变化数据学报(中英文), 7(3): 295-302 [DOI: 10.3974/geodp.2018.03.07http://dx.doi.org/10.3974/geodp.2018.03.07]
Messager M L, Lehner B, Grill G, Nedeva I and Schmitt O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7: 13603 [DOI: 10.1038/ncomms13603http://dx.doi.org/10.1038/ncomms13603]
Michailovsky C I, McEnnis S, Berry P A M, Smith R and Bauer-Gottwein P. 2012. River monitoring from satellite radar altimetry in the Zambezi River basin. Hydrology and Earth System Sciences, 16(7): 2181-2192 [DOI: 10.5194/hess-16-2181-2012http://dx.doi.org/10.5194/hess-16-2181-2012]
Nanjing Institute of Geography and Limnology Chinese Academy of Sciences. 2019. The investigation report on lakes in China. Beijing: Science Press
中国科学院南京地理与湖泊研究所. 2019. 中国湖泊调查报告. 北京: 科学出版社
Phan V H, Lindenbergh R and Menenti M. 2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17: 12-22 [DOI: 10.1016/j.jag.2011.09.015http://dx.doi.org/10.1016/j.jag.2011.09.015]
Song C Q, Ye Q H, Sheng Y W and Gong T L. 2015. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan Lakes over 2003-2014. Water, 7(9): 4685-4700 [DOI: 10.3390/W7094685http://dx.doi.org/10.3390/W7094685]
Tang X M and Li G Y. 2019. Thoughts about land and sea satellite laser altimetry. Aerospace Shanghai, 36(3): 15-19
唐新明, 李国元. 2019. 陆海激光卫星高程测量的思考. 上海航天, 36(3): 15-19 [DOI: 10.19328/j.cnki.1006-1630.2019.03.002http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.03.002]
Tian S C, Hao W F, Li F and Luo T W. 2018. Waveform analysis and retracking of lake level monitoring by satellite altimeter considering the difference between land and lake reflection. Acta Geodaetica et Cartographica Sinica, 47(4): 498-507
田山川, 郝卫峰, 李斐, 罗天文. 2018. 顾及陆湖反射差异的卫星测高监测湖泊水位的波形分析与重定. 测绘学报, 47(4): 498-507 [DOI: 10.11947/j.AGCS.2018.20170348http://dx.doi.org/10.11947/j.AGCS.2018.20170348]
Vörösmarty C J, Green P, Salisbury J and Lammers R B. 2000. Global water resources: vulnerability from climate change and population growth. Science, 289(5477): 284-288 [DOI: 10.1126/science.289.5477.284http://dx.doi.org/10.1126/science.289.5477.284]
Wu H B, Guo Z M and Mao R J. 2012. Monitoring lake water level changes in the middle and lower Yangtze River Basin based on ICESat-GLAS altimetry data. Resources Science, 34(12): 2289-2298
吴红波, 郭忠明, 毛瑞娟. 2012. ICESat-GLAS测高数据在长江中下游湖泊水位变化监测中的应用. 资源科学, 34(12): 2289-2298
Xie D P, Li G Y, Wang J M, Guo J Q, Yao J Q and Yang C. 2020. An overview of the application prospect of new laser altimetry satellite ICESat-2 in geoscience. Geomatics and Spatial Information Technology, 43(12): 38-42, 45
谢栋平, 李国元, 王建敏, 郭金权, 么嘉棋, 杨超. 2020. 新型激光测高卫星ICESat-2在地学中的应用前景综述. 测绘与空间地理信息, 43(12): 38-42, 45 [DOI: 10.3969/j.issn.1672-5867.2020.12.010http://dx.doi.org/10.3969/j.issn.1672-5867.2020.12.010]
Xie D P, Li G Y, Zhao Y M, Yang X D, Tang X M and Fu A M. 2018. U.S. GEDI space-based laser altimetry system and its application. Space International, (12): 39-44
谢栋平, 李国元, 赵严铭, 杨雄丹, 唐新明, 付安民. 2018. 美国GEDI天基激光测高系统及其应用. 国际太空, (12): 39-44 [DOI: 10.3969/j.issn.1009-2366.2018.12.008]
Yang X D, Li G Y, Wang P X, Chang X T and Yao J Q. 2020. Monitoring of Qinghai Lake changes with spaceborne laser altimetry and remote sensing images. Science of Surveying and Mapping, 45(5): 79-87
杨雄丹, 李国元, 王佩贤, 常晓涛, 么嘉棋. 2020. 星载激光测高结合遥感影像的青海湖变化监测. 测绘科学, 45(5): 79-87 [DOI: 10.16251/j.cnki.1009-2307.2020.05.012http://dx.doi.org/10.16251/j.cnki.1009-2307.2020.05.012]
Yuan C, Gong P and Bai Y Q. 2020. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sensing, 12(5): 770 [DOI: 10.3390/rs12050770http://dx.doi.org/10.3390/rs12050770]
Zhang G Q, Chen W F and Xie H J. 2019b. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46(22): 13107-13118 [DOI: 10.1029/2019GL085032http://dx.doi.org/10.1029/2019GL085032]
Zhang G Q, Xie H J, Yao T D and Kang S C. 2013. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chinese Science Bulletin, 58(31): 3815-3829 [DOI: 10.1007/s11434-013-5818-yhttp://dx.doi.org/10.1007/s11434-013-5818-y]
Zhang G Q, Yao T D, Chen W F, Zheng G X, Shum C K, Yang K, Piao S, Sheng Y W, Yi S, Li J L, O'Reilly C M, Qi S H, Shen S S P, Zhang H B and Jia Y Y. 2019a. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sensing of Environment, 221: 386-404 [DOI: 10.1016/j.rse.2018.11.038http://dx.doi.org/10.1016/j.rse.2018.11.038]
Zhao Y, Liao J J, Shen G Z and Zhang X L. 2017. Monitoring the water level changes in Qinghai Lake with satellite altimetry data. Journal of Remote Sensing, 21(4): 633-644
赵云, 廖静娟, 沈国状, 张学良. 2017. 卫星测高数据监测青海湖水位变化. 遥感学报, 21(4): 633-644 [DOI: 10.11834/jrs.20176217http://dx.doi.org/10.11834/jrs.20176217]
相关作者
相关机构