无/缺水下地形数据的高原堰塞湖水量遥感估算
Dammed lake water volume estimation by satellite imagery and digital elevation model under unknown underwater terrain scenario
- 2022年26卷第1期 页码:148-154
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221211
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
朱长明,张新,方晖,王伟胜.2022.无/缺水下地形数据的高原堰塞湖水量遥感估算.遥感学报,26(1): 148-154
Zhu C M,Zhang X,Fang H and Wang W S. 2022. Dammed lake water volume estimation by satellite imagery and digital elevation model under unknown underwater terrain scenario. National Remote Sensing Bulletin, 26(1):148-154
水量遥感动态监测对于高原堰塞湖风险评估、预报预警和处置决策等具有重要意义。针对高原无资料或缺资料区,充分利用空天遥感技术,文章提出了一种无/缺水下地形数据的高原堰塞湖水量遥感定量估算方法。该方法首先通过遥感水域面积提取,获取堰塞湖淹没空间范围;进而采用不规则复杂多边形中线定位算法,确定堰塞湖中心线位置;然后基于河道中心特定点高程信息,结合局部河道比降估算,生成堰塞湖水下地形河道中线约束因子;再根据河道边坡高程信息和水下地形约束因子自适应拟合出局部堰塞河道的水下未知地形;最后通过三维曲面离散积分实现堰塞湖水量遥感动态定量估算。实验以东帕米尔高原的萨雷兹堰塞湖为研究区,展开遥感水量调查与局部验证研究,结果表明:萨雷兹堰塞湖当前水域面积约为89.09 km
2
,水量约为162.49亿m³;这一结果与专家预估的水资源量155—165亿m³基本吻合。经局部模拟实验精度对比验证,模拟结果与实际数据动态误差总体控制在10%以内,相关系数达到0.95(
P
<
0.01,双尾),进一步证明了算法的鲁棒性和估算结果的可信度。为无/缺水下地形数据的高原堰塞湖水量遥感估算提供了一种有效的方法,实现了水下地形未知的高原堰塞湖水量遥感快速反演与定量测算。
The real-time dynamic monitoring of water volume has great value for risk assessment
prediction
and early warning and disposal decision-making of dammed lakes. In view of the difficulty in obtaining underwater topographic data of dammed lake in areas without gauged data on the plateau
directly
quantitatively
and timely estimating the water volume of dammed lake by using remote sensing technology is difficult. This study aims to solve the problem of rapid quantitative estimation of water volume of plateau dammed lake under unknown underwater terrain scenario by remote sensing and perform the risk monitoring and disaster assessment of dammed lake.
According to the existing remote sensing data and digital elevation information
this study puts forward a remote sensing quantitative estimation method of water volume of dammed lake on the plateau without underwater terrain by fully using remote sensing data. The details are as follows. First
the submerged area of dammed lake is extracted from remote sensing images. Second
the center line of the complex polygon of the dammed lake is calculated. Specifically
according to the water area of the dammed lake
the Tyson polygon algorithm is used to calculate the position information of the dammed lake centerline. Third
through the location of the polygonal center line of the dammed lake
the fixed-point elevation measurement is carried out to complete the fitting calculation. Then
according to the fitting estimation of the middle line elevation and combined with the slope elevation information
the unknown underwater terrain of the dammed lake is adaptively simulated. Finally
based on the simulated underwater terrain and the submerged area of the dammed lake
the capacity of the dammed lake is calculated by 3D curved surface space discrete integration.
The dammed lake
namely
Sarez Lake in the Pamirs was selected as the research area. Remote sensing survey and empirical research on water volume were carried out using the proposed method. The research results show that the water area of Sarez dammed lake is approximately 89.09 km
2
and the water volume of Sarez Lake is approximately 16.25 billion m
3
. This result is consistent with the expert’s estimated water volume of 15.5 billion m
3
to 16.5 billion m
3
. The accuracy verification of the local simulation experiment shows that the overall dynamic error between the simulation data and the measured data is controlled within 10%
and the correlation coefficient is 0.95 (
P
<
0.01
double tailed). This finding further proves the robustness of the algorithm and the credibility of the estimation results.
This method can rapidly estimate the water volume of plateau dammed lake
with high accuracy and strong technical universality. It provides an efficient method for remote sensing estimation of plateau dammed lake water volume under none or lack of underwater terrain data scenario. It also solves the problem of quantitative calculation of plateau dammed lake water volume with unknown underwater terrain.
堰塞湖水量估算水下地形水文遥感萨雷兹湖
dammed lakewater volume estimationunderwater terrainhydrologic remote sensingsarez lake
Cai Q, Huang L, Liang J, Li X D, Long Y, Xiao Y, Liu K B, Xie G X and Zeng G M. 2012. Estimation of the water volume of the Dongting Lake with TERRA/MODIS data. Journal of Hunan University (Natural Sciences), 39(4): 64-69
蔡青, 黄璐, 梁婕, 李晓东, 龙勇, 肖义, 刘卡波, 谢更新, 曾光明. 2012. 基于MODIS遥感影像数据的洞庭湖蓄水量估算. 湖南大学学报(自然科学版), 39(4): 64-69 [DOI: 10.3969/j.issn.1674-2974.2012.04.012http://dx.doi.org/10.3969/j.issn.1674-2974.2012.04.012]
Cao B. 2006. Research on Reservoir Dynamic Capacity Based on Remote Sensing and DEM. Wuhan: Huazhong University of Science and Technology
曹波. 2006. 基于遥感图像和DEM测定水库动库容的方法研究. 武汉: 华中科技大学
Chen X L, Lu J Z, Cai X B, Li H and Yin S J. 2008. Geomatics-based method research on capacity calculation of Quake Lake. Journal of Remote Sensing, 12(6): 885-892
陈晓玲, 陆建忠, 蔡晓斌, 李辉, 殷守敬. 2008. 基于空间信息技术的堰塞湖库容分析方法研究. 遥感学报, 12(6): 885-892
Duan Z and Bastiaanssen W G M. 2013. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134: 403-416 [DOI: 10.1016/j.rse.2013.03.010http://dx.doi.org/10.1016/j.rse.2013.03.010]
Furnans J and Austin B. 2008. Hydrographic survey methods for determining reservoir volume. Environmental Modelling and Software, 23(2): 139-146 [DOI: 10.1016/j.envsoft.2007.05.011http://dx.doi.org/10.1016/j.envsoft.2007.05.011]
Gan Z, Zhong L and He X G. 2017. V-shaped reservoir capacity calculation based on fitting of underwater terrain. Yangtze River, 48(22): 89-92
甘拯, 钟良, 何秀国. 2017. 基于水下地形拟合的V型河道库容计算方法. 人民长江, 48(22): 89-92
Gao S Y and Li C G. 2007. Research for survey technology of reservoir capacity. Yangtze River, 38(10): 98-99
高圣益, 李成国. 2007. 水库库容测量技术研究. 人民长江, 38(10): 97-99 [DOI: 10.3969/j.issn.1001-4179.2007.10.041http://dx.doi.org/10.3969/j.issn.1001-4179.2007.10.041]
Huang S F, Li X T, Tan D B, Xin J F, Chai F X and Cheng X J. 2013. Method and Practice of Remote Sensing Monitoring and Evaluation of the Dam Lake. Beijing: China Water and Power Press
黄诗峰, 李小涛, 谭德宝, 辛景峰, 柴福鑫, 程学军. 2013. 堰塞湖遥感监测评估方法与实践. 北京: 中国水利水电出版社
Huang Y, Ma Q, Wu J Y and Zhang L M. 2019. Dammed lake information acquisition and dam breaking flood forecasting. Yangtze River, 50(4): 12-19, 52
黄艳, 马强, 吴家阳, 张黎明. 2019. 堰塞湖信息获取与溃坝洪水预测. 人民长江, 50(4): 12-19, 52 [DOI: 10.16232/j.cnki.1001-4179.2019.04.003http://dx.doi.org/10.16232/j.cnki.1001-4179.2019.04.003]
Ischuk A R. 2011. Usoi Rockslide Dam and Lake Sarez, Pamir Mountains, Tajikistan//Natural and Artificial Rockslide Dams. Berlin, Heidelberg: Springer: 423-440 [DOI: 10.1007/978-3-642-04764-0_16http://dx.doi.org/10.1007/978-3-642-04764-0_16]
Kuang S F, Wang X G, Huang J C and Wei Y Q. 2008. Risk analysis and impact assessment of dam-break in Barrier Lake. China Water Resources, (16): 17-21
匡尚富, 汪小刚, 黄金池, 魏迎奇. 2008. 堰塞湖溃坝风险及其影响分析评估. 中国水利, (16): 17-21 [DOI: 10.3969/j.issn.1000-1123.2008.16.005]
Liu D and Li Y. 2012. The calculation of area and storage of Poyang Lake based on remote sensing technology. Remote Sensing Information, (2): 57-61
刘东, 李艳. 2012. 基于遥感技术的鄱阳湖面积库容估算. 遥感信息, (2): 57-61 [DOI: 10.3969/j.issn.1000-3177.2012.02.011]
Liu N, Yang Q G and Chen Z Y. 2016. Hazard Mitigation for Barrier Lakes. Wuhan: Yangtze River Press
刘宁, 杨启贵, 陈祖煜. 2016. 堰塞湖风险处置. 武汉: 长江出版社
Lv J T, Wang Z H and Zhou C H. 2002. A tentative discussion on the monitoring of the Yigong landslide-blocked lake with satellite remote sensing technique. Acta Geoscientia Sinica, 23(4): 363-368
吕杰堂, 王治华, 周成虎. 2002. 西藏易贡滑坡堰塞湖的卫星遥感监测方法初探. 地球学报, 23(4): 363-368 [DOI: 10.3321/j.issn:1006-3021.2002.04.014http://dx.doi.org/10.3321/j.issn:1006-3021.2002.04.014]
Mi H Y, Zai J and Jiang X H. 2007. Contrast and analysis of reservoir storage calculation methods. Surveying and Mapping of Geology and Mineral Resources, 23(2): 1-4, 11
米鸿燕, 宰建, 蒋兴华. 2007. 静库容计算方法的比较分析. 地矿测绘, 23(2): 1-4, 11 [DOI: 10.3969/j.issn.1007-9394.2007.02.001http://dx.doi.org/10.3969/j.issn.1007-9394.2007.02.001]
Qin H C. 1983. Numerical calculation of dynamic capacity for flood routing. Shuili Xuebao, (1): 42-50
秦惠承. 1983. 动态库容调洪的数值计算. 水利学报, (1): 42-50
Tian Y, Lin Z J, Lu X S and Liang Y. 2007. Remote sensing application in resevior storage calculation. China Rural Water and Hydropower, (3): 17-18, 21
田雨, 林宗坚, 卢秀山, 梁勇. 2007. 遥感技术在水库水容量测算中的应用. 中国农村水利水电, (3): 17-18, 21 [DOI: 10.3969/j.issn.1007-2284.2007.03.006http://dx.doi.org/10.3969/j.issn.1007-2284.2007.03.006]
Tong S C and Zhou J J. 2003. Study of the approximate method of calculating the flood control capacity of mountainous reservoirs. Journal of Hydroelectric Engineering, (4): 74-82
童思陈, 周建军. 2003. 河道型水库动防洪库容近似计算方法. 水力发电学报, (4): 74-82 [DOI: 10.3969/j.issn.1003-1243.2003.04.011]
Wang Y K, Sun H and Dai J J. 2013. Characteristics and prevention of dam breach in dammed lakes in China. Science and Technology Information, (19): 485-486, 514
王杨科, 孙欢, 代娇娇. 2013. 我国堰塞湖溃坝特点及其防治. 科技信息, (19): 485-486, 514 [DOI: 10.3969/j.issn.1001-9960.2013.19.382http://dx.doi.org/10.3969/j.issn.1001-9960.2013.19.382]
Xie J L. 2013. Calculation and Analysis of Hydrological Monitoring during the Hazard Removal Process of the Dam Lake. Lanzhou: Gansu People's Publishing House
谢建丽. 2013. 堰塞湖除险过程中的水文监测计算与分析. 兰州: 甘肃人民出版社
Xu H J and Chen S Y. 2002. Numerical-analytic method for reservoir backwater storage flood routing. Shuili Xuebao, (3): 69-73
许海军, 陈守煜. 2002. 水库动库容调洪计算的数值-解析解法. 水利学报, (3): 69-73 [DOI: 10.3321/j.issn:0559-9350.2002.03.013]
Yang L X. 2008a. Study on the governance of Sarez Dam Lake in Tajikistan. Express Water Resources and Hydropower Information, 29(6): 1-4
杨立信. 2008a. 塔吉克斯坦萨雷兹堰塞湖治理研究. 水利水电快报, 29(6): 1-4 [DOI: 10.3969/j.issn.1006-0081.2008.06.001http://dx.doi.org/10.3969/j.issn.1006-0081.2008.06.001]
Yang L X. 2008b. Study on the treatment and utilization scheme of Sarez Barrier Lake. Express Water Resources and Hydropower Information, 29(7): 1-3, 5
杨立信. 2008b. 萨雷兹堰塞湖治理利用研究方案. 水利水电快报, 29(7): 1-3, 5 [DOI: 10.3969/j.issn.1006-0081.2008.07.001http://dx.doi.org/10.3969/j.issn.1006-0081.2008.07.001]
Zhang S, Gao H L and Naz B S. 2014. Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resources Research, 50(11): 8927-8943 [DOI: 10.1002/2014wr015829http://dx.doi.org/10.1002/2014wr015829]
Zhu C M, Zhang X, Lu M and Luo J C. 2015. Lake storage change automatic detection by multi-source remote sensing without underwater terrain data. Acta Geodaetica et Cartographica Sinica, (3): 309-315
朱长明, 张新, 路明, 骆剑承. 2015. 湖盆数据未知的湖泊动态库容遥感监测方法. 测绘学报, (3): 309-315 [DOI: 10.11947/j.AGCS.2015.20130438]
相关文章
相关作者
相关机构