基于水体光学分类的二类水体水环境参数遥感监测进展
Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification
- 2022年26卷第1期 页码:19-31
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221212
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
李云梅,赵焕,毕顺,吕恒.2022.基于水体光学分类的二类水体水环境参数遥感监测进展.遥感学报,26(1): 19-31
Li Y M,Zhao H,Bi S and Lyu H. 2022. Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification. National Remote Sensing Bulletin, 26(1):19-31
二类水体主要包括内陆及近岸水体,受浮游植物、悬浮颗粒、有色可溶性有机物等多种因素影响,光学特性复杂多变,难以建立统一的水环境参数遥感定量估算模型。针对水体的光学特征,进行水体光学分类,进而反演水环境参数的方法,不仅能够提高参数估算精度,而且便于模型在同类水体中推广应用。水体光学分类方法主要包括基于固有光学特征的光学分类、基于遥感反射率波形特征的光学分类和以参数反演为目标的光学分类等方法。在分类反演的策略中,包括分类与模型算法融合、基于水体光学类型优选算法、优选多模型混合计算等方法。具体应用时,需要根据研究区水体光学特征的复杂程度和研究目的,选取不同的分类方法及参数遥感估算策略。
Case II waters
including inland and inshore waters
are affected by many factors
such as phytoplankton
suspended particles
and colored dissolved organic matter
leading to complex and changeable optical characteristics of the water body. Hence
establishing a unified remote sensing quantitative estimation model for retrieving water environmental parameters is difficult. According to the optical characteristics of water
the method of water optical classification and water environmental parameter inversion can not only improve the accuracy of parameter estimation but also facilitate the model to be popularized in similar waters. This study aims to review the state-of-the-art concepts and methods of water optical classification on remote sensing technology for case II water monitoring. The classification-based applications on retrieving environmental parameters as well as the limitations and prospects are discussed.
The criteria for considering studies for this review are based on the general development of water optical classification technology and ongoing studies from authors and their collaborators. The selection of studies is classified by different methods and applications for parameter retrieval. The main concept and advantages of water optical classification are illustrated with several examples presented in this study.
According to the optical characteristics of water
the method of water optical classification and water environmental parameter inversion can not only improve the accuracy of parameter estimation but also facilitate the model to be popularized in similar waters. Water optical classification methods mainly include optical classification based on inherent optical characteristics
remote sensing reflectance waveform characteristics
and parameter inversion. The classification inversion strategy includes the fusion of classification and model algorithm
the optimization algorithm based on water optical type
and the hybrid calculation based on optimization of multi-model.
Water optical classification is an effective tool for remotely recording the water quality and improving the estimation of the parameters especially in optically complex case II waters. The water retrieval of one predominated optical type should be based on its optimal model. However
accurate estimation of water composed of various types with spatiotemporal dynamics requires the determination of optimal models for each type and the blending strategy. The fuzzy-logic-based blending supports the production of seamless contiguities by considering weight factors. However
different classification methods and parameter estimation strategies should be reconsidered according to the complexity of water optical characteristics and research purposes.
水体光学分类二类水体水环境参数遥感监测遥感定量估算模型
water optical classificationcase II waterwater environmental parametersremote sensing monitoringremote sensing quantitative estimation model
Bezdek J C. 1973. Cluster validity with fuzzy sets. Journal of Cybernetics, 3(3): 58-73 [DOI: 10.1080/01969727308546047http://dx.doi.org/10.1080/01969727308546047]
Bezdek J C, Ehrlich R and Full W. 1984. FCM: the fuzzy c-means clustering algorithm. Computers and Geosciences, 10(2/3): 191-203 [DOI: 10.1016/0098-3004(84)90020-7http://dx.doi.org/10.1016/0098-3004(84)90020-7]
Bi S. 2021. Remote Sensing of Algal Column-Integrated Biomass for Inland Waters based on Soft Classification. Nanjing: Nanjing Normal University
毕顺. 2021. 基于软分类的湖泊藻类柱生物量遥感估算研究. 南京: 南京师范大学
Bi S, Li Y M, Li Y M, Xu J, Liu G, Song K S, Mu M, Lyu H, Miao S and Xu J F. 2019. Optical classification of inland waters based on an improved Fuzzy C-Means method. Optics Express, 27(24): 34838-34856
Bi S, Li Y M, Wang Q, Lyu H, Liu G, Zheng Z B, Du C G, Mu M, Xu J, Lei S H and Miao S. 2018. Inland water atmospheric correction based on turbidity classification using OLCI and SLSTR synergistic observations. Remote Sensing, 10(7): 1002 [DOI: 10.3390/rs10071002http://dx.doi.org/10.3390/rs10071002]
Brewin R J W, Sathyendranath S, Müller D, Brockmann C, Deschamps P Y, Devred E, Doerffer R, Fomferra N, Franz B, Grant M, Groom S, Horseman A, Hu C M, Krasemann H, Lee Z, Maritorena S, Mélin F, Peters M, Platt T, Regner P, Smyth T, Steinmetz F, Swinton J, Werdell J and White G N III. 2015. The ocean colour climate change initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sensing of Environment, 162: 271-294 [DOI: 10.1016/j.rse.2013.09.016http://dx.doi.org/10.1016/j.rse.2013.09.016]
Candiani G, Giardino C and Brando V E. 2007. Adjacency effects and bio-optical model regionalisation: MERIS data to assess lake water quality in the Subalpine ecoregion//Proceedings of the ENVISAT Symposium. Montreux, Switzerland: [s.n.]
Chen J, Li Y, Li D P, Huang Y and Zhu P Y. 2016. Distribution of phosphorus forms in the overlying water under disturbance with the addition of algae. Environmental Science, 37(4): 1413-1421
陈俊, 李勇, 李大鹏, 黄勇, 朱培颖. 2016. 藻类与扰动共存下水体中不同形态磷的数量分布规律. 环境科学, 37(4): 1413-1421 [DOI: 10.13227/j.hjkx.2016.04.028http://dx.doi.org/10.13227/j.hjkx.2016.04.028]
Cui T W, Zhang J, Wang K, Wei J W, Mu B, Ma Y, Zhu J H, Liu R J and Chen X Y. 2020. Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system. ISPRS Journal of Photogrammetry and Remote Sensing, 163: 187-201 [DOI: 10.1016/j.isprsjprs.2020.02.017http://dx.doi.org/10.1016/j.isprsjprs.2020.02.017]
Dembélé D and Kastner P. 2003. Fuzzy C-means method for clustering microarray data. Bioinformatics, 19(8): 973-980 [DOI: 10.1093/bioinformatics/btg119http://dx.doi.org/10.1093/bioinformatics/btg119]
Du C G. 2018. Temporal and Spatial Variation of Total Phosphorus Concentration and its Influencing Factors in Taihu Lake. Nanjing: Nanjing Normal University
杜成功. 2018. 太湖总磷浓度时空变化及其影响因素研究. 南京: 南京师范大学
Du C G, Wang Q, Li Y M, Lyu H, Zhu L, Zheng Z B, Wen S, Liu G and Guo Y L. 2018. Estimation of total phosphorus concentration using a water classification method in inland water. International Journal of Applied Earth Observation and Geoinformation, 71: 29-42 [DOI: 10.1016/j.jag.2018.05.007http://dx.doi.org/10.1016/j.jag.2018.05.007]
Futschik M E and Carlisle B. 2005. Noise-robust soft clustering of gene expression time-course data. Journal of Bioinformatics and Computational Biology, 3(4): 965-988 [DOI: 10.1142/S0219720005001375http://dx.doi.org/10.1142/S0219720005001375]
Gitelson A. 1992. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13(17): 3367-3373 [DOI: 10.1080/01431169208904125http://dx.doi.org/10.1080/01431169208904125]
Gitelson A A, Dall’Olmo G, Moses W, Rundquist D C, Barrow T, Fisher T R, Gurlin D and Holz J. 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment, 112(9): 3582-3593[DOI: 10.1016/j.rse.2008.04.015http://dx.doi.org/10.1016/j.rse.2008.04.015]
Gitelson A A, Gao B C, Li R R, Berdnikov S and Saprygin V. 2011. Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean—the Azov Sea case study. Environmental Research Letters, 6(2): 024023 [DOI: 10.1088/1748-9326/6/2/024023http://dx.doi.org/10.1088/1748-9326/6/2/024023]
Gilerson A A, Gitelson A A, Zhou J, Gurlin D, Moses W, Ioannou I and Ahmed S A. 2010. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express, 18(23): 24109-24125 [DOI: 10.1364/OE.18.024109http://dx.doi.org/10.1364/OE.18.024109]
González Vilas L, Spyrakos E and Torres Palenzuela J M. 2011. Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain). Remote Sensing of Environment, 115(2): 524-535 [DOI: 10.1016/j.rse.2010.09.021http://dx.doi.org/10.1016/j.rse.2010.09.021]
Gower J, King S, Borstad G and Brown L. 2005. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing, 26(9): 2005-2012 [DOI: 10.1080/01431160500075857http://dx.doi.org/10.1080/01431160500075857]
Gower J, King S and Goncalves P. 2008. Global monitoring of plankton blooms using MERIS MCI. International Journal of Remote Sensing, 29(21): 6209-6216 [DOI: 10.1080/01431160802178110http://dx.doi.org/10.1080/01431160802178110]
Gurlin D, Gitelson A A and Moses W J. 2011. Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model?. Remote Sensing of Environment, 115(12): 3479-3490 [DOI: 10.1016/j.rse.2011.08.011http://dx.doi.org/10.1016/j.rse.2011.08.011]
Hu C M, Lee Z and Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117: C01011 [DOI: 10.1029/2011JC007395http://dx.doi.org/10.1029/2011JC007395]
Huang C C, Li Y M, Sun D Y, Le C F and Jin X. 2011. Research of scattering spectrum characteristic and formative mechanism of Taihu Lake waters. Acta Optica Sinica, 31(5): 0501003
黄昌春, 李云梅, 孙德勇, 乐成峰, 金鑫. 2011. 太湖水体散射光谱特性及其形成机理研究. 光学学报, 31(5): 0501003 [DOI: 10.3788/AOS201131.0501003http://dx.doi.org/10.3788/AOS201131.0501003]
Jackson T, Sathyendranath S and Mélin F. 2017. An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications. Remote Sensing of Environment, 203: 152-161 [DOI: 10.1016/j.rse.2017.03.036http://dx.doi.org/10.1016/j.rse.2017.03.036]
Jerlov N G and Koczy F F. 1951. Photographic measurements of daylight in deep water. Elanders Boktryckeri Aktiebolag, Stockholm
Jiang G J, Duan G Q, Huang Z X, Cai W S, Lu C Q, Su W, Yang J and Zhang C C. 2016. Remote sensing classification of the dominant optically active components and its variations in the Pearl River estuary. Haiyang Xuebao, 38(9): 64-75
姜广甲, 段国钦, 黄志雄, 蔡伟叙, 卢楚谦, 苏文, 阳杰, 张纯超. 2016. 珠江口海域主导光学因子的遥感分类及其变化特征. 海洋学报, 38(9): 64-75 [DOI: 10.3969/j.issn.0253-4193.2016.09.007http://dx.doi.org/10.3969/j.issn.0253-4193.2016.09.007]
Jiang G J, Loiselle S A, Yang D T, Ma R H, Su W and Gao C J. 2020. Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations. Remote Sensing of Environment, 241: 111735 [DOI: 10.1016/j.rse.2020.111735http://dx.doi.org/10.1016/j.rse.2020.111735]
Le C F, Li Y M, Sun D Y and Wang H J. 2007. Research on chlorophyll concentration retrieval models of Taihu Lake based on seasonal difference. Journal of Remote Sensing, 11(4): 473-480
乐成峰, 李云梅, 孙德勇, 王海君. 2007. 基于季节分异的太湖叶绿素浓度反演模型研究. 遥感学报, 11(4): 473-480
Le C F, Li Y M, Zha Y and Sun D Y. 2009. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia, 619: 27-37 [DOI: 10.1007/s10750-008-9579-6http://dx.doi.org/10.1007/s10750-008-9579-6]
Le C F, Li Y M, Zha Y, Sun D Y, Huang C C and Zhang H. 2011. Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sensing of Environment, 115(2): 725-737 [DOI: 10.1016/j.rse.2010.10.014http://dx.doi.org/10.1016/j.rse.2010.10.014]
Lee Z, Carder K L and Arnone R A. 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27): 5755-5772 [DOI: 10.1364/AO.41.005755http://dx.doi.org/10.1364/AO.41.005755]
Lei S H, Xu J, Li Y M, Lyu H, Liu G, Zheng Z B, Xu Y F, Du C G, Zeng S, Wang H J, Dong X Z, Cai X L and Li J D. 2020. Temporal and spatial distribution of Kd (490) and its response to precipitation and wind in lake Hongze based on MODIS data. Ecological Indicators, 108: 105684 [DOI: 10.1016/j.ecolind.2019.105684http://dx.doi.org/10.1016/j.ecolind.2019.105684]
Li J S, Gao M, Feng L, Zhao H L, Shen Q, Zhang F F, Wang S L and Zhang B. 2019. Estimation of chlorophyll-a concentrations in a highly turbid eutrophic lake using a classification-based MODIS land-band algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10): 3769-3783 [DOI: 10.1109/JSTARS.2019.2936403http://dx.doi.org/10.1109/JSTARS.2019.2936403]
Li L L, Li Y M, Lü H, Xu J, Yang Z Q, Bi S and Xu J F. 2020. Remote sensing classification of urban black-odor water based on decision tree. Environmental Science, 41(11): 5060-5072
李玲玲, 李云梅, 吕恒, 徐杰, 杨子谦, 毕顺, 许佳峰. 2020. 基于决策树的城市黑臭水体遥感分级. 环境科学, 41(11): 5060-5072 [DOI: 10.13227/j.hjkx.202003266http://dx.doi.org/10.13227/j.hjkx.202003266]
Li Y M, Huang J Z, Wei Y C and Lu W N. 2006. Inversing chlorophyll concentration of Taihu Lake by analytic model. Journal of Remote Sensing, 10(2): 169-175
李云梅, 黄家柱, 韦玉春, 陆皖宁. 2006. 用分析模型方法反演水体叶绿素的浓度. 遥感学报, 10(2): 169-175
Li Y M, Wang Q, Wu C Q, Zhao S H, Xu X, Wang Y F and Huang C C. 2012. Estimation of Chlorophyll a concentration using NIR/Red bands of MERIS and classification procedure in inland turbid water. IEEE Transactions on Geoscience and Remote Sensing, 50(3): 988-997 [DOI: 10.1109/TGRS.2011.2163199http://dx.doi.org/10.1109/TGRS.2011.2163199]
Liu G, Li L, Song K S, Li Y M, Lyu H, Wen Z D, Fang C, Bi S, Sun X P, Wang Z M, Cao Z G, Shang Y X, Yu G L, Zheng Z B, Huang C C, Xu Y F and Shi K. 2020. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sensing of Environment, 239: 111648 [DOI: 10.1016/j.rse.2020.111648http://dx.doi.org/10.1016/j.rse.2020.111648]
Liu Z H, Li Y M, Lü H, Xu Y F, Xu X and Huang J Z. 2011. Estimating of backscattering rate in Lake Chaohu based on bio-optical model. Environmental Science, 32(2): 464-471
刘忠华, 李云梅, 吕恒, 徐祎凡, 徐昕, 黄家柱. 2011. 基于生物光学模型的巢湖后向散射概率估算. 环境科学, 32(2): 464-471
Lu C P, Lü H and Li Y M. 2012. Backscattering properties and parametric model of Taihu Lake based on spectral classification. Journal of Remote Sensing, 16(2): 417-434
陆超平, 吕恒, 李云梅. 2012. 基于光谱分类的太湖水体后向散射研究. 遥感学报, 16(2): 417-434
Maritorena S, Siegel D A and Peterson A R. 2002. Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics, 41(15): 2705-2714 [DOI: 10.1364/AO.41.002705http://dx.doi.org/10.1364/AO.41.002705]
Matsushita B, Yang W, Yu G L, Oyama Y, Yoshimura K and Fukushima T. 2015. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 28-37 [DOI: 10.1016/j.isprsjprs.2014.12.022http://dx.doi.org/10.1016/j.isprsjprs.2014.12.022]
Matthews M W, Bernard S and Robertson L. 2012. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sensing of Environment, 124: 637-652 [DOI: 10.1016/j.rse.2012.05.032http://dx.doi.org/10.1016/j.rse.2012.05.032]
Matthews M W and Odermatt D. 2015. Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters. Remote Sensing of Environment, 156: 374-382 [DOI: 10.1016/j.rse.2014.10.010http://dx.doi.org/10.1016/j.rse.2014.10.010]
Mélin F, Vantrepotte V, Clerici M, D’Alimonte D, Zibordi G, Berthon J F and Canuti E. 2011. Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea. Progress in Oceanography, 91(3): 229-244 [DOI: 10.1016/j.pocean.2010.12.001http://dx.doi.org/10.1016/j.pocean.2010.12.001]
Mobley C D, Stramski D, Bissett W P and Boss E. 2004. Optical modeling of ocean waters: is the case 1-case 2 classification still useful?. Oceanography, 17(2): 60-67 [DOI: 10.5670/oceanog.2004.48http://dx.doi.org/10.5670/oceanog.2004.48]
Mobley C D and Sundman L K. 2003. Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms. Limnology and Oceanography, 48: 329-336 [DOI: 10.4319/lo.2003.48.1_part_2.0329http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0329]
Moore T S, Dowell M D, Bradt S and Verdu A R. 2014. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sensing of Environment, 143: 97-111 [DOI: 10.1016/j.rse.2013.11.021http://dx.doi.org/10.1016/j.rse.2013.11.021]
Morel A and Maritorena S. 2001. Bio-optical properties of oceanic waters: a reappraisal. Journal of Geophysical Research: Oceans, 106(C4): 7163-7180 [DOI: 10.1029/2000JC000319http://dx.doi.org/10.1029/2000JC000319]
Morel A and Prieur L. 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722 [DOI: 10.4319/lo.1977.22.4.0709http://dx.doi.org/10.4319/lo.1977.22.4.0709]
Mu M, Wu C Q, Li Y M, Lyu H, Fang S Z, Yan X, Liu G, Zheng Z B, Du C G and Bi S. 2019. Long-term observation of cyanobacteria blooms using multi-source satellite images: a case study on a cloudy and rainy lake. Environmental Science and Pollution Research, 26(11): 11012-11028 [DOI: 10.1007/s11356-019-04522-6http://dx.doi.org/10.1007/s11356-019-04522-6]
Neil C, Spyrakos E, Hunter P D and Tyler A N. 2019. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sensing of Environment, 229: 159-178 [DOI: 10.1016/j.rse.2019.04.027http://dx.doi.org/10.1016/j.rse.2019.04.027]
O’Reilly J E, Maritorena S, Mitchell B G, Siegel D A, Carder K L, Garver S A, Kahru M and McClain C. 1998. Ocean color chlorophyll algorithms for SeaWIFS. Journal of Geophysical Research: Oceans, 103(C11): 24937-24953 [DOI: 10.1029/98JC02160http://dx.doi.org/10.1029/98JC02160]
O’Reilly J E, Maritorena S, Siegel D A, O’Brien M C, Toole D, Mitchell B G, Kahru M, Ghavez F P, Strutton P, Cota G F, Hooker S B, McClain C R, Carder K L, Müller-Karger F, Harding L, Magnuson A, Phinney D, Moore G F, Aiken J, Arrigo K R, Letelier R and Culver M. 2000. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2, and OC4: version 4//SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. [s.l.]: [s.n.]: 9-23
O’Reilly J E and Werdell P J. 2019. Chlorophyll algorithms for ocean color sensors-OC4, OC5 and OC6. Remote sensing of Environment, 229: 32-47 [DOI: 10.1016/j.rse.2019.04.021http://dx.doi.org/10.1016/j.rse.2019.04.021]
Palacios S L, Peterson T D and Kudela R M. 2012. Optical characterization of water masses within the Columbia River plume. Journal of Geophysical Research: Oceans, 117: C11020 [DOI: 10.1029/2012JC008005http://dx.doi.org/10.1029/2012JC008005]
Prieur L and Sathyendranath S. 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and Oceanography, 26(4): 671-689 [DOI: 10.4319/lo.1981.26.4.0671http://dx.doi.org/10.4319/lo.1981.26.4.0671]
Schwämmle V and Jensen O N. 2010. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics, 26(22): 2841-2848 [DOI: 10.1093/bioinformatics/btq534http://dx.doi.org/10.1093/bioinformatics/btq534]
Shen F, Zhou Y X, Li D J, Zhu W J and Suhyb Salama M. 2010. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary. International Journal of Remote Sensing, 31(17/18): 4635-4650 [DOI: 10.1080/01431161.2010.485216http://dx.doi.org/10.1080/01431161.2010.485216]
Shi K, Li Y M, Li L and Lu H. 2013. Absorption characteristics of optically complex inland waters: implications for water optical classification. Journal of Geophysical Research: Biogeosciences, 118(2): 860-874 [DOI: 10.1002 /jgrg.20071http://dx.doi.org/10.1002/jgrg.20071]
Shi K, Li Y M, Zhang Y L, Li L, Lv H and Song K S. 2014. Classification of inland waters based on bio-optical properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 543-561 [DOI: 10.1109/ JSTARS.2013.2290744http://dx.doi.org/10.1109/JSTARS.2013.2290744]
Shi K, Zhang Y L, Zhu G W, Liu X H, Zhou Y Q, Xu H, Qin B Q, Liu G and Li Y M. 2015. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data. Remote Sensing of Environment, 164: 43-56 [DOI: 10.1016/j.rse.2015.02.029http://dx.doi.org/10.1016/j.rse.2015.02.029]
Smith M E, Lain L R and Bernard S. 2018. An optimized chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sensing of Environment, 215: 217-227 [DOI: 10.1016/j.rse.2018.06.002http://dx.doi.org/10.1016/j.rse.2018.06.002]
Spyrakos E, O’Donnell R, Hunter P D, Miller C, Scott M, Simis S G H, Neil C, Barbosa C C F, Binding C E, Bradt S, Bresciani M, Dall’Olmo G, Giardino C, Gitelson A A, Kutser T, Li L, Matsushita B, Martinez-Vicente V, Matthews M W, Ogashawara I, Ruiz-Verdú A, Schalles J F, Tebbs E, Zhang Y L and Tyler A N. 2018. Optical types of inland and coastal waters. Limnology and Oceanography, 63(2): 846-870 [DOI: 10.1002/lno.10674http://dx.doi.org/10.1002/lno.10674]
Sun D Y, Li Y M, Le C F, Gong S Q, Wang H J, Wu L and Huang C C. 2007. Scattering characteristics of Taihu Lake and its relationship models with suspended particle concentration. Environmental Science, 28(12): 2688-2694
孙德勇, 李云梅, 乐成峰, 龚绍琦, 王海军, 伍蓝, 黄昌春. 2007. 太湖水体散射特性及其与悬浮物浓度关系模型. 环境科学, 28(12): 2688-2694 [DOI: 10.3321/j.issn:0250-3301.2007.12.004http://dx.doi.org/10.3321/j.issn:0250-3301.2007.12.004]
Sun D Y, Li Y M, Wang Q, Le C F, Huang C C and Shi K. 2011. Development of optical criteria to discriminate various types of highly turbid lake waters. Hydrobiologia, 669(1): 83-104 [DOI: 10.1007/s10750-011-0652-1http://dx.doi.org/10.1007/s10750-011-0652-1]
Sun D Y, Li Y M, Wang Q, Le C F, Lv H, Huang C C and Gong S Q. 2012. Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification. Photochemical and Photobiological Sciences, 11(8): 1299-1312 [DOI: 10.1039/c2pp25061fhttp://dx.doi.org/10.1039/c2pp25061f]
Vantrepotte V, Loisel H, Dessailly D and Mériaux X. 2012. Optical classification of contrasted coastal waters. Remote Sensing of Environment, 123: 306-323 [DOI: 10.1016/j.rse.2012.03.004http://dx.doi.org/10.1016/j.rse.2012.03.004]
Wei J W, Lee Z and Shang S L. 2016. A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments. Journal of Geophysical Research: Oceans, 121(11): 8189-8207 [DOI: 10.1002/2016JC012126http://dx.doi.org/10.1002/2016JC012126]
Xu J, Lei S H, Bi S, Li Y M, Lyu H, Xu J F, Xu X G, Mu M, Miao S, Zeng S and Zheng Z B. 2020. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing. Water Research, 168: 115162 [DOI: 10.1016/j.watres.2019.115162http://dx.doi.org/10.1016/j.watres.2019.115162]
Xu J, Li Y M, Lyu H, Lei S H, Mu M, Bi S, Xu J F, Xu X G, Miao S, Li L L and Yan X C. 2021. Simultaneous inversion of concentrations of POC and its endmembers in lakes: a novel remote sensing strategy. Science of the Total Environment, 770: 145249 [DOI: 10.1016/j.scitotenv.2021.145249http://dx.doi.org/10.1016/j.scitotenv.2021.145249]
Xu Y F, Li Y M, Wang Q, Lü H, Liu Z H, Xu X, Tan J, Guo Y L and Wu C Q. 2011. Optical properties and retrieving of diffuse attenuation coefficient of the Three Gorges Reservoir by remote sensing. Journal of Lake Sciences, 23(1): 95-103
徐祎凡, 李云梅, 王桥, 吕恒, 刘忠华, 徐昕, 檀静, 郭宇龙, 吴传庆. 2011. 三峡水库水体漫衰减系数光学特性及其遥感反演. 湖泊科学, 23(1): 95-103
Xue K, Ma R H, Wang D and Shen M. 2019. Optical classification of the remote sensing reflectance and its application in deriving the specific phytoplankton absorption in optically complex lakes. Remote Sensing, 11(2): 184 [DOI: 10.3390/rs11020184http://dx.doi.org/10.3390/rs11020184]
Yu X L, Lee Z, Shen F, Wang M H, Wei J W, Jiang L D and Shang Z H. 2019. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sensing of Environment, 235: 111491 [DOI: 10.1016/j.rse.2019.111491http://dx.doi.org/10.1016/j.rse.2019.111491]
Zeng S, Li Y M, Lyu H, Xu J F, Dong X Z, Wang R, Yang Z Q and Li J C. 2020. Mapping spatio-temporal dynamics of main water parameters and understanding their relationships with driving factors using GF-1 images in a clear reservoir. Environmental Science and Pollution Research, 27: 33929-33950 [DOI: 10.1007/s11356-020-09687-zhttp://dx.doi.org/10.1007/s11356-020-09687-z]
Zhang F F, Li J S, Shen Q, Zhang B, Tian L Q, Ye H P, Wang S L and Lu Z Y. 2019. A soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu Lake. International Journal of Applied Earth Observation and Geoinformation, 74: 138-149 [DOI: 10.1016/j.jag.2018.07.018http://dx.doi.org/10.1016/j.jag.2018.07.018]
Zhang Y L, Zhang B, Ma R H, Feng S and Le C F. 2007. Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China. Fundamental and Applied Limnology, 170(1): 11-19 [DOI: 10.1127/1863-9135/2007/0170-0011http://dx.doi.org/10.1127/1863-9135/2007/0170-0011]
Zheng Z B, Ren J L, Li Y M, Huang C C, Liu G, Du C G and Lyu H. 2016. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: a case study of Dongting Lake. Science of the Total Environment, 573: 39-54 [DOI: 10.1016/j.scitotenv.2016.08.019http://dx.doi.org/10.1016/j.scitotenv.2016.08.019]
相关作者
相关机构