湖泊碳循环研究中遥感技术的机遇与挑战
Remote sensing technology in the study of lake carbon cycle: Opportunities and challenges
- 2022年26卷第1期 页码:49-67
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221220
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
黄昌春,姚凌,李俊生,周成虎,郭宇龙,李云梅.2022.湖泊碳循环研究中遥感技术的机遇与挑战.遥感学报,26(1): 49-67
Huang C C,Yao L,Li J S,Zhou C H,Guo Y L and Li Y M. 2022. Remote sensing technology in the study of lake carbon cycle: Opportunities and challenges. National Remote Sensing Bulletin, 26(1):49-67
湖泊碳循环是全球碳循环过程中的重要环节,随着全球碳循环研究的不断深入,湖泊碳循环对全球碳循环的影响,以及其对全球气候变化的调节作用越来越受到关注。然而,由于湖泊分布的破碎性(大于0.002 km
2
的湖泊约有1.17×10
8
个,并零星地分布在全球)和多样性(流域生态多样性,湖泊类型多样性,分布的气候带多样性等),使得全面监测和研究全球湖泊碳循环具有较大的挑战性。具有大面积同步连续观测优势的遥感技术可以克服传统观测方法的局限,可为全球湖泊碳循环研究提供大面积同步观测数据的支撑。同时,由于光谱在物质识别和探测方面的优势,使得遥感技术在有机质类型反演方面与地球化学方法存在结合的可能。本文回顾了目前水环境遥感研究中与湖泊碳循环相关的湖泊不同类型碳浓度、水体理化参数等遥感反演算法及其应用的现状,结合湖泊碳循环中有机碳迁移转化的生物地球化学过程,以及湖泊碳循环研究、遥感大数据和人工智能的发展,探讨了湖泊碳循环研究中遥感技术应用的机遇和挑战。
lake carbon cycle is an important segment in the global carbon cycle. Growing attention has been received to lake carbon cycle for its virtual effect on the global carbon cycle and climate change. However
comprehensive monitoring and assessment of the global lake carbon cycle is still challenging due to the fragmentary distribution and diversity in ecology
type and climatic zone of lake. Remote sensing technology with advantages of large area continuously synchronous observation could conquer the limitations of conventional observation method
supporting the research of global lake carbon cycle with huge of observation data. Meanwhile
the estimation of organic carbon source and composition via the remote sensing technology could be combined with biogeochemical technology for the advantage of spectral detection by remote sensing. In this paper
recent studies about the remote sensing application and research on lake basin and water were reviewed based on the active demand of remote sensing in the lake carbon cycle. The application of remote sensing in a geography of lake carbon cycling was proposed due to the highly variable among lakes within basin characteristics. Much more precision and higher spatial resolution results of land use
vegetation canopy
primary productivity
soil properties
population density and other watershed attribute data from remote sensing should be considered in geography of lake carbon cycling to improve the estimation of carbon input in lake. The remote sensing retrieval of particulate and dissolved organic carbon concentration in the lake water have been widely used
yet the carbon pool estimation is flimsy for the difficulty in the acquirement of carbon vertical distribution. Meanwhile
the sources of organic carbon significantly affect the turnover time of organic carbon
presenting the short turnover time of endogenous organic carbon and relative long turnover time of terrestrial organic carbon. The remote sensing should be cooperatively estimated endogenous and terrestrial organic carbon with isotopic geochemistry technology
which can distinguish the source of organic carbon effectively. The retrieval algorithms of inorganic carbon
such as CO
2
and CH
4
are being developed by the active and passive remote sensing. The black carbon from incomplete combustion of fossil fuel and biomass is a higher aromatic content and different from other types of organic carbon (such as: terrestrial
endogenous organic carbon) should be taken as a new inversion parameter from remote sensing. The estimation of physicochemical characteristics of lake water
which significantly affected the lake carbon cycle
should be concerned and combined in the research of lake carbon cycle. The virtual sensors with high temporal
spectral and spatial resolution should be established due to the limitation of current remote sensing satellite data. Multi-source remote sensing data fusion is a recommendable method to overcome the limitation application of remote sensing in lake carbon cycle due to the exclusive highly temporal
spectral or spatial resolution. The opportunities and challenges of remote sensing application in the lake carbon cycle were discussed according to biogeochemical processes of carbon in the lake and the recent advances of big data and artificial intelligence in remote sensing technology
as well as the development of lake carbon cycle studies.
湖泊碳循环遥感生物地球化学大数据与人工智能水环境温室气体
lake carbon cycleremote sensingbiogeochemistrybig data and artificial intelligencewater environmentgreenhouse gase
Alcântara E H, Stech J L, Lorenzzetti J A, Bonnet M P, Casamitjana X, Assireu A T and de Moraes Novo E M L. 2010. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment, 114(11): 2651-2665 [DOI: 10.1016/j.rse.2010.06.002http://dx.doi.org/10.1016/j.rse.2010.06.002]
Alewell C, Birkholz A, Meusburger K, Wildhaber Y S and Mabit L. 2016. Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland). Biogeosciences, 13(5): 1587-1596 [DOI: 10.5194/bg-13-1587-2016http://dx.doi.org/10.5194/bg-13-1587-2016]
Allen G H and Pavelsky T M. 2018. Global extent of rivers and streams. Science, 361(6402): 585-588 [DOI: 10.1126/science.aat0636http://dx.doi.org/10.1126/science.aat0636]
Arce M I, Mendoza-Lera C, Almagro M, Catalán N, Romaní A M, Martí E, Gómez R, Bernal S, Foulquier A, Mutz M, Marcé R, Zoppini A, Gionchetta G, Weigelhofer G, del Campo R, Robinson C T, Gilmer A, Rulik M, Obrador B, Shumilova O, Zlatanović S, Arnon S, Baldrian P, Singer G, Datry T, Skoulikidis N, Tietjen B and von Schiller D. 2019. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Science Reviews, 188: 441-453 [DOI: 10.1016/j.earscirev.2018.12.001http://dx.doi.org/10.1016/j.earscirev.2018.12.001]
Armston J, Disney M, Lewis P, Scarth P, Phinn S, Lucas R, Bunting P and Goodwin N. 2013. Direct retrieval of canopy gap probability using airborne waveform LiDAR. Remote Sensing of Environment, 134: 24-38 [DOI: 10.1016/j.rse.2013.02.021http://dx.doi.org/10.1016/j.rse.2013.02.021]
Bai Y, Cai W J, He X Q, Zhai W D, Pan D L, Dai M H and Yu P S. 2015. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: a case study from the East China Sea. Journal of Geophysical Research: Oceans, 120(3): 2331-2349 [DOI: 10.1002/2014JC010632http://dx.doi.org/10.1002/2014JC010632]
Batista P V G, Davies J, Silva M L N and Quinton J N. 2019. On the evaluation of soil erosion models: are we doing enough?. Earth-Science Reviews, 197: 102898 [DOI: 10.1016/j.earscirev.2019.102898http://dx.doi.org/10.1016/j.earscirev.2019.102898]
Battin T J, Kaplan L A, Findlay S, Hopkinson C S, Marti E, Packman A I, Newbold J D and Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1(2): 95-100 [DOI: 10.1038/ngeo101http://dx.doi.org/10.1038/ngeo101]
Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S and Regnier P A G. 2013. The changing carbon cycle of the coastal ocean. Nature, 504(7478): 61-70 [DOI: 10.1038/nature12857http://dx.doi.org/10.1038/nature12857]
Behrenfeld M J, Boss E, Siegel D A and Shea D M. 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles, 19(1):
GB1006 [DOI: 10.1029/2004GB002299http://dx.doi.org/10.1029/2004GB002299]
Bergamino N, Horion S, Stenuite S, Cornet Y, Loiselle S, Plisnier P D and Descy J P. 2010. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment, 114(4): 772-780 [DOI: 10.1016/j.rse.2009.11.013http://dx.doi.org/10.1016/j.rse.2009.11.013]
Bi S, Li Y M, Lyu H, Mu M, Xu J, Lei S H, Miao S, Hong T L and Zhou L. 2019. Quantifying spatiotemporal dynamics of the column-integrated algal biomass in Nonbloom conditions based on OLCI Data: a case study of Lake Dianchi, China. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7447-7459 [DOI: 10.1109/TGRS.2019.2913401http://dx.doi.org/10.1109/TGRS.2019.2913401]
Bianchi T S. 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proceedings of the National Academy of Sciences of the United States of America, 108(49): 19473-19481 [DOI: 10.1073/pnas.1017982108http://dx.doi.org/10.1073/pnas.1017982108]
Brooks C, Grimm A, Shuchman R, Sayers M and Jessee N. 2015. A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes. Remote Sensing of Environment, 157: 58-71 [DOI: 10.1016/j.rse.2014.04.032http://dx.doi.org/10.1016/j.rse.2014.04.032]
Busker T, de Roo A, Gelati E, Schwatke C, Adamovic M, Bisselink B, Pekel J F and Cottam A. 2019. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23(2): 669-690 [DOI: 10.5194/hess-23-669-2019http://dx.doi.org/10.5194/hess-23-669-2019]
Cai X B, Feng L, Hou X J and Chen X L. 2016. Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze River Basin from 2000 to 2014. Scientific Reports, 6: 36405 [DOI: 10.1038/srep36405http://dx.doi.org/10.1038/srep36405]
Carroll M L, Townshend J R, Dimiceli C M, Noojipady P and Sohlberg R A. 2009. A new global raster water mask at 250 m resolution. International Journal of Digital Earth, 2(4): 291-308 [DOI: 10.1080/17538940902951401http://dx.doi.org/10.1080/17538940902951401]
Chao Rodríguez Y, el Anjoumi A, Domínguez Gómez J A, Rodríguez Pérez D and Rico E. 2014. Using Landsat image time series to study a small water body in Northern Spain. Environmental Monitoring and Assessment, 186(6): 3511-3522 [DOI: 10.1007/s10661-014-3634-8http://dx.doi.org/10.1007/s10661-014-3634-8]
Chen C T A, Huang T H, Chen Y C, Bai Y, He X and Kang Y. 2013. Air-sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10(10): 6509-6544 [DOI: 10.5194/bg-10-6509-2013http://dx.doi.org/10.5194/bg-10-6509-2013]
Chen S L, Hu C M, Byrne R H, Robbins L L and Yang B. 2016. Remote estimation of surface pCO2 on the West Florida Shelf. Continental Shelf Research, 128: 10-25 [DOI: 10.1016/j.csr.2016.09.004http://dx.doi.org/10.1016/j.csr.2016.09.004]
Chierici M, Signorini S R, Mattsdotter-Björk M, Fransson A and Olsen A. 2012. Surface water fCO2 algorithms for the high-latitude Pacific sector of the Southern Ocean. Remote Sensing of Environment, 119: 184-196 [DOI: 10.1016/j.rse.2011.12.020http://dx.doi.org/10.1016/j.rse.2011.12.020]
Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J and Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1): 172-185 [DOI: 10.1007/s10021-006-9013-8http://dx.doi.org/10.1007/s10021-006-9013-8]
Crétaux J F, Abarca-del-Río R, Bergé-Nguyen M, Arsen A, Drolon V, Clos G and Maisongrande P. 2016. Lake volume monitoring from space. Surveys in Geophysics, 37(2): 269-305 [DOI: 10.1007/s10712-016-9362-6http://dx.doi.org/10.1007/s10712-016-9362-6]
Degens E T, Kempe S and Richey J E. 1991. Biogeochemistry of Major World Rivers (SCOPE Report 42). New York: John Wiley & Sons
Deng Y B, Zhang Y L, Li D P, Shi K and Zhang Y B. 2017. Temporal and spatial dynamics of phytoplankton primary production in Lake Taihu derived from MODIS data. Remote Sensing, 9(3): 195 [DOI: 10.3390/rs9030195http://dx.doi.org/10.3390/rs9030195]
Du Y, Zhang Y H, Ling F, Wang Q M, Li W B and Li X D. 2016. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4): 354 [DOI: 10.3390/rs8040354http://dx.doi.org/10.3390/rs8040354]
Duan H T, Feng L, Ma R H, Zhang Y C and Loiselle S A. 2014. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environmental Research Letters, 9(8): 084011 [DOI: 10.1088/1748-9326/9/8/084011http://dx.doi.org/10.1088/1748-9326/9/8/084011]
Edwards R T, D’Amore D V, Biles F E, Fellman J B, Hood E W, Trubilowicz J W and Floyd W C. 2021. Riverine dissolved organic carbon and freshwater export in the eastern Gulf of Alaska. Journal of Geophysical Research: Biogeosciences, 126(1):
e2020JG005725 [DOI: 10.1029/2020JG005725http://dx.doi.org/10.1029/2020JG005725]
Engram M, Walter Anthony K M, Sachs T, Kohnert K, Serafimovich A, Grosse G and Meyer F J. 2020. Author correction: remote sensing northern lake methane ebullition. Nature Climate Change, 10(9): 876 [DOI: 10.1038/s41558-020-0882-1http://dx.doi.org/10.1038/s41558-020-0882-1]
Fabre C, Sauvage S, Probst J L and Sánchez-Pérez J M. 2020. Global-scale daily riverine DOC fluxes from lands to the oceans with a generic model. Global and Planetary Change, 194: 103294 [DOI: 10.1016/j.gloplacha.2020.103294http://dx.doi.org/10.1016/j.gloplacha.2020.103294]
Fang H L, Baret F, Plummer S and Schaepman-Strub G. 2019. An overview of Global Leaf Area Index (LAI): methods, products, validation, and applications. Reviews of Geophysics, 57(3): 739-799 [DOI: 10.1029/2018RG000608http://dx.doi.org/10.1029/2018RG000608]
Feng M, Sexton J O, Channan S and Townshend J R. 2016. A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm. International Journal of Digital Earth, 9(2): 113-133 [DOI: 10.1080/17538947.2015.1026420http://dx.doi.org/10.1080/17538947.2015.1026420]
Fisher A, Flood N and Danaher T. 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175: 167-182 [DOI: 10.1016/j.rse.2015.12.055http://dx.doi.org/10.1016/j.rse.2015.12.055]
Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H Q, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W P, Yue X and Zaehle S. 2020. Global carbon budget 2020. Earth System Science Data, 12(4): 3269-3340 [DOI: 10.5194/essd-12-3269-2020http://dx.doi.org/10.5194/essd-12-3269-2020]
Galy V, Peucker-Ehrenbrink B and Eglinton T. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature, 521(7551): 204-207 [DOI: 10.1038/nature14400http://dx.doi.org/10.1038/nature14400]
Giardino C, Bresciani M, Valentini E, Gasperini L, Bolpagni R and Brando V E. 2015. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sensing of Environment, 157: 48-57 [DOI: 10.1016/j.rse.2014.04.034http://dx.doi.org/10.1016/j.rse.2014.04.034]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Ping Suen H, Guo J, Xu N, Li W J, Zhao Y Y, Yang J, Yu C Q, Wang X, Fu H H, Yu L, Dronova I, Hui F M, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/j.scib.2019.03.002http://dx.doi.org/10.1016/j.scib.2019.03.002]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, Macedo H E, Filgueiras R, Goichot M, Higgins J, Hogan Z, Lip B, McClain M E, Meng J, Mulligan M, Nilsson C, Olden J D, Opperman J J, Petry P, Liermann C R, Sáenz L, Salinas-Rodríguez S, Schelle P, Schmitt R J P, Snider J, Tan F, Tockner K, Valdujo P H, van Soesbergen A and Zarfl C. 2019. Author correction: mapping the world’s free-flowing rivers. Nature, 572 (7768): E9 [DOI: 10.1038/s41586-019-1379-9http://dx.doi.org/10.1038/s41586-019-1379-9]
Gudasz C, Bastviken D, Steger K, Premke K, Sobek S and Tranvik L J. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305): 478-481 [DOI: 10.1038/nature09186http://dx.doi.org/10.1038/nature09186]
Guenet B, Danger M, Abbadie L and Lacroix G. 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology, 91(10): 2850-2861 [DOI: 10.1890/09-1968.1http://dx.doi.org/10.1890/09-1968.1]
Guenet B, Juarez S, Bardoux G, Abbadie L and Chenu C. 2012. Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biology and Biochemistry, 52: 43-48 [DOI: 10.1016/j.soilbio.2012.04.001http://dx.doi.org/10.1016/j.soilbio.2012.04.001]
Guillemette F, von Wachenfeldt E, Kothawala D N, Bastviken D and Tranvik L J. 2017. Preferential sequestration of terrestrial organic matter in boreal lake sediments. Journal of Geophysical Research: Biogeosciences, 122(4): 863-874 [DOI: 10.1002/2016JG003735http://dx.doi.org/10.1002/2016JG003735]
Guo J, Chao B X, Zhang Y, Lei C G and Wang Y Y. 2020. Effects of seasonal flooding and vegetation types on greenhouse gas emission in west Lake Dongting. Journal of Lake Sciences, 32(3): 726-734
郭佳, 晁碧霄, 张颖, 雷光春, 王玉玉. 2020. 西洞庭湖季节性淹水和植被类型对温室气体排放通量的影响. 湖泊科学, 32(3): 726-734 [DOI: 10.18307/2020.0312http://dx.doi.org/10.18307/2020.0312]
Guo Y L, Huang C C, Zhang Y L, Li Y and Chen W Q. 2020. A novel multitemporal image-fusion algorithm: method and application to GOCI and Himawari images for inland water remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 58(6): 4018-4032 [DOI: 10.1109/TGRS.2019.2960322http://dx.doi.org/10.1109/TGRS.2019.2960322]
Hales B, Strutton P G, Saraceno M, Letelier R, Takahashi T, Feely R, Sabine C and Chavez F. 2012. Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific. Progress in Oceanography, 103: 1-15 [DOI: 10.1016/j.pocean.2012.03.001http://dx.doi.org/10.1016/j.pocean.2012.03.001]
Hertkorn N, Harir M, Koch B P, Michalke B, Grill P and Schmitt-Kopplin P. 2012. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean. Biogeosciences Discussions, 9: 745-833 [DOI: 10.5194/bgd-9-745-2012http://dx.doi.org/10.5194/bgd-9-745-2012]
Hondula K L, DeVries B, Jones C N and Palmer M A. 2021. Effects of using high resolution satellite-based inundation time series to estimate methame fluxes from forested wetlands. Geophysical Research Letters, 48, e2021GL092556 [https://doi.org/10.1029/2021GL092556https://doi.org/10.1029/2021GL092556]
Hong S H, Wdowinski S, Kim S W and Won J S. 2010. Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR). Remote Sensing of Environment, 114(11): 2436-2447 [DOI: 10.1016/j.rse.2010.05.019http://dx.doi.org/10.1016/j.rse.2010.05.019]
Huang C, Chen Y, Zhang S Q and Wu J P. 2018b. Detecting, extracting, and monitoring surface water from space using Optical Sensors: a review. Reviews of Geophysics, 56(2): 333-360 [DOI: 10.1029/2018RG000598http://dx.doi.org/10.1029/2018RG000598]
Huang C C. 2011. Retrieval of Water Constituents by Bio-Optical Algorithm Considering the Vertical Distribution of Suspended Particle in Taihu Lake. Nanjing: Nanjing Normal University
黄昌春. 2011. 顾及颗粒物垂直分布的太湖水体组分生物光学模型反演研究. 南京: 南京师范大学
Huang C C, Jiang Q L, Yao L, Li Y M, Yang H, Huang T and Zhang M L. 2017a. Spatiotemporal variation in particulate organic carbon based on long-term MODIS observations in Taihu Lake, China. Remote Sensing, 9(6): 624 [DOI: 10.3390/rs9060624http://dx.doi.org/10.3390/rs9060624]
Huang C C, Li Y M, Liu G, Guo Y L, Yang H, Zhu A X, Song T, Huang T, Zhang M L and Shi K. 2017b. Tracing high time-resolution fluctuations in dissolved organic carbon using satellite and buoy observations: case study in Lake Taihu, China. International Journal of Applied Earth Observation and Geoinformation, 62: 174-182 [DOI: 10.1016/j.jag.2017.06.009http://dx.doi.org/10.1016/j.jag.2017.06.009]
Huang C C, Shi K, Yang H, Li Y M, Zhu A X, Sun D Y, Xu L J, Zou J and Chen X. 2015. Satellite observation of hourly dynamic characteristics of algae with Geostationary Ocean Color Imager (GOCI) data in Lake Taihu. Remote Sensing of Environment, 159: 278-287 [DOI: 10.1016/j.rse.2014.12.016http://dx.doi.org/10.1016/j.rse.2014.12.016]
Huang C C, Yang H, Li Y M, Zhang M L, Lv H, Zhu A X, Yu Y H, Luo Y and Huang T. 2017c. Quantificational effect of reforestation to soil erosion in subtropical monsoon regions with acid red soil by sediment fingerprinting. Environmental Earth Sciences, 76: 34 [DOI: 10.1007/s12665-016-6349-zhttp://dx.doi.org/10.1007/s12665-016-6349-z]
Huang C C, Yao L, Huang T, Zhang M L, Zhu A X and Yang H. 2017d. Wind and rainfall regulation of the diffuse attenuation coefficient in large, shallow lakes from long-term MODIS observations using a semianalytical model. Journal of Geophysical Research: Atmospheres, 122(13): 6748-6763 [DOI: 10.1002/2017JD026955http://dx.doi.org/10.1002/2017JD026955]
Huang C C, Yao L, Zhang Y L, Huang T, Zhang M L, Zhu A X and Yang H. 2017e. Spatial and temporal variation in autochthonous and allochthonous contributors to increased organic carbon and nitrogen burial in a plateau lake. Science of the Total Environment, 603-604: 390-400 [DOI: 10.1016/j.scitotenv.2017.06.118http://dx.doi.org/10.1016/j.scitotenv.2017.06.118]
Huang C C, Zhang L L, Li Y M, Lin C, Huang T, Zhang M L, Zhu A X, Yang H and Wang X L. 2018a. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms. Science of the Total Environment, 616-617: 296-304 [DOI: 10.1016/j.scitotenv.2017.10.320http://dx.doi.org/10.1016/j.scitotenv.2017.10.320]
Huang C C, Zhang Y L, Huang T, Yang H, Li Y M, Zhang Z G, He M Y, Hu Z J, Song T and Zhu A X. 2019. Long-term variation of phytoplankton biomass and physiology in Taihu Lake as observed via MODIS satellite. Water Research, 153: 187-199 [DOI: 10.1016/j.watres.2019.01.017http://dx.doi.org/10.1016/j.watres.2019.01.017]
Jiang G J, Ma R H, Loiselle S A, Duan H T, Su W, Cai W X, Huang C G, Yang J and Yu W. 2015. Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China). Science of the Total Environment, 532: 245-254 [DOI: 10.1016/j.scitotenv.2015.05.120http://dx.doi.org/10.1016/j.scitotenv.2015.05.120]
Kauer T, Kutser T, Arst H, Danckaert T and Nõges T. 2015. Modelling primary production in shallow well mixed lakes based on MERIS satellite data. Remote Sensing of Environment, 163: 253-261 [DOI: 10.1016/j.rse.2015.03.023http://dx.doi.org/10.1016/j.rse.2015.03.023]
Keller P S, Catalán N, von Schiller D, Grossart H P, Koschorreck M, Obrador B, Frassl M A, Karakaya N, Barros N, Howitt J A, Mendoza-Lera C, Pastor A, Flaim G, Aben R, Riis T, Arce M I, Onandia G, Paranaíba J R, Linkhorst A, del Campo R, Amado A M, Cauvy-Fraunié S, Brothers S, Condon J, Mendonça R F, Reverey F, Rõõm E I, Datry T, Roland F, Laas A, Obertegger U, Park J H, Wang H, Kosten S, Gómez R, Feijoó C, Elosegi A, Sánchez-Montoya M M, Finlayson C M, Melita M, Oliveira Junior E S, Muniz C C, Gómez-Gener L, Leigh C, Zhang Q and Marcé R. 2020. Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nature Communications, 11: 2126 [DOI: 10.1038/s41467-020-15929-yhttp://dx.doi.org/10.1038/s41467-020-15929-y]
Kendall C, Silva S R and Kelly V J. 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes, 15(7): 1301-1346 [DOI: 10.1002/hyp.216http://dx.doi.org/10.1002/hyp.216]
Kim J W, Lu Z, Jones J W, Shum C K, Lee H and Jia Y Y. 2014. Monitoring everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sensing of Environment, 150: 66-81 [DOI: 10.1016/j.rse.2014.03.031http://dx.doi.org/10.1016/j.rse.2014.03.031]
Kiniry J R, Williams J R and Srinivasan R. 2000. Soil and water assessment tool user’s manual. Nature Clinical Practice Rheumatology, 3(3): 119
Klaus M, Seekell D A, Lidberg W and Karlsson J. 2019. Evaluations of climate and land management effects on lake carbon cycling need to account for temporal variability in CO2 concentrations. Global Biogeochemical Cycles, 33(3): 243-265 [DOI: 10.1029/2018GB005979http://dx.doi.org/10.1029/2018GB005979]
Kosten S, Roland F, Da Motta Marques D M L, Van Nes E H, Mazzeo N, da S L Sternberg L, Scheffer M and Cole J J. 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles, 24(2):
GB2007 [DOI: 10.1029/2009GB003618http://dx.doi.org/10.1029/2009GB003618]
Kutser T, Verpoorter C, Paavel B and Tranvik L J. 2015. Estimating lake carbon fractions from remote sensing data. Remote Sensing of Environment, 157: 138-146 [DOI: 10.1016/j.rse.2014.05.020http://dx.doi.org/10.1016/j.rse.2014.05.020]
Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9): 1363-1371 [DOI: 10.1016/j.soilbio.2010.04.003http://dx.doi.org/10.1016/j.soilbio.2010.04.003]
Kuzyakov Y and Bol R. 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 38(4): 747-758 [DOI: 10.1016/j.soilbio.2005.06.025http://dx.doi.org/10.1016/j.soilbio.2005.06.025]
Kuzyakov Y, Friedel J K and Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32(11/12): 1485-1498
Le C F, Gao Y Y, Cai W J, Lehrter J C, Bai Y and Jiang Z P. 2019. Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model. Remote Sensing of Environment, 225: 115-126 [DOI: 10.1016/j.rse.2019.02.023http://dx.doi.org/10.1016/j.rse.2019.02.023]
Le Quéré C, Moriarty R, Andrew R M, Peters G P, Ciais P, Friedlingstein P, Jones S D, Sitch S, Tans P, Arneth A, Boden T A, Bopp L, Bozec Y, Canadell J G, Chini L P, Chevallier F, Cosca C E, Harris I, Hoppema M, Houghton R A, House J I, Jain A K, Johannessen T, Kato E, Keeling R F, Kitidis V, Klein Goldewijk K, Koven C, Landa C S, Landschützer P, Lenton A, Lima I D, Marland G, Mathis J T, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach M R, Regnier P, Rödenbeck C, Saito S, Salisbury J E, Schuster U, Schwinger J, Séférian R, Segschneider J, Steinhoff T, Stocker B D, Sutton A J, Takahashi T, Tilbrook B, van der Werf G R, Viovy N, Wang Y P, Wanninkhof R, Wiltshire A and Zeng N. 2015. Global carbon budget 2014. Earth System Science Data, 7(1): 47-85 [DOI: 10.5194/essd-7-47-2015http://dx.doi.org/10.5194/essd-7-47-2015]
Lee Z P, Darecki M, Carder K L, Davis C O, Stramski D and Rhea W J. 2005a. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods. Journal of Geophysical Research: Oceans, 110(C2): C02017 [DOI: 10.1029/2004JC002573http://dx.doi.org/10.1029/2004JC002573]
Lee Z P, Du K P and Arnone R. 2005b. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2): C02016 [DOI: 10.1029/2004JC002275http://dx.doi.org/10.1029/2004JC002275]
Lee Z P, Hu C M, Shang S L, Du K P, Lewis M, Arnone R and Brewin R. 2013. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing. Journal of Geophysical Research: Oceans, 118(9): 4241-4255 [DOI: 10.1002/jgrc.20308http://dx.doi.org/10.1002/jgrc.20308]
Lee Z P, Shang S L, Du K P, Wei J W and Arnone R. 2014. Usable solar radiation and its attenuation in the upper water column. Journal of Geophysical Research: Oceans, 119(2): 1488-1497 [DOI: 10.1002/2013JC009507http://dx.doi.org/10.1002/2013JC009507]
Lefèvre N, Aiken J, Rutllant J, Daneri G, Lavender S and Smyth T. 2002. Observations of pCO2 in the coastal upwelling off Chile: spatial and temporal extrapolation using satellite data. Journal of Geophysical Research: Oceans, 107(C6): 3055 [DOI: 10.1029/2000JC000395http://dx.doi.org/10.1029/2000JC000395]
Lei S H, Xu J, Li Y M, Du C G, Liu G, Zheng Z B, Xu Y F, Lyu H, Mu M, Miao S, Zeng S, Xu J F and Li L L. 2020. An approach for retrieval of horizontal and vertical distribution of total suspended matter concentration from GOCI data over Lake Hongze. Science of the Total Environment, 700: 134524 [DOI: 10.1016/ j.scitotenv.2019.134524http://dx.doi.org/10.1016/j.scitotenv.2019.134524]
Lewis W M. 2011. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters, 1(1): 1-28 [DOI: 10.5268/IW-1.1.384http://dx.doi.org/10.5268/IW-1.1.384]
Li J W, Yu Q, Tian Y Q and Becker B L. 2017a. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters. ISPRS Journal of Photogrammetry and Remote Sensing, 128: 98-110 [DOI: 10.1016/j.isprsjprs.2017.03.015http://dx.doi.org/10.1016/j.isprsjprs.2017.03.015]
Li M X, Peng C H, Wang M, Xue W, Zhang K R, Wang K F, Shi G H and Zhu Q A. 2017b. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecological Indicators, 80: 40-51 [DOI: 10.1016/j.ecolind.2017.04.049http://dx.doi.org/10.1016/j.ecolind.2017.04.049]
Lin J, Lyu H, Miao S, Pan Y, Wu Z M, Li Y M and Wang Q. 2018. A two-step approach to mapping particulate organic carbon (POC) in inland water using OLCI images. Ecological Indicators, 90: 502-512 [DOI: 10.1016/j.ecolind.2018.03.044http://dx.doi.org/10.1016/j.ecolind.2018.03.044]
Liu B J, Wan W, Xie H J, Li H, Zhu S Y, Zhang G Q, Wen L J and Hong Y. 2019. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981-2015. Scientific Data, 6: 48 [DOI: 10.1038/s41597-019-0040-7http://dx.doi.org/10.1038/s41597-019-0040-7]
Lohrenz S E and Cai W J. 2006. Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin. Geophysical Research Letters, 33(1): L01601 [DOI: 10.1029/2005GL023942http://dx.doi.org/10.1029/2005GL023942]
Lohrenz S E, Cai W J, Chakraborty S, Huang W J, Guo X, He R, Xue Z, Fennel K, Howden S and Tian H. 2018. Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico. Remote Sensing of Environment, 207: 71-83 [DOI: 10.1016/j.rse.2017.12.039http://dx.doi.org/10.1016/j.rse.2017.12.039]
Lund-Hansen L C, Pejrup M and Floderus S. 2004. Pelagic and seabed fluxes of particulate matter and carbon, and C:N ratios resolved by sediment traps during a spring bloom, southwest Kattegat. Journal of Sea Research, 52(2): 87-98 [DOI: 10.1016/j.seares.2003.11.003http://dx.doi.org/10.1016/j.seares.2003.11.003]
Luo J H, Li X C, Ma R H, Li F, Duan H T, Hu W P, Qin B Q and Huang W J. 2016. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecological Indicators, 60: 503-513 [DOI: 10.1016/j.ecolind.2015.07.029http://dx.doi.org/10.1016/j.ecolind.2015.07.029]
Luo J H, Ma R H, Duan H T, Hu W P, Zhu J G, Huang W J and Lin C. 2014. A new method for modifying thresholds in the classification of tree models for mapping aquatic vegetation in Taihu Lake with satellite images. Remote Sensing, 6(8): 7442-7462 [DOI: 10.3390/rs6087442http://dx.doi.org/10.3390/rs6087442]
Luo S X, Song C Q, Liu K, Ke L H and Ma R H. 2019. An effective low-cost remote sensing approach to reconstruct the long-term and dense time series of area and storage variations for large lakes. Sensors, 19(19): 4247 [DOI: 10.3390/s19194247http://dx.doi.org/10.3390/s19194247]
Lyu H, Wang Y N, Jin Q, Shi L, Li Y M and Wang Q. 2017. Developing a semi-analytical algorithm to estimate particulate organic carbon (POC) levels in inland eutrophic turbid water based on MERIS images: a case study of Lake Taihu. International Journal of Applied Earth Observation and Geoinformation, 62: 69-77 [DOI: 10.1016/j.jag.2017.06.001http://dx.doi.org/10.1016/j.jag.2017.06.001]
Lyu H, Yang Z Q, Shi L, Li Y Y, Guo H L, Zhong S K, Miao S, Bi S and Li Y M. 2020. A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI Images. IEEE Transactions on Geoscience and Remote Sensing, 58(9): 6512-6523 [DOI: 10.1109/TGRS.2020.2977080http://dx.doi.org/10.1109/TGRS.2020.2977080]
Machiwa J F. 2010. Stable carbon and nitrogen isotopic signatures of organic matter sources in near-shore areas of Lake Victoria, East Africa. Journal of Great Lakes Research, 36(1): 1-8 [DOI: 10.1016/j.jglr.2009.11.005http://dx.doi.org/10.1016/j.jglr.2009.11.005]
Mahdianpari M, Salehi B, Mohammadimanesh F, Homayouni S and Gill E. 2019. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sensing, 11(1): 43 [DOI: 10.3390/rs11010043http://dx.doi.org/10.3390/rs11010043]
Marsay C M, Sanders R J, Henson S A, Pabortsava K, Achterberg E P and Lampitt R S. 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proceedings of the National Academy of Sciences of the United States of America, 112(4): 1089-1094 [DOI: 10.1073/pnas.1415311112http://dx.doi.org/10.1073/pnas.1415311112]
Mason D C, Schumann G J P, Neal J C, Garcia-Pintado J and Bates P D. 2012. Automatic near real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: a case study. Remote Sensing of Environment, 124: 705-716
Meisel S and Struck U. 2011. The potential distortion of sedimentary δ15N and Corg/N ratios by NH4+ and the effects of pre-analysis sample treatment. Fossil Record, 14: 141-152 [DOI: 10.1002/mmng.201100004http://dx.doi.org/10.1002/mmng.201100004]
Meng L Z, Zhao Z L, Lu L F, Zhou J, Luo D, Fan R, Li S D, Jiang Q L, Huang T, Yang H and Huang C C. 2021. Source identification of particulate organic carbon using stable isotopes and n-alkanes: modeling and application. Water Research, 197: 117083 [DOI: 10.1016/j.watres.2021.117083http://dx.doi.org/10.1016/j.watres.2021.117083]
Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289 [DOI: 10.1016/S0146-6380(02)00168-7http://dx.doi.org/10.1016/S0146-6380(02)00168-7]
Mu X H, Yan G J, Zhou H M, Pang Y, Qiu F, Zhang Q, Zhang Y G, Xie D H, Zhou Y J, Zhao T J, Zhong B, Song J L, Sun R, Jiang L M, Yin S Y, Li F, Jiao Z T, Qu Y H, Zhang W M, Cheng S and Cui T X. 2021. Comprehensive remote sensing experiment of carboncycle, water cycle and energy balance in Luan River Basin. National Remote Sensing Bulletin, 25(4): 888-903
穆西晗, 阎广建, 周红敏, 庞勇, 邱凤, 张乾, 张永光, 谢东辉, 周盈吉, 赵天杰, 仲波, 宋金玲, 孙睿, 蒋玲梅, 尹思阳, 李凡, 焦子锑, 屈永华, 张吴明, 程顺, 崔同祥. 2021. 小滦河流域复杂地表碳循环遥感综合试验. 遥感学报, 25(4): 888-903 [DOI: 10.11834/jrs.20210305http://dx.doi.org/10.11834/jrs.20210305]
Müller A and Mathesius U. 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology, 145(1/3): 1-16 [DOI: 10.1016/S0031-0182(98)00094-7http://dx.doi.org/10.1016/S0031-0182(98)00094-7]
Mzobe P, Yan Y, Berggren M, Pilesjö P, Olefeldt D, Lundin E, Roulet N T and Persson A. 2020. Morphometric control on dissolved organic carbon in subarctic streams. Journal of Geophysical Research: Biogeosciences, 125(9):
e2019JG005348 [DOI: 10.1029/2019JG005348http://dx.doi.org/10.1029/2019JG005348]
Ono T, Saino T, Kurita N and Sasaki K. 2004. Basin-scale extrapolation of shipboard pCO2 data by using satellite SST and Chla. International Journal of Remote Sensing, 25(19): 3803-3815 [DOI: 10.1080/01431160310001657515http://dx.doi.org/10.1080/01431160310001657515]
Oppelt N M, Schulze F, Doernhoefer K, Eisenhardt I and Bartsch I. 2012. Hyperspectral classification approaches for intertidal macroalgae habitat mapping: a case study in Heligoland. Optical Engineering, 51(11): 111703 [DOI: 10.1117/1.OE.51.11.111703http://dx.doi.org/10.1117/1.OE.51.11.111703]
Ortiz J E, Borrego Á G, Gallego J L R, Sánchez-Palencia Y, Urbanczyk J, Torres T, Domingo L and Estébanez B. 2016. Biomarkers and inorganic proxies in the paleoenvironmental reconstruction of mires: the importance of landscape in Las Conchas (Asturias, Northern Spain). Organic Geochemistry, 95: 41-54 [DOI: 10.1016/j.orggeochem.2016.02.009http://dx.doi.org/10.1016/j.orggeochem.2016.02.009]
Parente L, Taquary E, Silva A P, Souza C and Ferreira L. 2019. Next generation mapping: combining deep learning, cloud computing, and big remote sensing data. Remote Sensing, 11(23): 2881 [DOI: 10.3390/rs11232881http://dx.doi.org/10.3390/rs11232881]
Paul B, Bhattacharya S S and Gogoi N. 2021. Primacy of ecological engineering tools for combating eutrophication: an ecohydrological assessment pathway. Science of the Total Environment, 762: 143171 [DOI: 10.1016/j.scitotenv.2020.143171http://dx.doi.org/10.1016/j.scitotenv.2020.143171]
Pekel J F, Cottam A, Gorelick N and Belward A S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633): 418-422 [DOI: 10.1038/nature20584http://dx.doi.org/10.1038/nature20584]
Politi E, Cutler M E J and Rowan J S. 2012. Using the NOAA advanced very high resolution radiometer to characterise temporal and spatial trends in water temperature of large European lakes. Remote Sensing of Environment, 126: 1-11 [DOI: 10.1016/j.rse.2012.08.004http://dx.doi.org/10.1016/j.rse.2012.08.004]
Qi T C, Xiao Q T, Cao Z G, Shen M, Ma J G, Liu D and Duan H T. 2020. Satellite estimation of dissolved carbon dioxide concentrations in China’s Lake Taihu. Environmental Science and Technology, 54(21): 13709-13718 [DOI: 10.1021/acs.est.0c04044http://dx.doi.org/10.1021/acs.est.0c04044]
Quinton J N, Govers G, Van Oost K and Bardgett R D. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5): 311-314 [DOI: 10.1038/ngeo838http://dx.doi.org/10.1038/ngeo838]
Rangama Y, Boutin J, Etcheto J, Merlivat L, Takahashi T, Delille B, Frankignoulle M and Bakker D C E. 2005. Variability of the net air-sea CO2 flux inferred from shipboard and satellite measurements in the Southern Ocean south of Tasmania and New Zealand. Journal of Geophysical Research: Oceans, 110(C9): C09005 [DOI: 10.1029/2004JC002619http://dx.doi.org/10.1029/2004JC002619]
Rao Z G, Jia G D, Qiang M R and Zhao Y. 2014. Assessment of the difference between mid- and long chain compound specific δDn-alkanes values in lacustrine sediments as a paleoclimatic indicator. Organic Geochemistry, 76: 104-117 [DOI: 10.1016/j.orggeochem.2014.07.015http://dx.doi.org/10.1016/j.orggeochem.2014.07.015]
Raymond P A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P and Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature, 503(7476): 355-359 [DOI: 10.1038/nature12760http://dx.doi.org/10.1038/nature12760]
Raymond P A, Oh N H, Turner R E and Broussard W. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature, 451(7177): 449-452 [DOI: 10.1038/nature06505http://dx.doi.org/10.1038/nature06505]
Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P and Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8): 597-607 [DOI: 10.1038/ngeo1830http://dx.doi.org/10.1038/ngeo1830]
Roessler S, Wolf P, Schneider T and Melzer A. 2013. Multispectral remote sensing of invasive aquatic plants using RapidEye//Earth Observation of Global Changes (EOGC). Berlin, Heidelberg: Springer: 109-123 [DOI: 10.1007/978-3-642-32714-8_7http://dx.doi.org/10.1007/978-3-642-32714-8_7]
Sarma V V S S, Saino T, Sasaoka K, Nojiri Y, Ono T, Ishii M, Inoue H Y and Matsumoto K. 2006. Basin-scale pCO2 distribution using satellite sea surface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer. Global Biogeochemical Cycles, 20(3):
GB3005 [DOI: 10.1029/2005GB002594http://dx.doi.org/10.1029/2005GB002594]
Schindler D W, Hecky R E, Findlay D L, Stainton M P, Parker B R, Paterson M J, Beaty K G, Lyng M and Kasian S E M. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32): 11254-11258 [DOI: 10.1073/pnas.0805108105http://dx.doi.org/10.1073/pnas.0805108105]
Schlesinger W H and Melack J M. 1981. Transport of organic carbon in the world’s rivers. Tellus, 33(2): 172-187 [DOI: 10.1111/j.2153.1981.tb01742.xhttp://dx.doi.org/10.1111/j.2153.1981.tb01742.x]
Schneider P and Hook S J. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters, 37(22): L22405 [DOI: 10.1029/2010GL045059http://dx.doi.org/10.1029/2010GL045059]
Seekell D A, Lapierre J F and Cheruvelil K S. 2018. A geography of lake carbon cycling. Limnology and Oceanography Letters, 3(3): 49-56 [DOI: 10.1002/lol2.10078http://dx.doi.org/10.1002/lol2.10078]
Shen Y Y. 2018. Study of the Soil and POC Flux of Yangtze River to Ocean based on the SWAT Model. Nanjing: Nanjing Normal University
沈胤胤. 2018. 基于SWAT模型的长江流域泥沙与POC入海通量研究. 南京: 南京师范大学
Shi K, Zhang Y L, Liu X H, Wang M Z and Qin B Q. 2014. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sensing of Environment, 140: 365-377 [DOI: 10.1016/j.rse.2013.09.013http://dx.doi.org/10.1016/j.rse.2013.09.013]
Simon R N, Tormos T and Danis P A. 2014. Retrieving water surface temperature from archive LANDSAT thermal infrared data: application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs. International Journal of Applied Earth Observation and Geoinformation, 30: 247-250 [DOI: 10.1016/j.jag.2014.01.005http://dx.doi.org/10.1016/j.jag.2014.01.005]
Sojinu O S S, Wang J Z, Sonibare O O and Zeng E Y. 2010. Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. Journal of Hazardous Materials, 174(1/3): 641-647 [DOI: 10.1016/j.jhazmat.2009.09.099http://dx.doi.org/10.1016/j.jhazmat.2009.09.099]
Song C Q, Huang B and Ke L H. 2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 135: 25-35 [DOI: 10.1016/j.rse.2013.03.013http://dx.doi.org/10.1016/j.rse.2013.03.013]
Song K S, Ma J H, Wen Z D, Fang C, Shang Y X, Zhao Y, Wang M and Du J. 2017a. Remote estimation of Kd (PAR) using MODIS and Landsat imagery for turbid inland waters in Northeast China. ISPRS Journal of Photogrammetry and Remote Sensing, 123: 159-172 [DOI: 10.1016/j.isprsjprs.2016.11.010http://dx.doi.org/10.1016/j.isprsjprs.2016.11.010]
Song K S, Zhao Y, Wen Z D, Fang C and Shang Y X. 2017b. A systematic examination of the relationships between CDOM and DOC in inland waters in China. Hydrology and Earth System Sciences, 21(10): 5127-5141 [DOI: 10.5194/hess-21-5127-2017http://dx.doi.org/10.5194/hess-21-5127-2017]
Soomets T, Uudeberg K, Kangro K, Jakovels D, Brauns A, Toming K, Zagars M and Kutser T. 2020. Spatio-Temporal variability of phytoplankton primary production in Baltic Lakes using Sentinel-3 OLCI Data. Remote Sensing, 12(15): 2415 [DOI: 10.3390/rs12152415http://dx.doi.org/10.3390/rs12152415]
Spruce J P, Sader S, Ryan R E, Smoot J, Kuper P, Ross K, Prados D, Russell J, Gasser G, McKellip R and Hargrove W. 2011. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sensing of Environment, 115(2): 427-437 [DOI: 10.1016/j.rse.2010.09.013http://dx.doi.org/10.1016/j.rse.2010.09.013]
Stephens M P, Samuels G, Olson D B, Fine R A and Takahashi T. 1995. Sea-air flux of CO2 in the North Pacific using shipboard and satellite data. Journal of Geophysical Research: Oceans, 100(C7): 13571-13583 [DOI: 10.1029/95JC00901http://dx.doi.org/10.1029/95JC00901]
Stramska M and Cieszyńska A. 2015. Ocean colour estimates of particulate organic carbon reservoirs in the global ocean - revisited. International Journal of Remote Sensing, 36(14): 3675-3700 [DOI: 10.1080/01431161.2015.1049380http://dx.doi.org/10.1080/01431161.2015.1049380]
Stubbins A, Spencer R G M, Mann P J, Holmes R M, McClelland J W, Niggemann J and Dittmar T. 2015. Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. Frontiers in Earth Science, 3: 63 [DOI: 10.3389/feart.2015.00063http://dx.doi.org/10.3389/feart.2015.00063]
Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S and Brisco B. 2020. Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 152-170 [DOI: 10.1016/j.isprsjprs.2020.04.001http://dx.doi.org/10.1016/j.isprsjprs.2020.04.001]
Telszewski M, Chazottes A, Schuster U, Watson A J, Moulin C, Bakker D C E, González-Dávila M, Johannessen T, Körtzinger A, Lüger H, Olsen A, Omar A, Padin X A, Ríos A F, Steinhoff T, Santana-Casiano M, Wallace D W R and Wanninkhof R. 2009. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences, 6(8): 1405-1421 [DOI: 10.5194/bg-6-1405-2009http://dx.doi.org/10.5194/bg-6-1405-2009]
Teluguntla P, Thenkabail P S, Xiong J, Gumma M K, Congalton R G, Oliphant A, Poehnelt J, Yadav K, Rao M and Massey R. 2017. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data. International Journal of Digital Earth, 10(9): 944-977 [DOI: 10.1080/17538947.2016.1267269http://dx.doi.org/10.1080/17538947.2016.1267269]
Tranvik L J. 2018. New light on black carbon. Nature Geoscience, 11(8): 547-548 [DOI: 10.1038/s41561-018-0181-xhttp://dx.doi.org/10.1038/s41561-018-0181-x]
Tranvik L J, Downing J A, Cotner J B, Loiselle S A, Striegl R G, Ballatore T J, Dillon P, Finlay K, Fortino K, Knoll L B, Kortelainen P L, Kutser T, Larsen S, Laurion I, Leech D M, McCallister S L, McKnight D M, Melack J M, Overholt E, Porter J A, Prairie Y, Renwick W H, Roland F, Sherman B S, Schindler D W, Sobek S, Tremblay A, Vanni M J, Verschoor A M, von Wachenfeldt E and Weyhenmeyer G A. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2): 2298-2314 [DOI: 10.4319/lo.2009.54.6_part_2.2298http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2298]
Verma M, Friedl M A, Richardson A D, Kiely G, Cescatti A, Law B E, Wohlfahrt G, Gielen B, Roupsard O, Moors E J, Toscano P, Vaccari F P, Gianelle D, Bohrer G, Varlagin A, Buchmann N, van Gorsel E, Montagnani L and Propastin P. 2014. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences, 11(8): 2185-2200 [DOI: 10.5194/bg-11-2185-2014http://dx.doi.org/10.5194/bg-11-2185-2014]
Verpoorter C, Kutser T, Seekell D A and Tranvik L J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18): 6396-6402 [DOI: 10.1002/2014GL060641http://dx.doi.org/10.1002/2014GL060641]
Villa P, Laini A, Bresciani M and Bolpagni R. 2013. A remote sensing approach to monitor the conservation status of lacustrine Phragmites australis beds. Wetlands Ecology and Management, 21(6): 399-416 [DOI: 10.1007/s11273-013-9311-9http://dx.doi.org/10.1007/s11273-013-9311-9]
Wan W, Zhao L, Xie H, Liu B, Li H, Cui Y, Ma Y and Hong Y. 2018. Lake surface water temperature change over the Tibetan Plateau from 2001 to 2015: a sensitive indicator of the warming climate. Geophysical Research Letters, 45(20): 11177-11186 [DOI: 10.1029/2018GL078601http://dx.doi.org/10.1029/2018GL078601]
Wang J D, Song C Q, Reager J T, Yao F F, Famiglietti J S, Sheng Y W, Macdonald G M, Brun F, Schmied H M, Marston R A and Wada Y. 2018a. Recent global decline in endorheic basin water storages. Nature Geoscience, 11(12): 926-932 [DOI: 10.1038/s41561-018-0265-7http://dx.doi.org/10.1038/s41561-018-0265-7]
Wang L, Diao C Y, Xian G, Yin D M, Lu Y, Zou S Y and Erickson T A. 2020a. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sensing of Environment, 248: 112002 [DOI: 10.1016/j.rse.2020.112002http://dx.doi.org/10.1016/j.rse.2020.112002]
Wang S L, Li J S, Zhang B, Spyrakos E, Tyler A N, Shen Q, Zhang F F, Kuster T, Lehmann M K, Wu Y H and Peng D L. 2018b. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 217: 444-460 [DOI: 10.1016/j.rse.2018.08.026http://dx.doi.org/10.1016/j.rse.2018.08.026]
Wang Y D, Li Z W, Zeng C, Xia G S and Shen H F. 2020b. An urban water extraction method combining deep learning and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 769-782 [DOI: 10.1109/JSTARS.2020.2971783http://dx.doi.org/10.1109/JSTARS.2020.2971783]
Wilkinson G M, Pace M L and Cole J J. 2013. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical Cycles, 27(1): 43-51 [DOI: 10.1029/2012GB004453http://dx.doi.org/10.1029/2012GB004453]
Williamson C E, Brentrup J A, Zhang J, Renwick W H, Hargreaves B R, Knoll L B, Overholt E P and Rose K C. 2014. Lakes as sensors in the landscape: optical metrics as scalable sentinel responses to climate change. Limnology and Oceanography, 59(3): 840-850 [DOI: 10.4319/lo.2014.59.3.0840http://dx.doi.org/10.4319/lo.2014.59.3.0840]
Wu M, Huang J, Gong L J and Jiang T. 2021. Analysis of DOC concentration variation and driving forces in the Arctic River Lena based on long-term Landsat time series. National Remote Sensing Bulletin, 25(3): 830-845
吴铭, 黄珏, 宫丽娇, 江涛. 2021. 长时序Landsat的北极Lena河DOC浓度变化及驱动力分析. 遥感学报, 25(3): 830-845 [DOI: 10.11834/jrs.20210279http://dx.doi.org/10.11834/jrs.20210279]
Wu Q C, Chen F, Wang C L, Li B, Wu W, Liu S C and Xu F. 2016. Estimation of carbon emissions from biomass burning based on parameters retrieved. Journal of Remote Sensing, 20(1): 11-26
吴沁淳, 陈方, 王长林, 李斌, 吴薇, 刘三超, 徐丰. 2016. 自然火灾碳排放估算模型参数的遥感反演进展. 遥感学报, 20(1): 11-26 [DOI: 10.11834/jrs.20154291http://dx.doi.org/10.11834/jrs.20154291]
Xu J, Lei S H, Bi S, Li Y M, Lyu H, Xu J F, Xu X G, Mu M, Miao S, Zeng S and Zheng Z B. 2020. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing. Water Research, 168: 115162 [DOI: 10.1016/j.watres.2019.115162http://dx.doi.org/10.1016/j.watres.2019.115162]
Xu J, Li Y M, Lyu H, Lei S H, Mu M, Bi S, Xu J F, Xu X G, Miao S, Li L L and Yan X C. 2021. Simultaneous inversion of concentrations of POC and its endmembers in lakes: a novel remote sensing strategy. Science of the Total Environment, 770: 145249 [DOI: 10.1016/j.scitotenv.2021.145249http://dx.doi.org/10.1016/j.scitotenv.2021.145249]
Yang X C, Zhao S S, Qin X B, Zhao N and Liang L G. 2017. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sensing, 9(6): 596 [DOI: 10.3390/rs9060596http://dx.doi.org/10.3390/rs9060596]
Yao F F, Wang J D, Wang C and Crétaux J F. 2019. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment, 232: 111210 [DOI: 10.1016/j.rse.2019.111210http://dx.doi.org/10.1016/j.rse.2019.111210]
Yin D M, Wang L, Zhu Z D, Clark S S, Cao Y, Besek J and Dai N. 2021. Water quality related to Conservation Reserve Program (CRP) and cropland areas: evidence from multi-temporal remote sensing. International Journal of Applied Earth Observation and Geoinformation, 96: 102272 [DOI: 10.1016/j.jag.2020.102272http://dx.doi.org/10.1016/j.jag.2020.102272]
Yu F L, Zong Y Q, Lloyd J M, Huang G Q, Leng M J, Kendrick C, Lamb A L and Yim W W S. 2010. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuarine, Coastal and Shelf Science, 87(4): 618-630 [DOI: 10.1016/j.ecss.2010.02.018http://dx.doi.org/10.1016/j.ecss.2010.02.018]
Yu Z Y, Yang K, Luo Y, Shang C X and Zhu Y. 2020. Lake surface water temperature prediction and changing characteristics analysis - A case study of 11 natural lakes in Yunnan-Guizhou Plateau. Journal of Cleaner Production, 276: 122689 [DOI: 10.1016/j.jclepro.2020.122689http://dx.doi.org/10.1016/j.jclepro.2020.122689]
Yvon-Durocher G, Allen A P, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N and del Giorgio P A. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493): 488-491 [DOI: 10.1038/nature13164http://dx.doi.org/10.1038/nature13164]
Yvon-Durocher G, Montoya J M, Trimmer M and Woodward G. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17(4): 1681-1694 [DOI: 10.1111/j.1365-2486.2010.02321.xhttp://dx.doi.org/10.1111/j.1365-2486.2010.02321.x]
Zhang J, Lv H, Pan H Z, Feng C, Zhao L N and Li Y M. 2015. Quantitative estimation of particulate organic carbon and diurnal variation in Inland Eutrophic Lake. Geomatics and Information Science of Wuhan University, 40(12): 1618-1624
张杰, 吕恒, 潘洪洲, 冯驰, 赵丽娜, 李云梅. 2015. 内陆湖泊颗粒有机碳反演及日变化初步研究. 武汉大学学报(信息科学版), 40(12): 1618-1624 [DOI: 10.13203/j.whugis20130725http://dx.doi.org/10.13203/j.whugis20130725]
Zhao Z L, Huang C C, Meng L Z, Lu L F, Wu Y F, Fan R, Li S D, Sui Z W, Huang T, Huang C L, Yang H and Zhang L M. 2021. Eutrophication and lakes dynamic conditions control the endogenous and terrestrial POC observed by remote sensing: modeling and application. Ecological Indicators, 129: 107907 [DOI: 10.1016/j.ecolind.2021.107907http://dx.doi.org/10.1016/j.ecolind.2021.107907]
Zhou T, Shi P J, Luo J Y and Shao Z Y. 2007. Estimation of soil organic carbon based on remote sensing and process model. National Remote Sensing Bulletin, 11(1): 127-136
周涛, 史培军, 罗巾英, 邵振艳. 2007. 基于遥感与碳循环过程模型估算土壤有机碳储量. 遥感学报, 11(1): 127-136 [DOI: 10.11834/jrs.20070117http://dx.doi.org/10.11834/jrs.20070117]
Zhou Y, Dong J W, Xiao X M, Liu R G, Zou Z H, Zhao G S and Ge Q S. 2019. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Science of the Total Environment, 689: 366-380 [DOI: 10.1016/j.scitotenv.2019.06.341http://dx.doi.org/10.1016/j.scitotenv.2019.06.341]
Zhu A X, Lv G N, Zhou C H and Qin C Z. 2020. Geographic similarity: third law of geography?. Journal of Geo-information Science, 22(4): 673-679
朱阿兴, 闾国年, 周成虎, 秦承志. 2020. 地理相似性: 地理学的第三定律?. 地球信息科学学报, 22(4): 673-679 [DOI: 10.12082/dqxxkx.2020.200069http://dx.doi.org/10.12082/dqxxkx.2020.200069]
Zhu Y, Shang S L, Zhai W D and Dai M H. 2009. Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer. Progress in Natural Science, 19(6): 775-779 [DOI: 10.1016/j.pnsc.2008.09.004http://dx.doi.org/10.1016/j.pnsc.2008.09.004]
相关作者
相关机构