资源一号02D高光谱影像内陆水体叶绿素a浓度反演
Inland water chlorophyll-a retrieval based on ZY-1 02D satellite hyperspectral observations
- 2022年26卷第1期 页码:168-178
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221244
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
刘瑶,李俊生,肖晨超,张方方,王胜蕾.2022.资源一号02D高光谱影像内陆水体叶绿素a浓度反演.遥感学报,26(1): 168-178
Liu Y,Li J S,Xiao C C,Zhang F F and Wang S L. 2022. Inland water chlorophyll-a retrieval based on ZY-1 02D satellite hyperspectral observations. National Remote Sensing Bulletin, 26(1):168-178
2019-09-12成功发射的资源一号02D卫星(ZY-1 02D)搭载了新一代可见短波红外高光谱相机AHSI(Advanced Hyperspectral Imager),其丰富的细分波段和较高的空间分辨率在内陆湖库水质监测方面具有较大潜力,但数据可用性有待分析和验证。本研究以中国华东和华北平原的典型富营养湖库(太湖、于桥水库)和中营养湖库(小浪底水库)为研究区,开展基于ZY-1 02D高光谱影像的叶绿素a浓度反演研究。以3个研究区在46个采样点地面测量的叶绿素a浓度和同步获取影像的遥感反射率作为数据源,基于5种典型的叶绿素a半经验模型进行了模型参数优化和叶绿素a反演精度验证。结果表明,基于中心波长为705 nm和671 nm的波段比值模型叶绿素a反演精度最高,模型
R
2
为0.78,平均无偏相对误差(AURE)和均方根误差(RMSE)分别为13.5%和4.5 mg/m
3
。研究表明,ZY-1 02D高光谱数据在内陆水体叶绿素a浓度高精度反演方面具有重要潜力,但未来需要通过多星组网提升监测能力,以及发展针对于ZY-1 02D水体图像的降噪和大气校正方法。
China’s ZY-1 02D satellite was successfully launched on September 12
2019. It carries the new-generation Advanced Hyperspectral Imager (AHSI)
which has 166 bands in the visible to short-wave infrared bands. AHSI can acquire images at 30 m spatial resolution with a 60 km swath. ZY-1 02D satellite shows great potential for inland water quality monitoring application
owing to its abundant narrow bands and relatively high spatial resolution. However
this satellite has been launched for a short period
and the applicability of this data needs to be further analyzed and tested.
Taihu Lake (eutrophic)
Yuqiao reservoir (eutrophic)
and Xiaolangdi Reservoir (mesotrophic) in China were used as study areas for the Chlorophyll-a (Chla) retrieval based on the ZY-1 02D hyperspectral images. Within one day of the ZY-1 02D satellite overpass
in situ spectra
and Chla concentrations were collected at sampling sites in these study areas. We selected five typical Chla semi-empirical models based on spectral indices
namely
Band Ratio (BR)
Normalized Difference Chlorophyll Index (NDCI)
Three-Band Index (TBI)
Enhanced Three-Band Index (ETBI)
and the Baseline Height (BH). We used in situ measured Chla concentration at 46 sampling sites in the three study areas and simultaneously acquired ZY-1 02D images to optimize the parameters in these models. We evaluated the accuracies of image-derived
R
rs
at sampling sites
and then conducted accuracy analysis for estimated Chla concentrations using optimized empirical models.
ZY-1 02D image-derived
R
rs
were consistent with in situ measured
R
rs
in the 671 and 705 nm
whereas the 731 and 748 nm band
R
rs
had greater uncertainties because they were more likely to be affected by the image noise. In addition
the accuracy analysis for the estimated Chla concentrations shows that the model based on the 705 to 671 nm band ratio achieves the highest accuracy
with an
R
2
of 0.78. In addition
the mean unbiased relative error (AURE) and Root Mean Square Error (RMSE) are 13.5% and 4.5 mg/m
3
respectively. On the contrary
models based on the ETBI and BH yield Chla concentration estimates with low accuracies.
In conclusion
ZY-1 02D hyperspectral data show good potential in terms of accurate retrieval of Chla concentration for inland waters. We plan to conduct more in situ experiment when the ZY-1 02D satellite overpasses to improve the Chla concentration retrieval model applied on the ZY-1 02D data. In the future
the monitoring capacity should be improved through establishing a hyperspectral satellite constellation
and noise reduction and atmospheric correction methods should be developed for ZY-1 02D’s inland water application.
ZY-1 02D卫星高光谱遥感内陆水体叶绿素a湖泊遥感
ZY-1 02D satellitehyperspectral remote sensinginland waterChlorophyll-a retrievallake remote sensing
Chen Y W, Chen K N and Hu Y H. 2006. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. Journal of Lake Sciences, 18(5): 550-552
陈宇炜, 陈开宁, 胡耀辉. 2006. 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨. 湖泊科学, 18(5): 550-552 [DOI: 10.18307/2006.0519http://dx.doi.org/10.18307/2006.0519]
Cui T W, Zhang J, Wang K, Wei J W, Mu B, Ma Y, Zhu J H, Liu R J and Chen X Y. 2020. Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system. ISPRS Journal of Photogrammetry and Remote Sensing, 163: 187-201 [DOI: 10.1016/j.isprsjprs.2020.02.017http://dx.doi.org/10.1016/j.isprsjprs.2020.02.017]
Doerffer R and Schiller H. 2007. The MERIS case 2 water algorithm. International Journal of Remote Sensing, 28(3/4): 517-535 [DOI: 10.1080/01431160600821127http://dx.doi.org/10.1080/01431160600821127]
Feng L, Hu C M, Han X X, Chen X L and Qi L. 2015. Long-term distribution patterns of chlorophyll-a concentration in China’s largest freshwater lake: MERIS full-resolution observations with a practical approach. Remote Sensing, 7(1): 275-299 [DOI: 10.3390/rs70100275http://dx.doi.org/10.3390/rs70100275]
Gholizadeh M H, Melesse A M and Reddi L. 2016. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors, 16(8): 1298 [DOI: 10.3390/s16081298http://dx.doi.org/10.3390/s16081298]
Giardino C, Brando V E, Dekker A G, Strömbeck N and Candiani G. 2007. Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sensing of Environment, 109(2): 183-195 [DOI: 10.1016/j.rse.2006.12.017http://dx.doi.org/10.1016/j.rse.2006.12.017]
Gitelson A A, Dall’Olmo G, Moses W, Rundquist D C, Barrow T, Fisher T R, Gurlin D and Holz J. 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment, 112(9): 3582-3593 [DOI: 10.1016/j.rse.2008.04.015http://dx.doi.org/10.1016/j.rse.2008.04.015]
Gitelson A A, Schalles J F and Hladik C M. 2007. Remote chlorophyll a retrieval in turbid, productive estuaries: chesapeake Bay case study. Remote Sensing of Environment, 109(4): 464-472 [DOI: 10.1016/j.rse.2007.01.016http://dx.doi.org/10.1016/j.rse.2007.01.016]
Gordon H R and Morel A Y. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. New York: Springer [DOI: 10.1007/978-1-4684-6280-7http://dx.doi.org/10.1007/978-1-4684-6280-7]
Hu C M, Feng L, Lee Z, Franz B A, Bailey S W, Werdell P J and Proctor C W. 2019. Improving satellite global chlorophyll a data products through algorithm refinement and data recovery. Journal of Geophysical Research: Oceans, 124(3): 1524-1543 [DOI: 10.1029/2019JC014941http://dx.doi.org/10.1029/2019JC014941]
Hu C M, Lee Z and Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1): C01011 [DOI: 10.1029/2011JC007395http://dx.doi.org/10.1029/2011JC007395]
Hu C M, Lee Z, Ma R H, Yu K, Li D Q and Shang S L. 2010. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research: Oceans, 115(C4): C04002 [DOI: 10.1029/2009JC005511http://dx.doi.org/10.1029/2009JC005511]
Huang X Y, Yao P, Song G D, Wang C Y, Wu D, Yang J B, Chen L and Liu S M. 2020. Controls on spatial-temporal variation of hydrological features in the Xiaolangdi reservoir. Periodical of Ocean University of China, 50(4): 111-120
黄新莹, 姚鹏, 宋国栋, 王春禹, 吴丹, 杨建斌, 陈霖, 刘素美. 2020. 小浪底水库关键水体环境要素的时空变化特征及其影响因素. 中国海洋大学学报, 50(4): 111-120 [DOI: 10.16441/j.cnki.hdxb.20190054http://dx.doi.org/10.16441/j.cnki.hdxb.20190054]
Ju H Y and Li L. 2017. Analysis and evaluation on nutrient status of Xiaolangdi Reservoir in the Yellow River. Environment and Development, 29(5): 170-171
琚会艳, 李琳. 2017. 黄河小浪底水库营养化状况分析评价. 环境与发展, 29(5): 170-171 [DOI: 10.16647/j.cnki.cn15-1369/X.2017.05.109http://dx.doi.org/10.16647/j.cnki.cn15-1369/X.2017.05.109]
Kravitz J, Matthews M, Bernard S and Griffith D. 2020. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sensing of Environment, 237: 111562 [DOI: 10.1016/j.rse.2019.111562http://dx.doi.org/10.1016/j.rse.2019.111562]
Le C F, Hu C M, Cannizzaro J, English D, Muller-Karger F and Lee Z. 2013. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary. Remote Sensing of Environment, 129: 75-89 [DOI: 10.1016/j.rse.2012.11.001http://dx.doi.org/10.1016/j.rse.2012.11.001]
Li J S, Gao M, Feng L, Zhao H L, Shen Q, Zhang F F, Wang S L and Zhang B. 2019. Estimation of chlorophyll-a concentrations in a highly turbid eutrophic lake using a classification-based MODIS land-band algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10): 3769-3783 [DOI: 10.1109/JSTARS.2019.2936403http://dx.doi.org/10.1109/JSTARS.2019.2936403]
Liu G, Li L, Song K S, Li Y M, Lyu H, Wen Z D, Fang C, Bi S, Sun X P, Wang Z M, Cao Z G, Shang Y X, Yu G L, Zheng Z B, Huang C C, Xu Y F and Shi K. 2020a. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sensing of Environment, 239: 111648 [DOI: 10.1016/j.rse.2020.111648http://dx.doi.org/10.1016/j.rse.2020.111648]
Liu L L, Dong Y C, Kong M, Zhou J, Zhao H B, Wang Y P, Zhang M and Wang Z P. 2020b. Towards the comprehensive water quality control in Lake Taihu: correlating chlorphyll a and water quality parameters with generalized additive model. Science of the Total Environment, 705: 135993 [DOI: 10.1016/j.scitotenv.2019.135993http://dx.doi.org/10.1016/j.scitotenv.2019.135993]
Liu Y and Xiao C C. 2020. Water extraction on the hyperspectral images of Gaofen-5 satellite using spectral indices. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020: 441-446 [DOI: 10.5194/isprs-archives-XLIII-B3-2020-441-2020http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-441-2020]
Liu Y N, Sun D X, Han B, Zhu H J, Liu S F and Yuan J. 2020a. Development of advanced visible and short-wave infrared hyperspectral imager on board ZY-1-02D satellite. Spacecraft Engineering, 29(6): 85-92
刘银年, 孙德新, 韩波, 朱海健, 刘书锋, 原娟. 2020a. 资源一号02D卫星可见短波红外高光谱相机研制. 航天器工程, 29(6): 85-92 [DOI: 10.3969/j.issn.1673-8748.2020.06.012http://dx.doi.org/10.3969/j.issn.1673-8748.2020.06.012]
Liu Y N, Sun D X, Hu X N, Ye X, Li Y D, Liu S F, Cao K Q, Chai M Y, Zhou W Y N, Zhang J, Zhang Y, Sun W W and Jiao L L. 2019. The advanced hyperspectral imager: aboard China’s GaoFen-5 satellite. IEEE Geoscience and Remote Sensing Magazine, 7(4): 23-32 [DOI: 10.1109/MGRS.2019.2927687http://dx.doi.org/10.1109/MGRS.2019.2927687]
Liu Y N, Sun D X, Liang J, Zhu H J, Liu S F and Li X. 2020b. Overview of ZY-1-02D satellite AHSI on-orbit performance and stability. Spacecraft Engineering, 29(6): 93-97
刘银年, 孙德新, 梁建, 朱海健, 刘书锋, 李勋. 2020b. 资源一号02D卫星高光谱相机在轨性能及稳定性评估. 航天器工程, 29(6): 93-97 [DOI: 10.3969/j.issn.1673-8748.2020.06.013http://dx.doi.org/10.3969/j.issn.1673-8748.2020.06.013]
Mishra S and Mishra D R. 2012. Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117: 394-406 [DOI: 10.1016/j.rse.2011.10.016http://dx.doi.org/10.1016/j.rse.2011.10.016]
Mobley C D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36): 7442-7455 [DOI: 10.1364/AO.38.007442http://dx.doi.org/10.1364/AO.38.007442]
Moses W J, Gitelson A A, Berdnikov S and Povazhnyy V. 2009. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS—the Azov sea case study. IEEE Geoscience and Remote Sensing Letters, 6(4): 845-849 [DOI: 10.1109/LGRS.2009.2026657http://dx.doi.org/10.1109/LGRS.2009.2026657]
Neil C, Spyrakos E, Hunter P D and Tyler A N. 2019. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sensing of Environment, 229: 159-178 [DOI: 10.1016/j.rse.2019.04.027http://dx.doi.org/10.1016/j.rse.2019.04.027]
O’Reilly J E and Werdell P J. 2019. Chlorophyll algorithms for ocean color sensors-OC4, OC5 and OC6. Remote Sensing of Environment, 229: 32-47 [DOI: 10.1016/j.rse.2019.04.021http://dx.doi.org/10.1016/j.rse.2019.04.021]
Pahlevan N, Smith B, Schalles J, Binding C, Cao Z G, Ma R H, Alikas K, Kangro K, Gurlin D, Hà N, Matsushita B, Moses W, Greb S, Lehmann M K, Ondrusek M, Oppelt N and Stumpf R. 2020. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: a machine-learning approach. Remote Sensing of Environment, 240: 111604 [DOI: 10.1016/j.rse.2019.111604http://dx.doi.org/10.1016/j.rse.2019.111604]
Salem S I, Strand M H, Higa H, Kim H, Kazuhiro K, Oki K and Oki T. 2017. Evaluation of MERIS chlorophyll-a retrieval processors in a complex turbid lake Kasumigaura over a 10-year mission. Remote Sensing, 9(10): 1022 [DOI: 10.3390/rs9101022http://dx.doi.org/10.3390/rs9101022]
Ministry of Ecology and Environment, the People’s Republic of China. 2020. Report on the State of the Ecology and Environment in China 2019 (生态环境部. 2020. 2019中国生态环境状况公报)
Shi K, Zhang Y L, Zhou Y Q, Liu X H, Zhu G W, Qin B Q and Gao G. 2017. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: responses to nutrient enrichment and meteorological factors. Scientific Reports, 7(1): 40326 [DOI: 10.1038/srep40326http://dx.doi.org/10.1038/srep40326]
Song T, Zhou W L, Liu J Z, Gong S Q, Shi J Z and Wu W. 2017. Evaluation on distribution of chlorophyll-a content in surface water of Taihu Lake by hyperspectral inversion models. Acta Scientiae Circumstantiae, 37(3): 888-899
宋挺, 周文鳞, 刘军志, 龚绍琦, 石浚哲, 吴蔚. 2017. 利用高光谱反演模型评估太湖水体叶绿素 a 浓度分布. 环境科学学报, 37(3): 888-899 [DOI: 10.13671/j.hjkxxb.2016.0438http://dx.doi.org/10.13671/j.hjkxxb.2016.0438]
Tang J W, Tian G L, Wang X Y, Wang X M and Song Q J. 2004. The methods of water spectra measurement and analysis Ⅰ: above-water method. Journal of Remote Sensing, 8(1): 37-44
唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 2004. 水体光谱测量与分析 Ⅰ: 水面以上测量法. 遥感学报, 8(1): 37-44
Wang S L, Li J S, Zhang B, Shen Q, Zhang F F and Lu Z Y. 2016. A simple correction method for the MODIS surface reflectance product over typical inland waters in China. International Journal of Remote Sensing, 37(24): 6076-6096 [DOI: 10.1080/01431161.2016.1256508http://dx.doi.org/10.1080/01431161.2016.1256508]
Wu L, Wang Z H, Wang L, Zhao T Q and Jin X M. 2020. Monitoring and evaluation on water quality of Xiaolangdi reservoir in Yellow River based on principal component analysis and fuzzy mathematics. Bulletin of Soil and Water Conservation, 40(5): 118-124
武俐, 王祖恒, 王亮, 赵同谦, 金新苗. 2020. 基于主成分分析和模糊数学的黄河小浪底水质监测与评价. 水土保持通报, 40(5): 118-124 [DOI: 10.13961/j.cnki.stbctb.2020.05.018http://dx.doi.org/10.13961/j.cnki.stbctb.2020.05.018]
Wynne T T, Stumpf R P and Briggs T O. 2013. Comparing MODIS and MERIS spectral shapes for cyanobacterial bloom detection. International Journal of Remote Sensing, 34(19): 6668-6678 [DOI: 10.1080/01431161.2013.804228http://dx.doi.org/10.1080/01431161.2013.804228]
Yang W, Matsushita B, Chen J, Fukushima T and Ma R H. 2010. An enhanced three-band index for estimating chlorophyll-a in turbid case-II waters: case studies of Lake Kasumigaura, Japan, and Lake Dianchi, China. IEEE Geoscience and Remote Sensing Letters, 7(4): 655-659 [DOI: 10.1109/LGRS.2010.2044364http://dx.doi.org/10.1109/LGRS.2010.2044364]
Yin Z Y, Li J S, Fan H S, Gao M and Xie Y. 2021. Preliminary study on water quality parameter inversion for the Yuqiao reservoir based on Zhuhai-1 hyperspectral satellite data. Spectroscopy and Spectral Analysis, 41(2): 494-498
殷子瑶, 李俊生, 范海生, 高敏, 谢娅. 2021. 珠海一号高光谱卫星的于桥水库水质参数反演初步研究. 光谱学与光谱分析, 41(2): 494-498) [DOI: 10.3964/j.issn.1000-0593(202102-0494-05http://dx.doi.org/10.3964/j.issn.1000-0593(2021)02-0494-05]
Yue A, Ji Y F, Liu H L and Zhang Z. 2019. Historical regional distribution specialties of algal bloom extraction from Yuqiao reservoir via Landsat 8 and its driving factors. Journal of Safety and Environment, 19(4): 1448-1455
岳昂, 戢运峰, 刘红磊, 张赞. 2019. 基于Landsat8影像的于桥水库藻华分布反演及其影响因素分析. 安全与环境学报, 19(4): 1448-1455 [DOI: 10.13637/j.issn.1009-6094.2019.04.047http://dx.doi.org/10.13637/j.issn.1009-6094.2019.04.047]
Yue A, Zeng Q W and Wang H J. 2020. Remote sensing long-term monitoring of cyanobacterial blooms in Yuqiao reservoir. Remote Sensing Technology and Application, 35(3): 694-701
岳昂, 曾庆伟, 王怀警. 2020. 于桥水库蓝藻水华遥感长时序监测研究. 遥感技术与应用, 35(3): 694-701 [DOI: 10.11873/j.issn.1004-0323.2020.3.0694http://dx.doi.org/10.11873/j.issn.1004-0323.2020.3.0694]
Zhang B, Li J S, Shen Q, Wu Y H, Zhang F F, Wang S L, Yao Y, Guo L N and Yin Z Y. 2021. Recent research progress on long time series and large scale optical remote sensing of inland water. National Remote Sensing Bulletin, 25(1): 37-52
张兵, 李俊生, 申茜, 吴艳红, 张方方, 王胜蕾, 姚月, 郭立男, 殷子瑶. 2021. 长时序大范围内陆水体光学遥感研究进展. 遥感学报, 25(1): 37-52 [DOI: 10.11834/jrs.20210570http://dx.doi.org/10.11834/jrs.20210570]
Zhang F F, Li J S, Shen Q, Zhang B, Tian L Q, Ye H P, Wang S L and Lu Z Y. 2019. A soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu Lake. International Journal of Applied Earth Observation and Geoinformation, 74: 138-149 [DOI: 10.1016/j.jag.2018.07.018http://dx.doi.org/10.1016/j.jag.2018.07.018]
相关作者
相关机构