Sentinel-3 OLCI数据的内陆湖泊有机悬浮物浓度遥感估算
Remote sensing estimation method of organic suspended matter concentration in inland lakes based on Sentinel-3 OLCI data
- 2022年26卷第1期 页码:155-167
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221266
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
仲苏珂,吕恒,杨子谦,李杨杨,许佳峰,苗松.2022.Sentinel-3 OLCI数据的内陆湖泊有机悬浮物浓度遥感估算.遥感学报,26(1): 155-167
Zhong S K,Lyu H,Yang Z Q,Li Y Y,Xu J F and Miao S. 2022. Remote sensing estimation method of organic suspended matter concentration in inland lakes based on Sentinel-3 OLCI data. National Remote Sensing Bulletin, 26(1):155-167
有机悬浮物OSM(Organic Suspended Matter)是湖泊有机碳库的重要组成成分,对研究湖泊生态环境和初级生产力具有重要意义。本研究以太湖、巢湖、滆湖、小兴凯湖、滇池、洪泽湖、呼伦湖和南漪湖8个内陆湖泊为研究区,发展了适合内陆水体的有机悬浮物浓度遥感估算方法。基于B6、B7波段的斜率和B10、B11波段的斜率,首先将水体分为两大类型,即以无机悬浮物占主导的A类水体和以有机悬浮物占主导的B类水体。在此基础上针对不同类型的水体分别建立OSM浓度的遥感估算模型,结果表明,A类水体OSM浓度估算可以利用波段比值B17/B3,B类水体OSM浓度估算可以利用波段比值B11/B10,RMSE为5.38 mg/L,MAPE为28.93%,与传统的非分类OSM估算经验方法相比,本文提出的方法,其估算的精度与分类前相比RMSE降低11.10 mg/L,MAPE降低41.66%。最后,将模型应用到2018-03-23太湖、2018-08-05太湖、2017-09-18巢湖和2017-12-21巢湖的OLCI影像上,结果表明OSM浓度空间分布特征与藻类水华和人类活动密切相关。
Organic Suspended Matter (OSM) is an important component of lake organic carbon pool
which is important to the study of lake ecological environment and primary productivity. At present
the research of OSM in water mainly focuses on its source composition
migration and transformation
and flux into the sea. Therefore
constructing a new method for estimating OSM in inland water is urgently needed. This method can obtain the spatial and temporal distribution characteristics of OSM concentration in the whole lake and even the whole region.
In this study
the combined Taihu
Chaohu
Geui
Xiaoxingkai
Dianchi
Hongze
Hulun
and Nanyi lakes are selected as the research area
and a remote sensing method for estimating the concentration of organic suspended solids in inland water is developed. According to the slope of B6 and B7 bands and the slope of B10 and B11 bands
the water body is divided into two types
namely
the Type A water dominated by inorganic suspended matter and the Type B water dominated by OSM. On this basis
remote sensing estimation models of OSM concentration for different types of water bodies are established. The remote sensing estimation model of OSM concentration for Type A water is OSM=32.75·B17/B3-1.3537
and the remote sensing estimation model of OSM concentration for Type B water is: OSM=43.098+15.751·B10/Bl1. The band ratio B17/B3 can be used to estimate the OSM concentration of Type A water
and the band ratio B11/B10 can be used to estimate the OSM concentration of Type B water. The proposed method obtained RMSE of 5.38 mg/L and MAPE of 28.93%
which were decreased by 11.10 mg/L and 41.66%
respectively
compared with those of the traditional nonclassified OSM estimation empirical method.
An empirical algorithm for retrieving OSM concentration in inland lakes is proposed on the basis of the band characteristics of Sentinel 3A-OLCI image. According to the spectral characteristics of inland water bodies
which are the slope of OLCI band B6 and B7 and the slope of band B10 and B11
the algorithm
which uses the strategy of first classification and then retrieval
can divide the water into two types: the water dominated by inorganic suspended matter and the water dominated by OSM. The OSM concentration of the water dominated by inorganic suspended matter can be estimated by using OLCI bands B3 and B17
while the OSM concentration of the water dominated by organic suspended solids can be estimated by using OLCI bands B10 and B11. Independent validation datasets show that the RMSE and MAPE estimated by this method are 5.38 mg/L and 28.93%
respectively. The estimation accuracy of this method is significantly improved compared with those of the existing retrieval algorithms for the concentration of OSM in inland water. This method has been successfully applied to obtain the temporal and spatial distribution characteristics of the OSM concentration in Taihu and Chaohu lakes in China. The method constructed in this study provides a new algorithm with higher accuracy for obtaining the OSM concentration of inland water at regional scale.
The classification method of this study and the construction of the retrieval algorithm are based on several typical lakes on the basis of field sampling. However
the robustness of the algorithm still needs further examination
especially when it is applied to water with different biological optical characteristics from sampling lake. The performance of the algorithm also should be tested using a great number of field measured datasets. In future studies
the performance of the algorithm will be further tested by collecting more lake field data.
内陆水体有机悬浮物OLCI光学分类定量估算经验模型
inland waterorganic suspended matterOLCIoptical classificationquantitative estimationempirical algorithm
Boeuf D, Edwards B R, Eppley J M, Hu S, Poff K E, Romano A E, Caron D A, Karl D M and DeLong E F. 2019. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proceedings of the National Academy of Sciences of the United States of America, 116(24): 11824-11832 [DOI: 10.1073/pnas.1903080116http://dx.doi.org/10.1073/pnas.1903080116]
Bowers D G, Harker G E L and Stephan B. 1996. Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll. International Journal of Remote Sensing, 17(12): 2449-2460 [DOI: 10.1080/01431169608948782http://dx.doi.org/10.1080/01431169608948782]
Cauwet G and Mackenzie F T. 1993. Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow rivers (China). Marine Chemistry, 43(1/4): 235-246 [DOI: 10.1016/0304-4203(93)90229-Hhttp://dx.doi.org/10.1016/0304-4203(93)90229-H]
Coble P G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4): 325-346 [DOI: 10.1016/0304-4203(95)00062-3http://dx.doi.org/10.1016/0304-4203(95)00062-3]
Coble P G, Del Castillo C E and Avril B. 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 45(11/12): 2195-2223 [DOI: 10.1016/S0967-0645(98)00068-Xhttp://dx.doi.org/10.1016/S0967-0645(98)00068-X]
Dekker A G, Vos R J and Peters S W M. 2001. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Science of the Total Environment, 268(1/3): 197-214 [DOI: 10.1016/S0048-9697(00)00679-3http://dx.doi.org/10.1016/S0048-9697(00)00679-3]
Gu Y Z, Liu Y G, Xiu P, Ma Y J and Liu Y H. 2008. HydroScat-6 spectral backscattering sensor. Meteorological, Hydrological and Marine Instruments, (2): 1-4
顾艳镇, 刘玉光, 修鹏, 马玉娟, 刘亚豪. 2008. 6通道后向散射仪. 气象水文海洋仪器, (2): 1-4 [DOI: 10.3969/j.issn.1006-009X.2008.02.001]
Hwang B G, Jun K S, Lee Y D and Lung W S. 1998. Importance of DOC in sediments for contaminant transport modelling. Water Science and Technology, 38(11): 193-199 [DOI: 10.1016/S0273-1223(98)00655-6http://dx.doi.org/10.1016/S0273-1223(98)00655-6]
Jiang G J, Ma R H, Loiselle S A, Duan H T, Su W, Cai W X, Huang C G, Yang J and Yu W. 2015. Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China). Science of the Total Environment, 532: 245-254 [DOI: 10.1016/j.scitotenv.2015.05.120http://dx.doi.org/10.1016/j.scitotenv.2015.05.120]
Jiang J W, Li S D, Shen Y Y, Wu Y L, Huang C C, Huang T and Jiang S. 2017. Spatial differences of optical properties of CDOM and their source apportionment in Taihu Lake in summer. Research of Environmental Sciences, 30(7): 1020-1030
江俊武, 李帅东, 沈胤胤, 吴亚林, 黄昌春, 黄涛, 姜晟. 2017. 夏季太湖CDOM光学特性空间差异及其来源解析. 环境科学研究, 30(7): 1020-1030 [DOI: 10.13198/j.issn.1001-6929.2017.02.32http://dx.doi.org/10.13198/j.issn.1001-6929.2017.02.32]
Le C F, Li Y M, Zha Y and Sun D Y. 2009. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia, 619(1): 27-37 [DOI: 10.1007/s10750-008-9579-6http://dx.doi.org/10.1007/s10750-008-9579-6]
Li Y, Li Y M, Shi K, Lv H, Guo Y L, Zhou L and Liu G. 2013. Evaluation of total suspended matter based on spectral classification. Spectroscopy and Spectral Analysis, 33(10): 2721-2726
李渊, 李云梅, 施坤, 吕恒, 郭宇龙, 周莉, 刘阁. 2013. 基于光谱分类的总悬浮物浓度估算. 光谱学与光谱分析, 33(10): 2721-2726) [DOI: 10.3964/j.issn.1000-0593(201310-2721-06http://dx.doi.org/10.3964/j.issn.1000-0593(2013)10-2721-06]
Lin J, Wu Y, Zhang J, Yang S L and Zhu Z Y. 2007. Seasonal variation of organic carbon fluxes in the Yangtze River and influence of Three-Gorges engineering. China Environmental Science, 27(2): 246-249
林晶, 吴莹, 张经, 杨世伦, 朱卓毅. 2007. 长江有机碳通量的季节变化及三峡工程对其影响. 中国环境科学, 27(2): 246-249 [DOI: 10.3321/j.issn:1000-6923.2007.02.022http://dx.doi.org/10.3321/j.issn:1000-6923.2007.02.022]
Liu D, Duan H T, Yu S J, Shen M and Xue K. 2019. Human-induced eutrophication dominates the bio-optical compositions of suspended particles in shallow lakes: implications for remote sensing. Science of the Total Environment, 667: 112-123 [DOI: 10.1016/j.scitotenv.2019.02.366http://dx.doi.org/10.1016/j.scitotenv.2019.02.366]
Ma R H and Dai J F. 2005. Quantitative estimation of chlorophyll-a and total suspended matter concentration with landsat ETM based on field spectral features of Lake Taihu. Journal of Lake Sciences, 17(2): 97-103
马荣华, 戴锦芳. 2005. 结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量. 湖泊科学, 17(2): 97-103 [DOI: 10.3321/j.issn:1003-5427.2005.02.001http://dx.doi.org/10.3321/j.issn:1003-5427.2005.02.001]
Miao S, Wang R, Li J C, Wu Z M, Shi L, Lyu H, Li Y M, Zhao S H and Liu S H. 2018. Retrieval algorithm of phycocyanin concentration in inland lakes from Sentinel 3A-OLCI images. Journal of Infrared and Millimeter Waves, 37(5): 621-630
苗松, 王睿, 李建超, 吴志明, 时蕾, 吕恒, 李云梅, 赵少华, 刘思含. 2018. 基于哨兵3A-OLCI影像的内陆湖泊藻蓝蛋白浓度反演算法研究. 红外与毫米波学报, 37(5): 621-630 [DOI: 10.11972/j.issn.1001-9014.2018.05.016http://dx.doi.org/10.11972/j.issn.1001-9014.2018.05.016]
Pacheco F S, Roland F and Downing J A. 2014. Eutrophication reverses whole-lake carbon budgets. Inland Waters, 4(1): 41-48
Piirsoo K, Laas A, Meinson P, Nõges P, Pall P, Viik M, Vilbaste S and Nõges T. 2018. Changes in particulate organic matter passing through a large shallow lowland lake. Proceedings of the Estonian Academy of Sciences, 67(1): 93-105 [DOI: 10.3176/PROC.2018.1.05http://dx.doi.org/10.3176/PROC.2018.1.05]
Shi K, Li Y M, Liu Z H, Xu Y F, Xu X, Ma W Q and Lu C P. 2011. Estimation of total suspended matter concentration based on semi-analysis algorithm in inland turbid waters. Environmental Science, 32(6): 1571-1580
施坤, 李云梅, 刘忠华, 徐祎凡, 徐昕, 马万泉, 陆超平. 2011. 基于半分析方法的内陆湖泊水体总悬浮物浓度遥感估算研究. 环境科学, 32(6): 1571-1580 [DOI: 10.13227/j.hjkx.2011.06.016http://dx.doi.org/10.13227/j.hjkx.2011.06.016]
Stedmon C A, Markager S and Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3/4): 239-254 [DOI: 10.1016/S0304-4203(03)00072-0http://dx.doi.org/10.1016/S0304-4203(03)00072-0]
Sun D Y, Li Y M, Le C F, Gong S Q, Wang H J, Wu L and Huang C C. 2007. Scattering characteristics of Taihu Lake and its relationship models with suspended particle concentration. Environmental Science, 28(12): 2688-2694
孙德勇, 李云梅, 乐成峰, 龚绍琦, 王海君, 伍蓝, 黄昌春. 2007. 太湖水体散射特性及其与悬浮物浓度关系模型. 环境科学, 28(12): 2688-2694 [DOI: 10.3321/j.issn:0250-3301.2007.12.004http://dx.doi.org/10.3321/j.issn:0250-3301.2007.12.004]
Sun D Y, Li Y M, Wang Q, Le C F, Huang C C, Shi K and Wang L Z. 2009. Study on remote sensing estimation of suspended matter concentrations based on in situ hyperspectral data in lake tai waters. Journal of Infrared and Millimeter Waves, 28(2): 124-128
孙德勇, 李云梅, 王桥, 乐成峰, 黄昌春, 施坤, 王利珍. 2009. 基于实测高光谱的太湖水体悬浮物浓度遥感估算研究. 红外与毫米波学报, 28(2): 124-128 [DOI: 10.3321/j.issn:1001-9014.2009.02.011http://dx.doi.org/10.3321/j.issn:1001-9014.2009.02.011]
Sun D Y, Li Y M, Wang Q, Le C F, Huang C C and Wu L. 2008. The scattering characteristics of Lake Taihu waters. Journal of Lake Sciences, 20(3): 389-395
孙德勇, 李云梅, 王桥, 乐成峰, 黄昌春, 伍蓝. 2008. 太湖水体散射特性及其空间分异. 湖泊科学, 20(3): 389-395 [DOI: 10.18307/2008.0320http://dx.doi.org/10.18307/2008.0320]
Tang J W, Tian G L, Wang X Y, Wang X M and Song Q J. 2004. The methods of water spectra measurement and analysis I: above-water method. Journal of Remote Sensing, 8(1): 37-44
唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 2004. 水体光谱测量与分析I: 水面以上测量法. 遥感学报, 8(1): 37-44 [DOI: 10.11834/jrs.20040106http://dx.doi.org/10.11834/jrs.20040106]
Uher G, Hughes C, Henry G and Upstill-Goddard R C. 2001. Non-conservative mixing behavior of colored dissolved organic matter in a humic-rich, turbid estuary. Geophysical Research Letters, 28(17): 3309-3312 [DOI: 10.1029/2000GL012509http://dx.doi.org/10.1029/2000GL012509]
Ulloa O, Sathyendranath S and Platt T. 1994. Effect of the particle-size distribution on the backscattering ratio in seawater. Applied Optics, 33(30): 7070-7077 [DOI: 10.1364/AO.33.007070http://dx.doi.org/10.1364/AO.33.007070]
Wu D, Ye F W, Qiu J T and Zhang C. 2019. Characteristics and application of Sentine-3 satellite data. Technology and Economic Guide, 27(15): 6-8, 19
武鼎, 叶发旺, 邱骏挺, 张川. 2019. 哨兵-3卫星数据特性及应用探讨. 科技经济导刊, 27(15): 6-8, 19
Wu Y, Bao H Y, Yu H, Zhang J and Kattner G. 2015. Temporal variability of particulate organic carbon in the lower Changjiang (Yangtze River) in the post-Three Gorges Dam period: links to anthropogenic and climate impacts. Journal of Geophysical Research: Biogeosciences, 120(11): 2194-2211 [DOI: 10.1002/2015JG002927http://dx.doi.org/10.1002/2015JG002927]
Wu Z M, Li J C, Wang R, Shi L, Miao S, Lv H and Li Y M. 2018. Remote sensing estimation of colored soluble organic matter (CDOM) concentration in inland lakes based on random forest. Journal of Lake Sciences, 30(4): 979-991
吴志明, 李建超, 王睿, 时蕾, 苗松, 吕恒, 李云梅. 2018. 基于随机森林的内陆湖泊水体有色可溶性有机物(CDOM)浓度遥感估算. 湖泊科学, 30(4): 979-991 [DOI: 10.18307/2018.0411http://dx.doi.org/10.18307/2018.0411]
Yan L. 2003. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters: comment. Applied Optics, 42(6): 893-895 [DOI: 10.1364/AO.42.000893http://dx.doi.org/10.1364/AO.42.000893]
Zhang F F, Harir M, Moritz F, Zhang J, Witting M, Wu Y, Schmitt-Kopplin P, Fekete A, Gaspar A and Hertkorn N. 2014. Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry. Water Research, 57: 280-294 [DOI: 10.1016/j.watres.2014.02.051http://dx.doi.org/10.1016/j.watres.2014.02.051]
Zhang N X, Song J M and He Z P. 2006. Biogeochemical mechanism of particulate organic carbon (POC) variations in seawaters. Acta Ecologica Sinica, 26(7): 2328-2339
张乃星, 宋金明, 贺志鹏. 2006. 海水颗粒有机碳(POC)变化的生物地球化学机制. 生态学报, 26(7): 2328-2339 [DOI: 10.3321/j.issn:1000-0933.2006.07.037http://dx.doi.org/10.3321/j.issn:1000-0933.2006.07.037]
Zhang Y L, Zhang B, Wang Z, Li J S, Feng S, Zhao Q H, Liu M L and Qin B Q. 2007. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia, 592(1): 105-120 [DOI: 10.1007/s10750-007-0724-4http://dx.doi.org/10.1007/s10750-007-0724-4]
Zhao L N, Wang Y N, Jin Q, Feng C, Pan H Z, Zhang J, Lv H and Li Y M. 2015. Method for estimating the concentration of total suspended matter in lakes based on goci images using a classification system. Acta Ecologica Sinica, 35(16): 5528-5536
赵丽娜, 王艳楠, 金琦, 冯驰, 潘洪洲, 张杰, 吕恒, 李云梅. 2015. 基于GOCI影像的湖泊悬浮物浓度分类反演. 生态学报, 35(16): 5528-5536 [DOI: 10.5846/stxb201411152264http://dx.doi.org/10.5846/stxb201411152264]
相关作者
相关机构