内陆水体藻蓝蛋白遥感反演研究进展
Advances in remote sensing of phycocyanin for inland waters
- 2022年26卷第1期 页码:32-48
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221276
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
吕丽丽,宋开山,刘阁,温志丹,尚盈辛,李思佳.2022.内陆水体藻蓝蛋白遥感反演研究进展.遥感学报,26(1): 32-48
Lyu L L,Song K S,Liu G,Wen Z D,Shang Y X and Li S J. 2022. Advances in remote sensing of phycocyanin for inland waters. National Remote Sensing Bulletin, 26(1):32-48
藻蓝蛋白(PC),作为蓝藻的标志性色素,通常被用作进行蓝藻水华遥感监测的标志物。近年来,内陆水体水质恶化,富营养化加剧,藻华频发,PC遥感反演研究越来越受到关注。本文从PC光学特性、反演算法开发、卫星传感器应用等方面难点及干扰因素,综合梳理了过去30 a PC遥感反演研究的发展历程和趋势,以期理解国内外相关研究的新思路和新方法,掌握未来PC遥感反演发展研究的新动态,为水质和水资源的监管提供数据和理论基础。过去的30 a里,PC遥感反演研究发文量持续走高,并在算法上取得突破性进展,先后出现了很多经典算法,如波段比法、基线法、嵌套波段比法、生物光学模型、衍生算法和机器学习算法等,成功地分离出PC特征吸收波段(620 nm)的光谱信息,弱化了其他光学活性物质的影响,获得了较可靠的精度。另外,除高光谱航空/卫星影像数据(Hyperion、HICO)外,多光谱卫星遥感平台的PC遥感反演研究也日趋成熟,可选择的数据源种类较多,如Landsat系列、MODIS、MERIS、Sentinel-2 MSI、Sentinel-3 OLCI,其中MERIS和Sentinel-3 OLCI由于其辐射分辨率、空间分辨率和波段设置更适合用于PC遥感反演,在PC遥感反演中被广泛使用。由于PC光谱信号较弱,且易受叶绿素a、悬浮颗粒物等的干扰,想获得高精度的PC遥感估算,仍然是个挑战,未来PC遥感反演研究将向着PC测试方法的标椎化、算法精细化、时空格局大尺度化及PC遥感反演应用深入化等方面发展。
Phycocyanin (PC)
as the signature pigment of cyanobacteria
is usually used for remote sensing monitoring of cyanobacteria bloom. In recent years
the water quality of inland water has deteriorated
the eutrophication has intensified
and the algal blooms frequently occur. The research of remote sensing inversion of PC has attracted more and more attention. Therefore
it is urgent to sort out and write a comprehensive overview paper. In this paper
178 relevant literatures were reviewed
and the development history and trend of PC remote sensing inversion research of PC in the past 30 years (1990—2020) were comprehensively summarized from the perspectives of PC optical characteristics
development of inversion algorithms
application of satellite sensors
difficulties and interference factors of quantitative remote sensing inversion of PC. This paper helps us to understand the new ideas and new methods emerging at home and abroad
master the new development trends of PC remote sensing inversion in the future
and provide data basis for the monitoring and management of water environment
water quality and water resources. Over the past 30 years
PC remote sensing inversion study number rising
and a breakthrough in the algorithm
has a lot of classic algorithms
such as band ratio method
the baseline method
nested band ratio method
biological optical model
derivative algorithm and machine learning algorithms
algorithm successfully isolated PC spectral characteristic of absorption coefficients at wavelength of 620 nm. Decreased the influence of other optically active substances (Chla、TSM) and obtained the high precision of inversion and validation . In addition
the development of PC inversion algorithms mostly based on in situ hyperspectral data or aerial images (CASI-2
AISA Eagle). In order to meet the needs of PC concentration distribution in a certain space and frequency
satellite image data sources are mostly used. PC. There are many types of multi-spectral satellite data sources to choose
such as Landsat series
MODIS
MERIS
Sentinel-2 MSI
Sentinel-3 OLCI
etc. However
due to the more appropriate band setting
MERIS and Sentinel-3 OLCI are still the most used data sources for PC remote sensing inversion research. Because PC spectrum signal is weak
and vulnerable to the interference of chlorophyll a
TSM
there is still a major difficult to get an accurate estimation result. Based on the above analysis
the future development direction of PC remote sensing inversion can be summarized as the following aspects: first
an international standard measurement method is urgently needed in PC extraction testing; secondly
the development of algorithm
adhere to the mechanism research related to the inherent optical properties
and the integrating machine learning algorithm to bring higher inversion accuracy; third
the scale of study area water body in space and time will toward a larger geographical space scale
longer time series history tracing and future prediction; fourth
at the aspect of the expansion of application
PC remote sensing inversion is not limited to the quantitative estimation of cyanobacteria biomass
but will predict distribution of algal toxins and related diseases based on the relationships between these parameters and PC concentration
furtherly establish a water risk factor rating system based on remote sensing in the future.
湖泊遥感内陆水体藻蓝蛋白光学特性反演算法卫星传感器
lake remote sensinginland watersphycocyaninoptical propertiesinversion algorithmsatellite sensor
Ahn C Y, Joung S H, Yoon S K and Oh H M. 2007. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. Journal of Microbiology, 45(2): 98-104]
Beck R, Xu M, Zhan S G, Johansen R, Liu H X, Tong S S N, Yang B, Shu S, Wu Q S, Wang S J, Berling K, Murray A, Emery E, Reif M, Harwood J, Young J, Nietch C, Macke D, Martin M, Stillings G, Stumpf R, Su H B, Ye Z X and Huang Y. 2019. Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations. Journal of Great Lakes Research, 45(3): 413-433 [DOI: 10.1016/j.jglr.2018.09.001http://dx.doi.org/10.1016/j.jglr.2018.09.001]
Beck R, Xu M, Zhan S G, Liu H X, Johansen R A, Tong S S N, Yang B, Shu S, Wu Q S, Wang S J, Berling K, Murray A, Emery E, Reif M, Harwood J, Young J, Martin M, Stillings G, Stumpf R, Su H B, Ye Z X and Huang Y. 2017. Comparison of satellite reflectance algorithms for estimating phycocyanin values and cyanobacterial total biovolume in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing, 9(6): 538 [DOI: 10.3390/rs9060538http://dx.doi.org/10.3390/rs9060538]
Becker R H, Sultan M I, Boyer G L, Twiss M R and Konopko E. 2009. Mapping cyanobacterial blooms in the Great Lakes using MODIS. Journal of Great Lakes Research, 35(3): 447-453 [DOI: 10.1016/j.jglr.2009.05.007http://dx.doi.org/10.1016/j.jglr.2009.05.007]
Bennett A and Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green-alga. Journal of Cell Biology, 58(2): 419-435 [DOI: 10.1083/jcb.58.2.419http://dx.doi.org/10.1083/jcb.58.2.419]
Castagna A, Simis S, Dierssen H, Vanhellemont Q, Sabbe K and Vyverman W. 2020. Extending Landsat 8: retrieval of an orange contra-band for inland water quality applications. Remote Sensing, 12(4): 637 [DOI: 10.3390/rs12040637http://dx.doi.org/10.3390/rs12040637]
Chawira M, Dube T and Gumindoga W. 2013. Remote sensing based water quality monitoring in Chivero and Manyame lakes of Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 66: 38-44 [DOI: 10.1016/j.pce.2013.09.003http://dx.doi.org/10.1016/j.pce.2013.09.003]
Chi G Y, Ma J, Shi Y and Chen X. 2016. Hyperspectral remote sensing of cyanobacterial pigments as indicators of the iron nutritional status of cyanobacteria-dominant algal blooms in eutrophic lakes. Ecological Indicators, 71: 609-617 [DOI: 10.1016/j.ecolind.2016.06.014http://dx.doi.org/10.1016/j.ecolind.2016.06.014]
Dash P, Walker N D, Mishra D R, Hu C M, Pinckney J L and D'Sa E J. 2011. Estimation of cyanobacterial pigments in a freshwater lake using OCM satellite data. Remote Sensing of Environment. 115(12): 3409-3423 [10.1016/j.rse.2011.08. (Dekker A G, Malthus T J and Seyhan E. 1991. Quantitative modeling of inland water quality for high-resolution MSS systems. IEEE Transactions on Geoscience and Remote Sensing, 29(1): 89-95) [DOI: 10.1109/36.103296http://dx.doi.org/10.1109/36.103296]
Dekker A G. 1993. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Amsterdam: Vrije Universiteit Amsterdam
Duan H T, Ma R H and Hu C M. 2012. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China. Remote Sensing of Environment, 126: 126-135 [DOI: 10.1016/j.rse.2012.08.011http://dx.doi.org/10.1016/j.rse.2012.08.011]
Duan H T, Tao M, Loiselle S A, Zhao W, Cao Z G, Ma R H and Tang X X. 2017. MODIS observations of cyanobacterial risks in a eutrophic lake: implications for long-term safety evaluation in drinking-water source. Water Research, 122: 455-470 [DOI: 10.1016/j.watres.2017.06.022http://dx.doi.org/10.1016/j.watres.2017.06.022]
Effler S W, Strait C M, Perkins M G and O’Donnell D M. 2012. Optical characterization and tests of closure for Oneida Lake, New York, USA. Inland Waters. 2(4): 211-228 [10.5268/iw-2.4.503]
Gitelson A A, Laorawat S, Keydan G P and Vonshak A. 1995. Optical properties of dense algal cultures outdoors and their application to remote estimation of biomass and pigment concentration in Spirulina platensis (cyanobacteria). Journal of Phycology, 31(5): 828-834 [DOI: 10.1111/j.0022-3646.1995.00828.xhttp://dx.doi.org/10.1111/j.0022-3646.1995.00828.x]
Gordon H R, Clark D K, Mueller J L and Hovis W A. 1980. Phytoplankton pigments from the nimbus-7 coastal zone color scanner: comparisons with surface measurements. Science, 210(4465): 63-66 [DOI: 10.1126/science.210.4465.63http://dx.doi.org/10.1126/science.210.4465.63]
Guanter L, Ruiz-Verdú A, Odermatt D, Giardino C, Simis S, Estellés V, Heege T, Antonio Domínguez-Gómez J and Moreno J. 2010. Atmospheric correction of ENVISAT/MERIS data over inland waters: validation for European lakes. Remote Sensing of Environment, 114(3): 467-480 [DOI: 10.1016/j.rse.2009.10.004http://dx.doi.org/10.1016/j.rse.2009.10.004]
Guo Y Y, Zhu L, Wu C Q, Li J S and Zhang F F. 2016. The retrieval of phycocyanin concentrations in Taihu Lake based on water reflectance spectra classification. Acta Scientiae Circumstantiae, 36(8): 2905-2910
郭一洋, 朱利, 吴传庆, 李俊生, 张方方. 2016. 基于水面反射率光谱分类的太湖藻蓝蛋白浓度反演. 环境科学学报, 36(8): 2905-2910 [DOI: 10.13671/j.hjkxxb.2015.0740http://dx.doi.org/10.13671/j.hjkxxb.2015.0740]
Hmimina G, Hulot F D, Humbert J F, Quiblier C, Tambosco K, Lemaire B J, Vinçon-Leite B, Audebert L and Soudani K. 2019. Linking phytoplankton pigment composition and optical properties: a framework for developing remote-sensing metrics for monitoring cyanobacteria. Water Research, 148: 504-514 [DOI: 10.1016/j.watres.2018.09.055http://dx.doi.org/10.1016/j.watres.2018.09.055]
Hunter P D, Tyler A N, Carvalho L, Codd G A and Maberly S C. 2010. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sensing of Environment, 114(11): 2705-2718 [DOI: 10.1016/j.rse.2010.06.006http://dx.doi.org/10.1016/j.rse.2010.06.006]
Hunter P D, Tyler A N, Willby N J and Gilvear D J. 2008. The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnology and Oceanography, 53(6): 2391-2406 [DOI: 10.4319/lo.2008.53.6.2391http://dx.doi.org/10.4319/lo.2008.53.6.2391]
Jin Q, Lyu H, Shi L, Miao S, Wu Z M, Li Y M and Wang Q. 2017. Developing a two-step method for retrieving cyanobacteria abundance from inland eutrophic lakes using MERIS data. Ecological Indicators 81:543-554 [10.1016/j.ecolind.2017.06.027]
Jupp D L B, Kirk J T O and Harris G P. 1994. Detection, identification and mapping of cyanobacteria-using remote sensing to measure the optical quality of turbid inland waters. Australian Journal of Marine and Freshwater Research, 45(5): 801-828 [DOI: 10.1071/mf9940801http://dx.doi.org/10.1071/mf9940801]
Kudela R M, Palacios S L, Austerberry D C, Accorsi E K, Guild L S and Torres-Perez J. 2015. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sensing of Environment, 167: 196-205 [DOI: 10.1016/j.rse.2015.01.025http://dx.doi.org/10.1016/j.rse.2015.01.025]
Kwon Y S, Pyo J, Kwon Y H, Duan H T, Cho K H and Park Y. 2020. Drone-based hyperspectral remote sensing of cyanobacteria using vertical cumulative pigment concentration in a deep reservoir. Remote Sensing of Environment, 236: 111517 [DOI: 10.1016/j.rse.2019.111517http://dx.doi.org/10.1016/j.rse.2019.111517]
Le C F, Li Y M, Zha Y, Wang Q, Zhang H and Yin B. 2011. Remote sensing of phycocyanin pigment in highly turbid inland waters in Lake Taihu, China. International Journal of Remote Sensing, 32(23): 8253-8269 [DOI: 10.1080/01431161.2010.533210http://dx.doi.org/10.1080/01431161.2010.533210]
Lee Z P, Carder K L and Arnone R A. 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27): 5755-5772 [DOI: 10.1364/ao.41.005755http://dx.doi.org/10.1364/ao.41.005755]
Li L, Sengpiel R E, Pascual D L, Tedesco L P, Wilson J S and Soyeux E. 2010. Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir. International Journal of Remote Sensing, 31(15): 4147-4162 [DOI: 10.1080/01431161003789549http://dx.doi.org/10.1080/01431161003789549]
Li L H, Li L, Shi K, Li Z C and Song K S. 2012. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Science of the Total Environment, 435-436: 141-150 [DOI: 10.1016/j.scitotenv.2012.07.023http://dx.doi.org/10.1016/j.scitotenv.2012.07.023]
Li L H, Li L and Song K S. 2015. Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sensing of Environment, 157: 9-23 [DOI: 10.1016/j.rse.2014.06.009http://dx.doi.org/10.1016/j.rse.2014.06.009]
Liu G, Simis S G H, Li L, Wang Q, Li Y M, Song K S, Lyu H, Zheng Z B and Shi K. 2018. A four-band semi-analytical model for estimating phycocyanin in inland waters from simulated MERIS and OLCI data. IEEE Transactions on Geoscience and Remote Sensing, 56(3): 1374-1385 [DOI: 10.1109/tgrs.2017.2761996http://dx.doi.org/10.1109/tgrs.2017.2761996]
Lyu H, Wang Q, Wu C Q, Zhu L, Yin B, Li Y M and Huang J Z. 2013. Retrieval of phycocyanin concentration from remote-sensing reflectance using a semi-analytic model in eutrophic lakes. Ecological Informatics, 18: 178-187 [DOI: 10.1016/j.ecoinf.2013.09.002http://dx.doi.org/10.1016/j.ecoinf.2013.09.002]
Matthews M W, Bernard S, Evers-King H and Lain L R. 2020. Distinguishing cyanobacteria from algae in optically complex inland waters using a hyperspectral radiative transfer inversion algorithm. Remote Sensing of Environment, 248: 111981 [DOI: 10.1016/j.rse.2020.111981http://dx.doi.org/10.1016/j.rse.2020.111981]
Matthews M W, Bernard S and Winter K. 2010. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sensing of Environment, 114(9): 2070-2087 [DOI: 10.1016/j.rse.2010.04.013http://dx.doi.org/10.1016/j.rse.2010.04.013]
Medina-Cobo M, Domínguez J A, Quesada A and de Hoyos C. 2014. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Water Research, 63: 10-20 [DOI: 10.1016/j.watres.2014.06.001http://dx.doi.org/10.1016/j.watres.2014.06.001]
Miao S, Li Y Y, Wu Z M, Lyu H, Li Y M, Bi S, Xu J, Lei S H, Mu M and Wang Q. 2020. A semianalytical algorithm for mapping proportion of cyanobacterial biomass in Eutrophic Inland Lakes based on OLCI data. IEEE Transactions on Geoscience and Remote Sensing, 58(7): 5148-5161 [DOI: 10.1109/tgrs.2020.2973400http://dx.doi.org/10.1109/tgrs.2020.2973400]
Millie D F, Baker M C, Tucker C S, Vinyard B T and Dionigi C P. 1992. High-resolution airborne remote sensing of bloom-forming phytoplankton. Journal of Phycology, 28(3): 281-290 [DOI: 10.1111/j.0022-3646.1992.00281.xhttp://dx.doi.org/10.1111/j.0022-3646.1992.00281.x]
Mishra S, Mishra D R, Lee Z and Tucker C S. 2013. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: a quasi-analytical approach. Remote Sensing of Environment, 133: 141-151 [DOI: 10.1016/j.rse.2013.02.004http://dx.doi.org/10.1016/j.rse.2013.02.004]
Mishra S, Mishra D R and Schluchter W M. 2009. A novel algorithm for predicting phycocyanin concentrations in cyanobacteria: a proximal hyperspectral remote sensing approach. Remote Sensing, 1(4): 758-775 [DOI: 10.3390/rs1040758http://dx.doi.org/10.3390/rs1040758]
Ogashawara I. 2020. Determination of phycocyanin from space-a bibliometric analysis. Remote Sensing, 12(3): 567 [DOI: 10.3390/rs12030567http://dx.doi.org/10.3390/rs12030567]
Ogashawara I, Mishra D R, Mishra S, Curtarelli M P and Stech J L. 2013. A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sensing, 5(10): 4774-4798 [DOI: 10.3390/rs5104774http://dx.doi.org/10.3390/rs5104774]
Ortiz J D, Witter D L, Ali K A, Fela N, Duff M and Mills L. 2013. Evaluating multiple colour-producing agents in Case II waters from Lake Erie. International Journal of Remote Sensing. 34(24): 8854-8880 [10.1080/01431161.2013.853892]
Park Y, Pyo J, Kwon Y S, Cha Y, Lee H, Kang T and Cho K H. 2017. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Water Research, 126: 319-328 [DOI: 10.1016/j.watres.2017.09.026http://dx.doi.org/10.1016/j.watres.2017.09.026]
Peterson K T, Sagan V, Sidike P, Hasenmueller E A, Sloan J J and Knouft J H. 2019. Machine learning-based ensemble prediction of water-quality variables using feature-level and decision-level fusion with proximal remote sensing. Photogrammetric Engineering and Remote Sensing, 85(4): 269-280 [DOI: 10.14358/pers.85.4.269http://dx.doi.org/10.14358/pers.85.4.269]
Pyo J C, Duan H T, Baek S, Kim M S, Jeon T, Kwon Y S, Lee H and Cho K H. 2019. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sensing of Environment. 233: 111350 [10.1016/j.rse.2019.111350]
Pyo J C, Duan H T, Ligaray M, Kim M, Baek S, Kwon Y S, Lee H, Kang T, Kim K, Cha Y K and Cho K H. 2020. An integrative remote sensing application of stacked autoencoder for atmospheric correction and cyanobacteria estimation using hyperspectral imagery. Remote Sensing, 12(7): 1073 [DOI: 10.3390/rs12071073http://dx.doi.org/10.3390/rs12071073]
Pyo J C, Ligaray M, Kwon Y S, Ahn M H, Kim K, Lee H, Kang T, Cho S B, Park Y and Cho K H. 2018. High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a Using Airborne Hyperspectral Imagery. Remote Sensing. 10(8): 1180 [10.3390/rs10081180]
Pyo J C, Pachepsky Y, Baek S S, Kwon Y S, Kim M J, Lee H, Park S, Cha Y, Ha R, Nam G, Park Y and Cho K H. 2017. Optimizing semi-analytical algorithms for estimating Chlorophyll-a and Phycocyanin concentrations in inland waters in Korea. Remote Sensing, 9(6): 542 [DOI: 10.3390/rs9060542http://dx.doi.org/10.3390/rs9060542]
Qi L, Hu C M, Duan H T, Cannizzaro J and Ma R H. 2014. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: theoretical basis and practical considerations. Remote Sensing of Environment, 154: 298-317 [DOI: 10.1016/j.rse.2014.08.026http://dx.doi.org/10.1016/j.rse.2014.08.026]
Randolph K, Wilson J, Tedesco L, Li L, Pascual D L and Soyeux E. 2008. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sensing of Environment, 112(11): 4009-4019 [DOI: 10.1016/j.rse.2008.06.002http://dx.doi.org/10.1016/j.rse.2008.06.002]
Riddick C A L, Hunter P D, Dominguez Gomez J A, Martinez-Vicente V, Presing M, Horvath H, Kovacs A W, Voros L, Zsigmond E and Tyler A N. 2019. Optimal Cyanobacterial Pigment Retrieval from Ocean Colour Sensors in a Highly Turbid, Optically Complex Lake. 11(13): 1613 [10.3390/rs11131613]
Ruiz-Verdú A, Simis S G H, de Hoyos C, Gons H J and Peña-Martínez R. 2008. An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sensing of Environment, 112(11): 3996-4008 [DOI: 10.1016/j.rse.2007.11.019http://dx.doi.org/10.1016/j.rse.2007.11.019]
Sarada R, Pillai M G and Ravishankar G A. 1999. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34(8): 795-801 [DOI: 10.1016/s0032-9592(98)00153-8http://dx.doi.org/10.1016/s0032-9592(98)00153-8]
Sayers M J, Bosse K R, Shuchman R A, Ruberg S A, Fahnenstiel G L, Leshkevich G A, Stuart D G, Johengen T H, Burtner A M and Palladino D. 2019. Spatial and temporal variability of inherent and apparent optical properties in western Lake Erie: implications for water quality remote sensing. Journal of Great Lakes Research, 45(3): 490-507 [DOI: 10.1016/j.jglr.2019.03.011http://dx.doi.org/10.1016/j.jglr.2019.03.011]
Schalles J F and Yacobi Y Z. 2000. Remote detection and seasonanl patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters. Limnology and Lake Management : Arch.Hydrobiol.Spec.Issues Advanc. Limnol. 55 : 153-168
(Seppälä J, Ylöstalo P, Kaitala S, Hällfors S, Raateoja M and Maunula P. 2007. Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science, 73(3/4): 489-500) [DOI: 10.1016/j.ecss.2007.02.015http://dx.doi.org/10.1016/j.ecss.2007.02.015]
Shi K, Zhang Y L, Li Y M, Li L, Lv H and Liu X H. 2015a. Remote estimation of cyanobacteria-dominance in inland waters. Water Research, 68: 217-226 [DOI: 10.1016/j.watres.2014.10.019http://dx.doi.org/10.1016/j.watres.2014.10.019]
Shi K, Zhang Y L, Qin B Q and Zhou B T. 2019. Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. Science Bulletin, 64(20): 1540-1556 [DOI: 10.1016/j.scib.2019.07.002http://dx.doi.org/10.1016/j.scib.2019.07.002]
Shi K, Zhang Y L, Xu H, Zhu G W, Qin B Q, Huang C C, Liu X H, Zhou Y Q and Lv H. 2015b. Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environmental Science and Technology, 49(11): 6448-6456 [DOI: 10.1021/es505901ahttp://dx.doi.org/10.1021/es505901a]
Simis S G H, Peters S W M and Gons H J. 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography, 50(1): 237-245 [DOI: 10.4319/lo.2005.50.1.0237http://dx.doi.org/10.4319/lo.2005.50.1.0237]
Simis S G H, Ruiz-Verdú A, Antonio Domínguez-Gómez J, Peña-Martinez R, Peters S W M and Gons H J. 2007. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sensing of Environment, 106(4): 414-427 [DOI: 10.1016/j.rse.2006.09.008http://dx.doi.org/10.1016/j.rse.2006.09.008]
Soja-Woźniak M, Craig S E, Kratzer S, Wojtasiewicz B, Darecki M and Jones C T. 2017. A novel statistical approach for ocean colour estimation of inherent optical properties and cyanobacteria abundance in optically complex waters. Remote Sensing, 9(4): 343 [DOI: 10.3390/rs9040343http://dx.doi.org/10.3390/rs9040343]
Song K S, Fang C, Jacinthe P A, Wen Z D, Liu G, Xu X F, Shang Y X and Lyu L. 2021. Climatic versus anthropogenic controls of decadal trends (1983-2017) in algal blooms in lakes and reservoirs across China. Environmental Science and Technology, 55(5): 2929-2938 [DOI: 10.1021/acs.est.0c06480http://dx.doi.org/10.1021/acs.est.0c06480]
Song K S, Li L, Li S, Tedesco L, Hall B and Li Z C. 2012a. Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm-partial least squares (GA-PLS) modeling. International Journal of Applied Earth Observation and Geoinformation, 18: 368-385 [DOI: 10.1016/j.jag.2012.03.013http://dx.doi.org/10.1016/j.jag.2012.03.013]
Song K S, Li L, Tedesco L, Clercin N, Hall B, Li S, Shi K, Liu D W and Sun Y. 2013. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Environmental Science and Pollution Research, 20(8): 5330-5340 [DOI: 10.1007/s11356-013-1527-yhttp://dx.doi.org/10.1007/s11356-013-1527-y]
Song K S, Li L, Tedesco L P, Li S, Clercin N A, Hall B E, Li Z C and Shi K. 2012b. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Science of the Total Environment, 426: 220-232 [DOI: 10.1016/j.scitotenv.2012.03.058http://dx.doi.org/10.1016/j.scitotenv.2012.03.058]
Song K S, Li L, Tedesco L P, Li S, Hall B E and Du J. 2014. Remote quantification of phycocyanin in potable water sources through an adaptive model. ISPRS Journal of Photogrammetry and Remote Sensing, 95: 68-80 [DOI: 10.1016/j.isprsjprs.2014.06.008http://dx.doi.org/10.1016/j.isprsjprs.2014.06.008]
Song K S, Shang Y X, Wen Z D, Jacinthe P A, Liu G, Lyu L and Fang C. 2019. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water Research, 150: 403-417 [DOI: 10.1016/j.watres.2018.12.004http://dx.doi.org/10.1016/j.watres.2018.12.004]
Sòria-Perpinyà X, Vicente E, Urrego P, Pereira-Sandoval M, Ruíz-Verdú A, Delegido J, Miguel Soria J and Moreno J. 2020. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Science of the Total Environment, 698: 134305 [DOI: 10.1016/j.scitotenv.2019.134305http://dx.doi.org/10.1016/j.scitotenv.2019.134305]
Sridhar B B M and Vincent R K. 2007. Spectral reflectance measurements of a Microcystis bloom in Upper Klamath Lake, Oregon. Journal of Great Lakes Research, 33(1): 279-284 [DOI: 10.3394/0380-1330(2007)33http://dx.doi.org/10.3394/0380-1330(2007)33[279:SRMOAM]2.0.CO;2]
Sun D Y, Hu C M, Qiu Z F and Shi K. 2015. Estimating phycocyanin pigment concentration in productive inland waters using Landsat measurements: a case study in Lake Dianchi. Optics Express, 23(3): 3055-3074 [DOI: 10.1364/oe.23.003055http://dx.doi.org/10.1364/oe.23.003055]
Sun D Y, Li Y M, Wang Q, Gao J, Le C F, Huang C C and Gong S Q. 2013. Hyperspectral remote sensing of the pigment C-phycocyanin in turbid inland waters, based on optical classification. IEEE Transactions on Geoscience and Remote Sensing, 51(7): 3871-3884 [DOI: 10.1109/tgrs.2012.2227976http://dx.doi.org/10.1109/tgrs.2012.2227976]
Tao M, Duan H T, Cao Z G, Loiselle S A and Ma R H. 2017. A hybrid EOF algorithm to improve MODIS cyanobacteria phycocyanin data quality in a Highly Turbid Lake: bloom and Nonbloom condition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10): 4430-4444 [DOI: 10.1109/jstars.2017.2723079http://dx.doi.org/10.1109/jstars.2017.2723079]
Torbick N and Corbiere M. 2015. A multiscale mapping assessment of Lake Champlain cyanobacterial harmful algal blooms. International Journal of Environmental Research and Public Health, 12(9): 11560-11578 [DOI: 10.3390/ijerph120911560http://dx.doi.org/10.3390/ijerph120911560]
Torbick N, Ziniti B, Stommel E, Linder E, Andrew A, Caller T, Haney J, Bradley W, Henegan P L and Shi X. 2018. Assessing cyanobacterial harmful algal blooms as risk factors for amyotrophic lateral sclerosis. Neurotoxicity Research, 33(1): 199-212 [DOI: 10.1007/s12640-017-9740-yhttp://dx.doi.org/10.1007/s12640-017-9740-y]
Varunan T and Shanmugam P. 2017. An optical tool for quantitative assessment of phycocyanin pigment concentration in cyanobacterial blooms within inland and marine environments. Journal of Great Lakes Research, 43(1): 32-49 [DOI: 10.1016/j.jglr.2016.11.001http://dx.doi.org/10.1016/j.jglr.2016.11.001]
Vincent R K, Qin X M, McKay R M L, Miner J, Czajkowski K, Savino J and Bridgeman T. 2004. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment, 89(3): 381-392 [DOI: 10.1016/j.rse.2003.10.014http://dx.doi.org/10.1016/j.rse.2003.10.014]
Wang G Q, Lee Z, Mishra D R and Ma R H. 2016. Retrieving absorption coefficients of multiple phytoplankton pigments from hyperspectral remote sensing reflectance measured over cyanobacteria bloom waters. Limnology and Oceanography: Methods, 14(7): 432-447 [DOI: 10.1002/lom3.10102http://dx.doi.org/10.1002/lom3.10102]
Wang G Q, Lee Z and Mouw C. 2017. Multi-spectral remote sensing of phytoplankton pigment absorption properties in cyanobacteria bloom waters: a regional example in the western Basin of Lake Erie. Remote Sensing, 9(12): 1309 [DOI: 10.3390/rs9121309http://dx.doi.org/10.3390/rs9121309]
Wen Z D, Song K S, Liu G, Shang Y X, Fang C, Du J and Lyu L. 2019. Quantifying the trophic status of lakes using total light absorption of optically active components. Environmental Pollution, 245: 684-693 [DOI: 10.1016/j.envpol.2018.11.058http://dx.doi.org/10.1016/j.envpol.2018.11.058]
Wheeler S M, Morrissey L A, Levine S N, Livingston G P and Vincent W F. 2012. Mapping cyanobacterial blooms in Lake Champlain’s Missisquoi Bay using QuickBird and MERIS satellite data. Journal of Great Lakes Research, 38: 68-75 [DOI: 10.1016/j.jglr.2011.06.009http://dx.doi.org/10.1016/j.jglr.2011.06.009]
Wynne T T, Stumpf R P, Tomlinson M C and Dyble J. 2010. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnology and Oceanography, 55(5): 2025-2036 [DOI: 10.4319/lo.2010.55.5.2025http://dx.doi.org/10.4319/lo.2010.55.5.2025]
Wynne T T, Stumpf R P, Tomlinson M C, Warner R A, Tester P A, Dyble J and Fahnenstiel G L. 2008. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. International Journal of Remote Sensing, 29(12): 3665-3672 [DOI: 10.1080/01431160802007640http://dx.doi.org/10.1080/01431160802007640]
Yan Y E, Bao Z J and Shao J G. 2018. Phycocyanin concentration retrieval in inland waters: a comparative review of the remote sensing techniques and algorithms. Journal of Great Lakes Research, 44(4): 748-755 [DOI: 10.1016/j.jglr.2018.05.004http://dx.doi.org/10.1016/j.jglr.2018.05.004]
Yang D T, Pan D L, Zhang X Y, Zhang X F, He X Q and Li S Q. 2005. Retrieval of water quality parameters by hyperspectral remote sensing in lake TaiHu, China. Conference on Optical Technologies for Atmospheric, Ocean, and Environmental Studies. Beijing, PEOPLES R CHINA. Oct 18-22. 5832: 431-439.
Yim I, Shin J, Lee H, Park S, Nam G, Kang T, Cho K H and Cha Y. 2020. Deep learning-based retrieval of cyanobacteria pigment in inland water for in-situ and airborne hyperspectral data. Ecological Indicators, 110: 105879 [DOI: 10.1016/j.ecolind.2019.105879http://dx.doi.org/10.1016/j.ecolind.2019.105879]
Yin B, Lü H, Li Y M, Wu C Q, Zhu L and Wang Y F. 2011. Retrieve phycocyanin concentrations based on semi-analytical model in the Dianchi Lake, China. Environmental Science, 32(2): 472-478
尹斌, 吕恒, 李云梅, 吴传庆, 朱利, 王彦飞. 2011. 基于半分析模型的滇池藻蓝蛋白浓度反演. 环境科学, 32(2): 472-478 [DOI: 10.13227/j.hjkx.2011.02.039http://dx.doi.org/10.13227/j.hjkx.2011.02.039]
Zhang F, Lee J, Liang S and Shum C K. 2015. Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environmental Health, 14: 41 [DOI: 10.1186/s12940-015-0026-7http://dx.doi.org/10.1186/s12940-015-0026-7]
Zhao Q H,Sun G D ,Wang J J,Yu G Z and Jiang B. 2018. Coupling effect of water temperature and light energy on the algal growth in Lake Taihu. Journal of Lake Sciences, 30(2) : 385-393 [DOI: 10. 18307 /2018. 0210]
赵巧华, 孙国栋, 王健健, 于志国, 姜 勃. 2018. 水温、光能对春季太湖藻类生长的耦合影响. 湖泊科学, 30(2) : 385-393 [DOI: 10. 18307 /2018. 0210http://dx.doi.org/10.18307/2018.0210]
Zhou B T, Shang M S, Wang G Y, Zhang S, Feng L, Liu X N, Wu L and Shan K. 2018. Distinguishing two phenotypes of blooms using the normalised difference peak-valley index (NDPI) and Cyano-Chlorophyta index (CCI). Science of the Total Environment, 628-629: 848-857 [DOI: 10.1016/j.scitotenv.2018.02.097http://dx.doi.org/10.1016/j.scitotenv.2018.02.097]
Zimba P V. 2012. An improved phycobilin extraction method. Harmful Algae, 17: 35-39 [DOI: 10.1016/j.hal.2012.02.009http://dx.doi.org/10.1016/j.hal.2012.02.009]
相关作者
相关机构