2002年—2018年太湖水体溶解二氧化碳浓度卫星遥感数据集
Monthly average satellite-estimated dataset of Lake Taihu’s dissolved carbon dioxide concentration from 2002 to 2018
- 2022年26卷第1期 页码:231-242
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221279
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
齐天赐,段洪涛,曹志刚,沈明,肖启涛,刘东,马金戈.2022.2002年—2018年太湖水体溶解二氧化碳浓度卫星遥感数据集.遥感学报,26(1): 231-242
Qi T C, Duan H T, Cao Z G, Shen M, Xiao Q T, Liu D and Ma J G. 2022. Monthly average satellite-estimated dataset of Lake Taihu’s dissolved carbon dioxide concentration from 2002 to 2018. National Remote Sensing Bulletin, 26(1):231-242
湖泊在全球碳循环中发挥着重要作用,而湖泊中溶解CO
2
浓度(
<math id="M1"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653194&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653162&type=
4.40266657
3.72533321
)控制着其CO
2
通量的方向及大小,是湖泊CO
2
排放估算的关键参数。中国第三大淡水湖——太湖虽然具有长期的野外监测数据,但其样点分布在空间和时间上并不均匀,很可能给其CO
2
排放的估算带来不确定性和偏差。有必要利用更高频率和覆盖范围地遥感手段来弥补野外监测在时空代表性上的不足。本文基于MODIS/Aqua数据反演的叶绿素a浓度、表层水温、漫衰减系数及光合有效辐射产品,通过二次多项式经验模型对太湖藻型湖区表层水体
<math id="M2"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653207&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653206&type=
4.40266657
3.72533321
进行逐像元的估算。并对结果进行数据质量控制和统计平均得到2002-07—2018-12长时序月平均
<math id="M3"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653207&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653206&type=
4.40266657
3.72533321
数据集。数据集由GeoTiff格式储存,使用GCS_WGS_1984地理坐标系,共包含198个文件。产品估算精度验证结果显示,星地同步像元-样点的遥感估算结果与野外数据的偏差在总体上较小(均方根误差RMSE=12.83 μmol·L
-1
,无偏百分比偏差UPD=24.03%)。同时遥感与野外数据估算的年均值在太湖各个湖区表现出很好的一致性(RMSE
<
13.24 μmol·L
-1
,UPD
<
25.82%),证明数据的可信度。产品的不确定性评估结果显示,在所有输入变量的随机误差影响下,月均
<math id="M4"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653204&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653201&type=
4.40266657
3.72533321
产品最大可能高估约30%。基于本数据集数据统计得到的结果显示,太湖
<math id="M5"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653189&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653186&type=
4.40266657
3.72533321
表现出明显的季节变化,冬春高夏秋低,西部高东部低;且太湖年平均
<math id="M6"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653207&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653206&type=
4.40266657
3.72533321
在数据集覆盖时间段内表现出显著下降趋势(0.80 μmol·L
-1
·a
-1
)。本数据集(下载方式:
https://doi.org/10.5281/zenodo.4729048
https://doi.org/10.5281/zenodo.4729048
[2021-05-18])月平均时间尺度同常规生态环境监测对应,便于分析对比,并且提供了空间分异信息,能够辅助研究深入理解太湖
<math id="M7"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653210&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653191&type=
4.40266657
3.72533321
乃至碳循环过程的时空变化规律,值得推广使用。
Lakes play an important role in the global carbon cycle. The dissolved carbon dioxide concentration (
<math id="M8"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653225&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653223&type=
4.48733330
3.72533321
) controls the direction and amount of the lake CO
2
flux
which makes it one of the keys to the Lake CO
2
emission estimates. Due to the limitations of traditional field surveys on the spatiotemporal representativeness
large efforts of field surveys are still required to fulfil the requirements of monitoring lake
<math id="M9"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
dynamics. China’s third largest freshwater lake—Lake Taihu is a hot spot for lake carbon cycle and eutrophication research because of its complex environmental problems. Although Lake Taihu has long-term field limnological observations
including the measurements of physical
chemical
and biological parameters
the spatiotemporal distributions of sampling sites are still limited for the accurate estimation of the CO
2
emissions
which is likely to give uncertainty and deviation to its CO
2
emission estimates. It is necessary to take advantages of high frequency and wide range remote sensing technologies for achieving larger-scale and longer-term estimations of lake
<math id="M10"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653219&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653228&type=
4.48733330
3.72533321
dynamics compared to field surveys.
In this paper
we used the MODIS-derived chlorophyll-
a
concentration
lake surface temperature
diffuse attenuation coefficient of photosynthetically active radiation
and photosynthetically active radiation to estimate daily
<math id="M11"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
of Lake Taihu (the coefficient of determination
R
2
=0.84
root mean square error
RMSE=11.81 μmol·L
-1
unbiased percent difference
UPD=22.46%). After data quality control
the daily
<math id="M12"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653244&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653242&type=
4.48733330
3.72533321
were averaged on a monthly scale to obtain the monthly average
<math id="M13"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653239&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653237&type=
4.48733330
3.72533321
of Lake Taihu. The data was stored in GeoTIFF grid format
with the GCS_WGS_1984 geographic coordinate system. The dataset contains 198 files of monthly average
<math id="M14"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
of Lake Taihu from July 2002 to December 2018.
The uncertainty assessment results of the product show that under the influence of all input variables
the monthly
<math id="M15"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653244&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653242&type=
4.48733330
3.72533321
product would overestimate about 30%. The differences between
<math id="M16"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
of pixel-sample matchups were small in total (Root mean standard error RMSE=12.83 μmol·L
-1
non-bias percentage deviation UPD=24.03%). The annual average of
<math id="M17"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
estimated by field observation and MODIS were consistent with each other in different regions of Lake Taihu (Root mean standard error RMSE
<
13.24 μmol·L
-1
non-bias percentage deviation UPD
<
25.82%). Based on the monthly average dataset
the
<math id="M18"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
of Lake Taihu showed significant seasonal dynamics
which were was low in summer and autumn (June to November) and eastern region
and high in winter and spring (December to May) and western region. Besides
the annual average
<math id="M19"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
showed a significant declining trend (0.80 μmol·L
-1
·a
-1
p
<
0.01).
This monthly average dataset (The download address is
https://doi.org/10.5281/zenodo.4729048
https://doi.org/10.5281/zenodo.4729048
) corresponds to the time scale of traditional limnological and ecological observations
which is suitable for comparison and analysis with traditional field datasets. Besides
the satellite dataset provides more spatial details of
<math id="M20"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
. It is very enlightening for better understanding of the biogeochemical process associated with
<math id="M21"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653268&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=28653265&type=
4.48733330
3.72533321
in Lake Taihu. We believed this dataset would be very worth promoting to all researchers focusing on Lake Taihu.
湖泊遥感MODIS太湖二氧化碳碳排放湖泊碳循环数据集
MODISLake Taihucarbon dioxidecarbon emissionlake carbon cycledataset
Bai Y, Cai W J, He X Q, Zhai W D, Pan D L, Dai M H and Yu P S. 2015. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: a case study from the East China Sea. Journal of Geophysical Research: Oceans, 120(3): 2331-2349 [DOI: 10.1002/2014JC010632http://dx.doi.org/10.1002/2014JC010632]
Balmer M B and Downing J A. 2011. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters, 1(2): 125-132 [DOI: 10.5268/IW-1.2.366http://dx.doi.org/10.5268/IW-1.2.366]
Borges A V, Darchambeau F, Teodoru C R, Marwick T R, Tamooh F, Geeraert N, Omengo F O, Guérin F, Lambert T, Morana C, Okuku E and Bouillon S. 2015. Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience, 8(8): 637-642 [DOI: 10.1038/ngeo2486http://dx.doi.org/10.1038/ngeo2486]
Chen S L, Hu C M, Barnes B B, Wanninkhof R, Cai W J, Barbero L and Pierrot D. 2019. A machine learning approach to estimate surface ocean pCO2 from satellite measurements. Remote Sensing of Environment, 228: 203-226 [DOI: 10.1016/j.rse.2019.04.019http://dx.doi.org/10.1016/j.rse.2019.04.019]
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann MJones C, Le Quéré C, Myneni R B, Piao S and Thornton P. 2013. Carbon and other biogeochemical cycles//Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press: 465-570
Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J and Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1): 172-185 [DOI: 10.1007/s10021-006-9013-8http://dx.doi.org/10.1007/s10021-006-9013-8]
Drake T W, Raymond P A and Spencer R G M. 2018. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3(3): 132-142 [DOI: 10.1002/lol2.10055http://dx.doi.org/10.1002/lol2.10055]
Duan H T, Ma R H, Xu X F, Kong F X, Zhang S X, Kong W J, Hao J Y and Shang L L. 2009. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science and Technology, 43(10): 3522-3528 [DOI: 10.1021/es8031852http://dx.doi.org/10.1021/es8031852]
Duan W Y and Huang C. 2021. Research progress on the carbon cycle of rivers and lakes. China Environmental Science, 41(8): 3792-3807
段魏岩, 黄昌. 2021. 河流湖泊碳循环研究进展. 中国环境科学, 41(8): 3792-3807 [DOI: 10.19674/j.cnki.issn1000-6923.20210414.003http://dx.doi.org/10.19674/j.cnki.issn1000-6923.20210414.003]
Holgerson M A and Raymond P A. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3): 222-226 [DOI: 10.1038/ngeo2654http://dx.doi.org/10.1038/ngeo2654]
Hu C M, Chen Z Q, Clayton T D, Swarzenski P, Brock J C and Muller-Karger F E. 2004. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL. Remote Sensing of Environment, 93(3): 423-441 [DOI: 10.1016/j.rse.2004.08.007http://dx.doi.org/10.1016/j.rse.2004.08.007]
Hu C M, Lee Z, Ma R H, Yu K, Li D Q and Shang S L. 2010. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research: Oceans, 115(C4): C04002 [DOI: 10.1029/2009jc005511http://dx.doi.org/10.1029/2009jc005511]
Huang C C, Yao L, Huang T, Zhang M L, Zhu A X and Yang H. 2017. Wind and rainfall regulation of the diffuse attenuation coefficient in large, shallow lakes from long-term MODIS observations using a semianalytical model. Journal of Geophysical Research: Atmospheres, 122(13): 6748-6763 [DOI: 10.1002/2017jd026955http://dx.doi.org/10.1002/2017jd026955]
Klaus M, Seekell D A, Lidberg W and Karlsson J. 2019. Evaluations of climate and land management effects on lake carbon cycling need to account for temporal variability in CO2 concentrations. Global Biogeochemical Cycles, 33(3): 243-265 [DOI: 10.1029/2018GB005979http://dx.doi.org/10.1029/2018GB005979]
Kutser T, Verpoorter C, Paavel B and Tranvik L J. 2015. Estimating lake carbon fractions from remote sensing data. Remote Sensing of Environment, 157: 138-146 [DOI: 10.1016/j.rse.2014.05.020http://dx.doi.org/10.1016/j.rse.2014.05.020]
Lee X, Liu S D, Xiao W, Wang W, Gao Z Q, Cao C, Hu C, Hu Z H, Shen S H, Wang Y W, Wen X F, Xiao Q T, Xu J P, Yang J B and Zhang M. 2014. The Taihu Eddy Flux Network: an observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake. Bulletin of the American Meteorological Society, 95(10): 1583-1594 [DOI: 10.1175/bams-d-13-00136.1http://dx.doi.org/10.1175/bams-d-13-00136.1]
Liu G, Ou W X, Zhang Y L, Wu T F, Zhu G W, Shi K and Qin B Q. 2015. Validating and mapping surface water temperatures in lake taihu: results from modis land surface temperature products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3): 1230-1244 [DOI: 10.1109/JSTARS.2014.2386333http://dx.doi.org/10.1109/JSTARS.2014.2386333]
Loken L C, Crawford J T, Schramm P J, Stadler P, Desai A R and Stanley E H. 2019. Large spatial and temporal variability of carbon dioxide and methane in a eutrophic lake. Journal of Geophysical Research: Biogeosciences, 124(7): 2248-2266 [DOI: 10.1029/2019JG005186http://dx.doi.org/10.1029/2019JG005186]
Luo J H, Pu R L, Duan H T, Ma R H, Mao Z G, Zeng Y, Huang L S and Xiao Q T. 2020. Evaluating the influences of harvesting activity and eutrophication on loss of aquatic vegetations in Taihu Lake, China. International Journal of Applied Earth Observation and Geoinformation, 87: 102038 [DOI: 10.1016/j.jag.2019.102038http://dx.doi.org/10.1016/j.jag.2019.102038]
Marotta H, Duarte C M, Sobek S and Enrich-Prast A. 2009. Large CO2 disequilibria in tropical lakes. Global Biogeochemical Cycles, 23(4):
GB4022 [DOI: 10.1029/2008gb003434http://dx.doi.org/10.1029/2008gb003434]
Natchimuthu S, Sundgren I, Gålfalk M, Klemedtsson L and Bastviken D. 2017. Spatiotemporal variability of lake pCO2 and CO2 fluxes in a hemiboreal catchment. Journal of Geophysical Research: Biogeosciences, 122(1): 30-49 [DOI: 10.1002/2016jg003449http://dx.doi.org/10.1002/2016jg003449]
Qi T C, Xiao Q T, Cao Z G, Shen M, Ma J G, Liu D and Duan H T. 2020. Satellite estimation of dissolved carbon dioxide concentrations in China’s Lake Taihu. Environmental Science and Technology, 54(21): 13709-13718 [DOI: 10.1021/acs.est.0c04044http://dx.doi.org/10.1021/acs.est.0c04044]
Qin B Q. 2020. Shallow lake limnology and control of eutrophication in Lake Taihu. Journal of Lake Sciences, 32(5): 1229-1243
秦伯强. 2020. 浅水湖泊湖沼学与太湖富营养化控制研究. 湖泊科学, 32(5): 1229-1243 [DOI: 10.18307/2020.0501http://dx.doi.org/10.18307/2020.0501]
Raymond P A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P and Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature, 503(7476): 355-359 [DOI: 10.1038/nature12760http://dx.doi.org/10.1038/nature12760]
Seekell D A and Gudasz C. 2016. Long-term pCO2 trends in Adirondack Lakes. Geophysical Research Letters, 43(10): 5109-5115 [DOI: 10.1002/2016gl068939http://dx.doi.org/10.1002/2016gl068939]
Shen M, Duan H T, Cao Z G, Xue K, Loiselle S and Yesou H. 2017. Determination of the downwelling diffuse attenuation coefficient of lake water with the Sentinel-3A OLCI. Remote Sensing, 9(12): 1246 [DOI: 10.3390/rs9121246http://dx.doi.org/10.3390/rs9121246]
Shen M, Duan H T, Cao Z G, Xue K, Qi T C, Ma J G, Liu D, Song K S, Huang C L and Song X Y. 2020. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: implications for SDG 6.3.2 evaluation. Remote Sensing of Environment, 247: 111950 [DOI: 10.1016/j.rse.2020.111950http://dx.doi.org/10.1016/j.rse.2020.111950]
Shi K, Zhang Y L, Zhou Y Q, Liu X H, Zhu G W, Qin B Q and Gao G. 2017. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Scientific Reports, 7: 40326 [DOI: 10.1038/srep40326http://dx.doi.org/10.1038/srep40326]
Verpoorter C, Kutser T, Seekell D A and Tranvik L J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18): 6396-6402 [DOI: 10.1002/2014GL060641http://dx.doi.org/10.1002/2014GL060641]
Xiao Q T, Xu X F, Duan H T, Qi T C, Qin B Q, Lee X, Hu Z H, Wang W, Xiao W and Zhang M. 2020. Eutrophic Lake Taihu as a significant CO2 source during 2000-2015. Water Research, 170: 115331 [DOI: 10.1016/j.watres.2019.115331http://dx.doi.org/10.1016/j.watres.2019.115331]
Xiao Q T, Zhang M, Hu Z H, Gao Y Q, Hu C, Liu C, Liu S D, Zhang Z, Zhao J Y, Xiao W and Lee X. 2017. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. Journal of Geophysical Research: Biogeosciences, 122(7): 1597-1614 [DOI: 10.1002/2017JG003805http://dx.doi.org/10.1002/2017JG003805]
Xiao W, Liu S D, Li H C, Xiao Q T, Wang W, Hu Z H, Hu C, Gao Y Q, Shen J, Zhao X Y, Zhang M and Lee X. 2014. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface. Environmental Science and Technology, 48(24): 14490-14498 [DOI: 10.1021/es5033713http://dx.doi.org/10.1021/es5033713]
Xu Y J, Xu Z and Yang R J. 2019. Rapid daily change in surface water pCO2 and CO2 evasion: a case study in a subtropical eutrophic lake in Southern USA. Journal of Hydrology, 570: 486-494 [DOI: 10.1016/j.jhydrol.2019.01.016http://dx.doi.org/10.1016/j.jhydrol.2019.01.016]
Yan X C, Ma J, Li Z C, Ji M, Xu J, Xu X G, Wang G X and Li Y M. 2021. CO2 dynamic of Lake Donghu highlights the need for long-term monitoring. Environmental Science and Pollution Research, 28(9): 10967-10976 [DOI: 10.1007/s11356-020-11374-yhttp://dx.doi.org/10.1007/s11356-020-11374-y]
Yang P and Tong C. 2015. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems: a review. Acta Ecologica Sinica, 35(20): 6868-6880
杨平, 仝川. 2015. 淡水水生生态系统温室气体排放的主要途径及影响因素研究进展. 生态学报, 35(20): 6868-6880 [DOI: 10.5846/stxb201406231298http://dx.doi.org/10.5846/stxb201406231298]
Zhang B, Li J S, Shen Q, Wu Y H, Zhang F F, Wang S L, Yao Y, Guo L N and Yin Z Y. 2021. Recent research progress on long time series and large scale optical remote sensing of inland water. Journal of Remote Sensing, 25(1): 37-52
张兵, 李俊生, 申茜, 吴艳红, 张方方, 王胜蕾, 姚月, 郭立男, 殷子瑶. 2021. 长时序大范围内陆水体光学遥感研究进展. 遥感学报, 25(1): 37-52 [DOI: 10.11834/jrs.20210570http://dx.doi.org/10.11834/jrs.20210570]
相关文章
相关作者
相关机构