青藏高原纳木错湖冰物候变化遥感监测与模拟
Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling
- 2022年26卷第1期 页码:193-200
纸质出版日期: 2022-01-07
DOI: 10.11834/jrs.20221288
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-07 ,
扫 描 看 全 文
吴艳红,郭立男,范兰馨,文梦宣,迟皓婧,张兵.2022.青藏高原纳木错湖冰物候变化遥感监测与模拟.遥感学报,26(1): 193-200
Wu Y H,Guo L N,Fan L X,Wen M X,Chi H J and Zhang B. 2022. Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling. National Remote Sensing Bulletin, 26(1):193-200
湖冰物候是反映区域气候变化的直观指标。由于青藏高原湖冰物候的地面观测不足,遥感与模拟成为动态监测湖冰物候变化并揭示其变化机理的重要途径。本文以纳木错为例,通过不同遥感方法获取了纳木错2000年—2015年湖冰物候的动态变化。在此基础上,将遥感与物理基础清晰的湖泊过程模型相结合,重建了纳木错1963年—2018年的湖冰物候序列,并分析了近60 a来纳木错湖冰物候的变化规律。研究结果表明,气候变暖影响下,湖冰融化日期显著提前,纳木错湖泊的冰期以6.4 d/(10 a)的速率显著缩短。未来气温升高2 ℃的情景下,湖冰融化日期平均可提前12.4 d。
Lake ice phenology refers to the dates of lake freeze-up and break-up and period of ice cover; it is considered a valuable indicator of regional climate change. The shifts of lake ice phenology in association with a warming climate is widely interesting because it not only serves as evidence of the changes in climate but could show substantial impacts on regional hydrological processes and the aquatic ecosystem. Ground-based records of lake ice phenology over the Tibetan Plateau are limited because of the harsh geographical conditions and the high observation costs. Satellite-based observation and modeling are expected to be effective in investigating the long-term changes in lake ice phenology for regions with poor ground observations. We aim to reconstruct the lake ice phenology time series and to identify the long-term changes of lake ice phenology in responding to the climate of Nam Co Lake at the Tibetan Plateau and for the past 60 years based on a process-based model
where remotely sensed lake surface water temperature is used to calibrated the process-based model.
The research framework includes retrieving lake surface water temperature and lake ice phenology information from remotely sensed data
calibrating the process-based model against the remotely sensed lake surface water temperature
determining lake ice phenology according to the simulated water temperature
validating the simulated lake ice phenology by comparing against that derived from the remotely sensed data
detecting the long-term trends in the reconstructed lake ice phenology
and modeling the response of lake ice phenology to changes in air temperature. Four different remotely sensed datasets and the corresponding approaches are used to retrieve lake ice phenology of the Nam Co for the period 2000—2015. The process-based model (LAKE 2.3) is a 1D lake surface energy balance model. It is used to reconstruct lake ice phenology of Nam Co for the period 1963 to 2018 and investigate the sensitivity of lake ice phenology to climate change. The Mann–Kendall nonparametric statistical test approach is used in detecting the trend of lake ice phenology.
Lake ice phenology derived using different remotely sensed data and approaches with consistency in the trend but with considerable uncertainties due to the temporal and spatial resolution of the sensors. The reconstructed lake ice breaking-up date based on the model is more comparable to that remotely sensed data than the other lake ice phenology indicators. The reconstructed time series of lake ice phenology shows that
during the previous 57 years
the freezing-up date was significantly delayed whereas the breaking-up date was earlier
thereby resulting in a shortened ice cover duration. The ice cover duration is shortened at a rate of 6.4 days/10a during the period 1963 to 2018. Sensitivity analysis shows that the breaking-up date would be significantly earlier in a warm climate. Under the 2 °C warmer scenario
the breaking-up date would be 12.4 days earlier on the average
and the ice cover duration would be shortened by 19.7 days
on the average.
This study combines the strengths of remote sensing and numerical modeling in forming a novel research framework to reconstruct lake ice phenology of regions with poor ground-observation
such as the Tibetan Plateau. The results show that the framework is reliable and valuable to explore the long-term changes in lake ice phenology and its response to climate change. However
uncertainties exist in the remotely sensed lake ice phenology and the numerical modeling
which needs to be improved and further validated where or when ground-based observations are available.
湖冰物候遥感监测湖泊模型纳木错青藏高原
lake ice phenologymulti-source remote sensinglake modelNam CoTibetan Plateau
Bengtsson L. 2011. Ice-covered lakes: environment and climate—required research. Hydrological Processes, 25(17): 2767-2769 [DOI: 10.1002/hyp.8098http://dx.doi.org/10.1002/hyp.8098]
Bernhardt J, Engelhardt C, Kirillin G and Matschullat J. 2012. Lake ice phenology in Berlin-Brandenburg from 1947-2007: observations and model hindcasts. Climatic Change, 112(3/4): 791-817 [DOI: 10.1007/s10584-011-0248-9http://dx.doi.org/10.1007/s10584-011-0248-9]
Bolton D. 1980. The computation of equivalent potential temperature. Monthly Weather Review, 108(7): 1046-1053 [DOI: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2]
Brown L C and Duguay C R. 2010. The response and role of ice cover in lake-climate interactions. Progress in Physical Geography: Earth and Environment, 34(5): 671-704 [DOI: 10.1177/0309133310375653http://dx.doi.org/10.1177/0309133310375653]
Chen L and Frauenfeld O W. 2014. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. Journal of Climate, 27(11): 3920-3937 [DOI: 10.1175/JCLI-D-13-00465.1http://dx.doi.org/10.1175/JCLI-D-13-00465.1]
Du J, Wen L J and Su D S. 2020. Analysis of simulated temperature difference between lake surface and air and energy balance of three alpine lakes with different depths on the Qinghai-Xizang Plateau during the ice-free period. Plateau Meteorology, 39(6): 1181-1194
杜娟, 文莉娟, 苏东生. 2020. 青藏高原不同深度湖泊无冰期湖气温差及湖表辐射与能量平衡特征模拟分析. 高原气象, 39(6): 1181-1194 [DOI: 10.7522/j.issn.1000-0534.2019.00133http://dx.doi.org/10.7522/j.issn.1000-0534.2019.00133]
Duguay C R, Bernier M, Gauthier Y and Kouraev A. 2015. Remote sensing of lake and river ice//Tedesco M, ed. Remote Sensing of the Cryosphere. New York: John Wiley and Sons, Ltd.: 273-306
Duguay C R, Flato G M, Jeffries M O, Ménard P, Morris K and Rouse W R. 2003. Ice-cover variability on shallow lakes at high latitudes: model simulations and observations. Hydrological Processes, 17(17): 3465-3483 [DOI: 10.1002/HYP.1394http://dx.doi.org/10.1002/HYP.1394]
Fang N, Yang K, La Z, Chen Y Y, Wang J B and Zhu L P. 2017. Research on the application of WRF-lake Modeling at Nam Co Lake on the Qinghai-Tibetan Plateau. Plateau Meteorology, 36(3): 610-618
方楠, 阳坤, 拉珠, 陈莹莹, 王君波, 朱立平. 2017. WRF湖泊模型对青藏高原纳木错湖的适用性研究. 高原气象, 36(3): 610-618 [DOI: 10.7522/j.issn.1000-0534.2016.00038http://dx.doi.org/10.7522/j.issn.1000-0534.2016.00038]
Fang X and Stefan H G. 1996. Long-term lake water temperature and ice cover simulations/measurements. Cold Regions Science and Technology, 24(3): 289-304 [DOI: 10.1016/0165-232X(95)00019-8http://dx.doi.org/10.1016/0165-232X(95)00019-8]
Fu C S and Yao H X. 2015. Trends of ice breakup date in south-central Ontario. Journal of Geophysical Research: Atmospheres, 120(18): 9220-9236 [DOI: 10.1002/2015JD023370http://dx.doi.org/10.1002/2015JD023370]
Ghanbari R N, Bravo H R, Magnuson J J, Hyzer W G and Benson B J. 2009. Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin). Journal of Hydrology, 374(3/4): 282-293 [DOI: 10.1016/j.jhydrol.2009.06.024http://dx.doi.org/10.1016/j.jhydrol.2009.06.024]
Gou P, Ye Q H, Che T, Feng Q, Ding B H, Lin C G and Zong J B. 2017. Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products. Journal of Great Lakes Research, 43(6): 989-998 [DOI: 10.1016/j.jglr.2017.08.011http://dx.doi.org/10.1016/j.jglr.2017.08.011]
Goudsmit G H, Burchard H, Peeters F and Wüest A. 2002. Application of k-ϵ turbulence models to enclosed basins: the role of internal seiches. Journal of Geophysical Research: Oceans, 107(C12): 3230 [DOI: 10.1029/2001JC000954http://dx.doi.org/10.1029/2001JC000954]
Guo L, Zheng H X, Wu Y H, Zhang T Q, Wen M X, Fan L X and Zhang B. 2020. Responses of lake ice phenology to climate change at Tibetan Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 3856-3861 [DOI: 10.1109/JSTARS.2020.3006270http://dx.doi.org/10.1109/JSTARS.2020.3006270]
Guo L N, Wu Y H, Zheng H X, Zhang B, Li J S, Zhang F F and Shen Q. 2018. Uncertainty and variation of remotely sensed lake ice phenology across the Tibetan Plateau. Remote Sensing, 10(10): 1534 [DOI: 10.3390/rs10101534http://dx.doi.org/10.3390/rs10101534]
Hu Q, Jiang D B and Fan G Z. 2014. Evaluation of CMIP5 models over the Qinghai–Tibetan Plateau. Chinese Journal of Atmospheric Sciences, 38(5): 924-938
胡芩, 姜大膀, 范广洲. 2014. CMIP5全球气候模式对青藏高原地区气候模拟能力评估. 大气科学, 38(5): 924-938 [DOI: 10.3878/j.issn.1006-9895.2013.13197http://dx.doi.org/10.3878/j.issn.1006-9895.2013.13197]
Huang A N, Lazhu, Wang J B, Dai Y J, Yang K, Wei N, Wen L J, Wu Y, Zhu X Y, Zhang X D and Cai S X. 2019. Evaluating and improving the performance of three 1-D lake models in a large deep lake of the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124(6): 3143-3167 [DOI: 10.1029/2018JD029610http://dx.doi.org/10.1029/2018JD029610]
Huang L, Wang J B, Zhu L P, Ju J T and Daut G. 2017. The warming of large lakes on the Tibetan Plateau: evidence from a lake model simulation of Nam Co, China, during 1979-2012. Journal of Geophysical Research: Atmospheres, 122(24): 13095-13107 [DOI: 10.1002/2017JD027379http://dx.doi.org/10.1002/2017JD027379]
Joehnk K D and Umlauf L. 2001. Modelling the metalimnetic oxygen minimum in a medium sized alpine lake. Ecological Modelling, 136(1): 67-80 [DOI: 10.1016/S0304-3800(00)00381-1http://dx.doi.org/10.1016/S0304-3800(00)00381-1]
Kendall M G. 1955. Rank Correlation Methods. 2nd ed. New York, NY: Hafner Publishing
Kouraev A V, Semovski S V, Shimaraev M N, Mognard N M, Légresy B and Remy F. 2007. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sensing of Environment, 108(3): 240-253 [DOI: 10.1016/j.rse.2006.11.010http://dx.doi.org/10.1016/j.rse.2006.11.010]
Kropáček J, Maussion F, Chen F, Hoerz S and Hochschild V. 2013. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. The Cryosphere, 7(1): 287-301 [DOI: 10.5194/TC-7-287-2013http://dx.doi.org/10.5194/TC-7-287-2013]
Latifovic R and Pouliot D. 2007. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sensing of Environment, 106(4): 492-507
Launiainen J and Cheng B. 1998. Modelling of ice thermodynamics in natural water bodies. Cold Regions Science and Technology, 27(3): 153-178 [DOI: 10.1016/S0165-232X(98)00009-3http://dx.doi.org/10.1016/S0165-232X(98)00009-3]
Livingstone D M. 1997. Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37(2): 407-439 [DOI: 10.1023/A:1005371925924http://dx.doi.org/10.1023/A:1005371925924]
Magnuson J J, Robertson D M, Benson B J, Wynne R H, Livingstone D M, Arai T, Assel R A, Barry R G, Card V, Kuusisto E, Granin N G, Prowse T D, Stewart K M and Vuglinski V S. 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289(5485): 1743-1746 [DOI: 10.1126/science.289.5485.1743http://dx.doi.org/10.1126/science.289.5485.1743]
Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259 [DOI: 10.2307/1907187http://dx.doi.org/10.2307/1907187]
Marszelewski W and Skowron R. 2006. Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes. Hydrological Sciences Journal, 51(2): 336-349 [DOI: 10.1623/hysj.51.2.336http://dx.doi.org/10.1623/hysj.51.2.336]
Pang Y W, Huang Y X, Gong Z, Wen J Y and Xu J F. 2020. Advances in Phenological Monitoring of Lake Ice based on Multi-spectral remote Sensing. Transactions of Oceanology and Limnology, (2): 90-99
庞毓雯, 黄雨馨, 巩志, 问静怡, 徐俊锋. 2020. 基于多光谱遥感的湖冰物候监测方法研究进展. 海洋湖沼通报, (2): 90-99
Qiu Y B, Guo H D, Ruan Y J, Fu X R, Shi L J and Tian B S. 2017. A dataset of microwave brightness temperature and freeze-thaw for medium-to-large lakes over the High Asia region (2002‒2016). Science Data Bank, 2(2): 30-41
邱玉宝, 郭华东, 阮永俭, 付心如, 石利娟, 田邦森. 2017. 2002~2016年高亚洲地区中大型湖泊微波亮温和冻融数据集. 中国科学数据(中英文网络版), 2(2): 30-41 [DOI: 10.11922/csdata.170.2017.0117http://dx.doi.org/10.11922/csdata.170.2017.0117]
Ren X Q, Li Q, Chen W and Liu H Z. 2014. A new lake model for air-lake heat exchange process and evaluation of its simulation ability. Chinese Journal of Atmospheric Sciences, 38(5): 994-1004
任晓倩, 李倩, 陈文, 刘辉志. 2014. 一个新的湖——气热传输模型及其模拟能力评估. 大气科学, 38(5): 994-1004
Salonen K, Leppäranta M, Viljanen M and Gulati R D. 2009. Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquatic Ecology, 43(3): 609-616 [DOI: 10.1007/s10452-009-9278-zhttp://dx.doi.org/10.1007/s10452-009-9278-z]
Song X Y, Wen L J, Li M S, Du J, Su D S, Yin S C and Lü Z. 2020. Comparative study on applicability of different lake models to typical lakes in Qinghai-Tibetan Plateau. Plateau Meteorology, 39(2): 213-225
宋兴宇, 文莉娟, 李茂善, 杜娟, 苏东生, 阴蜀城, 吕钊. 2020. 不同湖泊模式对青藏高原典型湖泊适用性对比研究. 高原气象, 39(2): 213-225 [DOI: 10.7522/j.issn.1000-0534.2019.00102http://dx.doi.org/10.7522/j.issn.1000-0534.2019.00102]
Stepanenko V, Mammarella I, Ojala A, Miettinen H, Lykosov V and Vesala T. 2016. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9: 1977-2006 [DOI: 10.5194/gmd-9-1977-2016http://dx.doi.org/10.5194/gmd-9-1977-2016]
Su D S, Hu X Q, Wen L J, Zhao L and Li Z G. 2018. Simulation of the response of Qinghai Lake thermal conditions to climate change. Plateau Meteorology, 37(2): 394-405
苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 2018. 青海湖热力状况对气候变化响应的数值研究. 高原气象, 37(2): 394-405 [DOI: 10.7522/j.issn.1000-0534.2017.00069http://dx.doi.org/10.7522/j.issn.1000-0534.2017.00069]
Vavrus S J, Wynne R H and Foley J A. 1996. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnology and Oceanography, 41(5): 822-831 [DOI: 10.4319/lo.1996.41.5.0822http://dx.doi.org/10.4319/lo.1996.41.5.0822]
Wang J B, Zhu L P, Daut G, Ju J T, Lin X, Wang Y and Zhen X L. 2009. Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology, 10(2): 149-158 [DOI: 10.1007/s10201-009-0266-8http://dx.doi.org/10.1007/s10201-009-0266-8]
Wu Y H, Zheng H X, Zhang B, Chen D M and Lei L P. 2014. Long-term changes of lake level and water budget in the Nam Co Lake Basin, Central Tibetan Plateau. Journal of Hydrometeorology, 15(3): 1312-1322 [DOI: 10.1175/JHM-D-13-093.1http://dx.doi.org/10.1175/JHM-D-13-093.1]
Zhang B, Wu Y H, Zhu L P, Wang J B, Li J S and Chen D M. 2011. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. Journal of Hydrology, 405(1/2): 161-170 [DOI: 10.1016/j.jhydrol.2011.05.018http://dx.doi.org/10.1016/j.jhydrol.2011.05.018]
相关作者
相关机构