高分多模卫星大气校正总体设计与在轨验证
Overall design and on-orbit verification of synchronization monitoring atmosphere corrector on high-resolution multi-mode satellite (GFDM)
- 2022年26卷第5期 页码:1039-1050
纸质出版日期: 2022-05-07
DOI: 10.11834/jrs.20221371
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-05-07 ,
扫 描 看 全 文
余婧,杨文涛,李正强,侯伟真,裘桢炜,李雨廷,葛邦宇.2022.高分多模卫星大气校正总体设计与在轨验证.遥感学报,26(5): 1039-1050
Yu J,Yang W T,Li Z Q,Hou W Z,Qiu Z W,Li Y T and Ge B Y. 2022. Overall design and on-orbit verification of synchronization monitoring atmosphere corrector on high-resolution multi-mode satellite (GFDM). National Remote Sensing Bulletin, 26(5):1039-1050
高分多模卫星搭载中国首台民用大气同步校正仪,可以对同平台的高分辨率相机观测区域进行时间同步、视场覆盖的大气参数测量,实现对高分辨率图像的大气校正。文章论述了高分多模卫星大气同步校正的总体设计思路,并给出了时空同步、多谱段、多偏振通道探测体制的设计方案和地面验证结果。高分多模卫星入轨以后,对大气同步校正仪的大气参数反演效果和高分辨率图像的校正效果进行了分析,结果表明利用大气同步校正仪测量数据对大气气溶胶光学厚度(AOD)和大气水汽含量(CWV)的反演结果可信,对高分辨率图像有较好的大气校正效果。
The high-resolution multi-mode satellite (GFDM) is equipped with China’s first civil-using Synchronization Monitoring Atmosphere Corrector (SMAC). This satellite can acquire the atmospheric parameters of the same observation area of the high-resolution camera and achieve accurate correction for the image taken by the high-resolution camera. This study discusses the overall design ideas of synchronization atmospheric correction for high-resolution multi-mode satellites. The design schemes of time-space synchronization
multi-spectrum
multi-polarization channel detection system
and the verification results on ground and on orbit are presented.
GFDM satellite has the capability of rapid attitude maneuvering. Thus
it can realize efficient and flexible observation of ground targets
which greatly improves its imaging efficiency. However
this feature also brings new requirement for the assurance of the quality of the high-resolution images obtained by the satellite. When the satellite takes photograph at a larger angle
the atmospheric transmission path of light from ground observing target increases. This condition will cause greater impact on the image’s modulation transfer function and different adjacent pixel effect compared with the situation of sub-satellite point viewing. GFDM satellite adopts a space-ground integrated atmospheric synchronization correction solution to obtain remote sensing image data products with high radiation accuracy and high commercial value. SMAC is equipped on GFDM to obtain atmospheric detecting data that strictly match the image obtained by the high-resolution camera temporally and spatially. The spectrum band and polarization channel design and the key performance control measures of SMAC during its manufacturing process fully consider the subsequent ground atmospheric retrieval requirements. The ground atmospheric retrieval algorithm also considers the design properties of SMAC. Through this cooperation between the two important processes
more accurate atmospheric parameters can be provided for the atmospheric correction of high-resolution images of GFDM. This study gives the scheme design
main technical properties
and ground test results of SMAC. A radiation comparison between SMAC and ground-based solar/sky radiometer was conducted on ground
and good experimental results were achieved.
GFDM satellite was launched to orbit on July 3
2020. On the first day (the 6th orbit circle) after launch
an initial status check was performed. On the second day
the SMAC started the atmosphere detection and the detected data were downloaded to ground. The ground application system used these detection data to perform atmospheric parameter inversion and image atmospheric correction. The atmospheric parameter inversion results and the effect of atmospheric correction of high-resolution images were examined. The comparison between the measurement data from the global AERONET site shows that the inversion results of atmospheric aerosol optical thickness and atmospheric water vapor content based on SMAC detection data are credible. Using the inverted atmospheric parameter
a good atmospheric correction effect on high-resolution images can be achieved
detailed information of the satellite images is significantly restored
and the ground object reflectance is effectively improved. These results all effectively support the subsequent quantification application of GFDM high-resolution image data. The successful application of SMAC in-orbit also provides a reference for the subsequent satellites which need to improve their quantitative application level.
遥感大气校正总体设计在轨验证偏振气溶胶光学厚度大气水汽含量
remote sensingatmosphere correctoroverall designon-orbit verificationpolarizationAerosol Optical Depth (AOD)Columnar Water Vapor (CWV)
Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé J L, Ducos F, Sinyuk A and Lopatin A. 2011. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5): 975-1018 [DOI: 10.5194/amt-4-975-2011http://dx.doi.org/10.5194/amt-4-975-2011]
Dubovik O, Holben B N, Eck T F, Smirnov A, Kaufman Y J, King M D, Tanre D and Slutsker I. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3): 590-608 [DOI: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2]
Dubovik O, Li Z Q, Mishchenko M I, Tanré D, Karol Y, Bojkov B, Cairns B, Diner D J, Espinosa W R, Goloub P, Gu X F, Hasekamp O, Hong J, Hou W Z, Knobelspiesse K D, Landgraf J, Li L, Litvinov P, Liu Y, Lopatin A, Marbach T, Maring H, Martins V, Meijer Y, Milinevsky G, Mukai S, Parol F, Qiao Y L, Remer L, Rietjens J, Sano I, Stammes P, Stamnes S, Sun X B, Tabary P, Travis L D, Waquet F, Xu F, Yan C X and Yin D K. 2019. Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 474-511 [DOI: 10.1016/j.jqsrt.2018.11.024http://dx.doi.org/10.1016/j.jqsrt.2018.11.024]
Dubovik O, Schuster G L, Xu F, Hu Y X, Bösch H, Landgraf J and Li Z Q. 2021. Grand challenges in satellite remote sensing. Frontiers in Remote Sensing, 2: 619818 [DOI: 10.3389/frsen.2021.619818http://dx.doi.org/10.3389/frsen.2021.619818]
Gao B C, Montes M J, Davis C O and Goetz A F H. 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113(1): S17-S24 [DOI: 10.1016/j.rse.2007.12.015http://dx.doi.org/10.1016/j.rse.2007.12.015]
Griffin M K and Burke H H K. 2003. Compensation of hyperspectral data for atmospheric effects. Lincoln Laboratory Journal, 14(1): 29-54
Guo H, Gu X F, Xie D H, Yu T and Meng Q Y. 2014. A review of atmospheric aerosol research by using polarization remote sensing. Spectroscopy and Spectral Analysis, 34(7): 1873-1880
郭红, 顾行发, 谢东海, 余涛, 孟庆岩. 2014. 大气气溶胶偏振遥感研究进展. 光谱学与光谱分析, 34(7): 1873-1880 [DOI: 10.3964/j.issn.1000-0593(2014)07-1873-08http://dx.doi.org/10.3964/j.issn.1000-0593(2014)07-1873-08]
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I and Smirnov A. 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16 [DOI: 10.1016/S0034-4257(98)00031-5http://dx.doi.org/10.1016/S0034-4257(98)00031-5]
Hou W Z, Li Z Q, Wang J, Xu X G, Goloub P and Qie L L. 2018. Improving remote sensing of aerosol microphysical properties by near-infrared polarimetric measurements over vegetated land: information content analysis. Journal of Geophysical Research: Atmospheres, 123(4): 2215-2243 [DOI: 10.1002/2017JD027388http://dx.doi.org/10.1002/2017JD027388]
Hou W Z, Wang J, Xu X G, Reid J S and Han D. 2016. An algorithm for hyperspectral remote sensing of aerosols: 1. development of theoretical framework. Journal of Quantitative Spectroscopy and Radiative Transfer, 178: 400-415 [DOI: 10.1016/j.jqsrt.2016.01.019http://dx.doi.org/10.1016/j.jqsrt.2016.01.019]
Hu Y D, Hu Q Y, Sun B, Wang X J, Qiu Z W and Hong J. 2015. Double-angle polarized atmospheric corrector for remote sensing images. Optics and Precision Engineering, 23(3): 652-659
胡亚东, 胡巧云, 孙斌, 王相京, 裘桢炜, 洪津. 2015. 遥感图像双角度偏振大气校正仪. 光学 精密工程, 23(3): 652-659 [DOI: 10.3788/OPE.20152303.0652http://dx.doi.org/10.3788/OPE.20152303.0652]
Huang W J, Cui W Y, Yi W N, Sun B and Hu Y D. 2015. Calibration processing for multi-spectral polarimetric atmospheric detection system. Journal of Atmospheric and Environmental Optics, 10(4): 350-356
黄文娟, 崔文煜, 易维宁, 孙斌, 胡亚东. 2015. 多光谱偏振大气探测系统定标处理. 大气与环境光学学报, 10(4): 350-356 [DOI: 10.3969/j.issn.1673-6141.2015.04.010http://dx.doi.org/10.3969/j.issn.1673-6141.2015.04.010]
Li Z Q, Chen X F, Ma Y, Qie L L, Hou W Z and Qiao Y L. 2018. An overview of atmospheric correction for optical remote sensing satellites. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 10(1): 6-15
李正强, 陈兴峰, 马䶮, 伽丽丽, 侯伟真, 乔延利. 2018. 光学遥感卫星大气校正研究综述. 南京信息工程大学学报(自然科学版), 10(1): 6-15 [DOI: 10.13878/j.cnki.jnuist.2018.01.002http://dx.doi.org/10.13878/j.cnki.jnuist.2018.01.002]
Li Z Q, Hou W Z, Hong J, Zheng F X, Luo D G, Wang J, Gu X F and Qiao Y L. 2018. Directional polarimetric camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation. Journal of Quantitative Spectroscopy and Radiative Transfer, 218: 21-37 [DOI: 10.1016/j.jqsrt.2018.07.003http://dx.doi.org/10.1016/j.jqsrt.2018.07.003]
Liang S L, Li X W and Wang J D. 2013. Quantitative Remote Sensing: Ideas and Algorithms. Beijing: Science Press
梁顺林, 李小文, 王锦地. 2013. 定量遥感: 理念与算法. 北京: 科学出版社
Longbotham N, Pacifici F, Malitz S, Baugh W and Camps-Valls G. 2015. Measuring the spatial and spectral performance of WorldView-3//Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment (pp. HW3B-2). Lake Arrowhead: Optical Society of America [DOI: 10.1364/HISE.2015.HW3B.2http://dx.doi.org/10.1364/HISE.2015.HW3B.2]
Minu S and Shetty A. 2015. Atmospheric correction algorithms for hyperspectral imageries: a review. International Research Journal of Earth Sciences, 3(5): 14-18
Reuter D C, McCabe G H, Dimitrov R, Graham S M, Jennings D E, Matsumura M M, Rapchun D A and Travis J W. 2001. The LEISA/atmospheric corrector (LAC) on EO-1//IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217). Sydney: IEEE: 46-48 [DOI: 10.1109/IGARSS.2001.976053http://dx.doi.org/10.1109/IGARSS.2001.976053]
Sano I, Mukai S and Takashima T. 1997. Multispectral polarization measurements of atmospheric aerosols. Advances in Space Research, 19(9): 1379-1382 [DOI: 10.1016/S0273-1177(97)00249-4http://dx.doi.org/10.1016/S0273-1177(97)00249-4]
Shaw G A and Burke H H K. 2003. Spectral imaging for remote sensing. Lincoln Laboratory Journal, 14(1): 3-28
Song M X, Sun B, Sun X B and Hong J. 2012. Polarization calibration of airborne muti-angle polarimetric radiometer. Optics and Precision Engineering, 20(6): 1153-1158
宋茂新, 孙斌, 孙晓兵, 洪津. 2012. 航空多角度偏振辐射计的偏振定标. 光学 精密工程, 20(6): 1153-1158 [DOI: 10.3788/OPE.20122006.1153http://dx.doi.org/10.3788/OPE.20122006.1153]
Wand X H, Qiao Y L, Goloub P and Li Z Q. 2008. Radiometric calibration of sunphotometer system applied to aerosol robotic network. Acta Optica Sinica, 28(1): 87-91
王先华, 乔延利, Goloub P, 李正强. 2008. 应用于全球气溶胶测量网的太阳辐射计辐射定标系统. 光学学报, 28(1): 87-91 [DOI: 10.3321/j.issn:0253-2239.2008.01.016http://dx.doi.org/10.3321/j.issn:0253-2239.2008.01.016]
Waquet F, Léon J F, Cairns B, Goloub P, Deuzé J L and Auriol F. 2009. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. Applied Optics, 48(6): 1228-1236 [DOI: 10.1364/AO.48.001228http://dx.doi.org/10.1364/AO.48.001228]
Xu X G, Wang J, Henze D K, Qu W J and Kopacz M. 2013. Constraints on aerosol sources using GEOS-chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. Journal of Geophysical Research: Atmospheres, 118(12): 6396-6413 [DOI: 10.1002/jgrd.50515http://dx.doi.org/10.1002/jgrd.50515]
Zheng F X, Li Z Q, Hou W Z, Qie L L and Zhang C. 2020. Aerosol retrieval study from multiangle polarimetric satellite data based on optimal estimation method. Journal of Applied Remote Sensing, 14(1): 014516 [DOI: 10.1117/1.JRS.14.014516http://dx.doi.org/10.1117/1.JRS.14.014516]
相关作者
相关机构