植被覆盖区高精度遥感地貌场景分类数据集
Geomorphological scene classification dataset of high-resolution remote sensing imagery in vegetation-covered areas
- 2022年26卷第4期 页码:606-619
纸质出版日期: 2022-04-07
DOI: 10.11834/jrs.20221385
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-04-07 ,
扫 描 看 全 文
欧阳淑冰,陈伟涛,李显巨,董玉森,王力哲.2022.植被覆盖区高精度遥感地貌场景分类数据集.遥感学报,26(4): 606-619
Ouyang S B,Chen W T,Li X J,Dong Y S and Wang L Z. 2022. Geomorphological scene classification dataset of high-resolution remote sensing imagery in vegetation-covered areas. National Remote Sensing Bulletin, 26(4):606-619
地貌数据集是实现地貌自动分类和加深对地貌形态学认识的重要支撑数据之一。当前缺乏高精度地貌成因类数据集,制约了地貌遥感自动解译的发展。本文在中国东北地区以沟—弧—盆体系为主的天山—兴蒙造山系中,针对强烈的构造运动和新生代以来的火山作用、流水作用形成的地貌成因类型,制作了构造地貌、火山熔岩地貌和流水地貌3类场景数据集(GOS10m)。数据集覆盖面积约5000 km
2
,包括哨兵2号可见光遥感影像、SRTM1 DEM及基于DEM提取的7个地貌形态参数(山体晕渲图、坡度、DEM局部平均中值、标准偏差、坡向—向北方向偏移量、坡向—向东方向偏移量和相对偏离平均值)。单张样本图为64像素×64像素,空间分辨率为10 m。采用多模态深度学习神经网络对数据进行训练并分类,平均测试精度可达到82.63%,表明构建的数据集具有较高的质量。可为地貌成因遥感自动分类研究以及推动遥感地貌智能解译的向前发展,提供数据集支撑。
A geomorphological dataset is considered to be one of the most important data sources to realize automatic classification of geomorphology and deepening understanding of geomorphological morphology. At present
the datasets of high-precision geomorphologic origin are scarce
hindering the development of automatic geomorphological interpretation using remote sensing data techniques. In the Tianshan–Xingmeng orogenic system
which is dominated by the gully arc-basin system in northeast China
three scene datasets namely
tectonic geomorphology
volcanic lava geomorphology
and flowing geomorphology are made. These geomorphology types were formed by strong tectonic movement
volcanism from the Neozoic
and flowing water action from the Neozoic. The data set covers an area of approximately 5000 km
2
including visible light remote sensing image of Sentinel-2
SRTM1 DEM
and seven geomorphological variables based on DEM extraction (hillshade
slope
DEM local average value
standard deviation
two components of aspect
and relative deviation from mean value). Each sample patch is 64×64 pixels with a spatial resolution of 10 m. A multi-modal deep learning model is proposed for classification
and the results show that the average test accuracy is 82.63%. The quality of the dataset is high. The dataset (available from
https://pan
https://pan
.baidu.com/s/1Kzj04cU-TiofPk6pTEKENg
password: cug0) could provide fundamental data support for the automatic classification research of geomorphological causes by remote sensing and promote the development of intelligent interpretation in the geoscience community by remote sensing techniques.
地貌数据集地貌分类深度学习遥感场景分类植被覆盖
geomorphology datasetsgeomorphological classificationdeep learningremote sensing scene classificationvegetation cover
Anders N S, Seijmonsbergen A C and Bouten W. 2011. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing of Environment, 115(12): 2976-2985 [DOI: 10.1016/j.rse.2011.05.007http://dx.doi.org/10.1016/j.rse.2011.05.007]
Bue B D and Stepinski T F. 2007. Machine detection of Martian impact craters from digital topography data. IEEE Transactions on Geoscience and Remote Sensing, 45(1): 265-274 [DOI: 10.1109/tgrs.2006.885402http://dx.doi.org/10.1109/tgrs.2006.885402]
Cao B X. 1995. Geomorphology and Quaternary Geology. Wuhan: China University of Geosciences Press
曹伯勋. 1995. 地貌学及第四纪地质学. 武汉: 中国地质大学出版社
Chen Z M. 1988. Some classification problems of regional landforms and Method of cartographic analysis. Journal of Henan University (Natural Science), (1): 35-40
陈志明. 1988. 区域地貌的某些分类问题及其制图的分析方法. 河南大学学报(自然科学版), (1): 35-40
Cheng W M, Zhou C H, Li B Y, Shen Y C and Zhang B P. 2011. Structure and contents of layered classification system of digital geomorphology for China. Journal of Geographical Sciences, 21(5): 771-790 [DOI: 10.1007/s11442-011-0879-9http://dx.doi.org/10.1007/s11442-011-0879-9]
Drăguţ L and Blaschke T. 2006. Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3/4): 330-344 [DOI: 10.1016/j.geomorph.2006.04.013http://dx.doi.org/10.1016/j.geomorph.2006.04.013]
Du L, You X, Li K, Meng L Q, Cheng G, Xiong L Y and Wang G X. 2019. Multi-modal deep learning for landform recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 158: 63-75 [DOI: 10.1016/j.isprsjprs.2019.09.018http://dx.doi.org/10.1016/j.isprsjprs.2019.09.018]
Gu W Y, Meng X R, Zhu X C and Qiu X F. 2020. Geomorphological Classification Research based on BEMD Decomposition. Journal of Geo-Information Science, 22(3): 464-473
顾文亚, 孟祥瑞, 朱晓晨, 邱新法. 2020. 基于BEMD分解的地貌分类研究. 地球信息科学学报, 22(3): 464-473
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Horn B K P. 1981. Hill shading and the reflectance map. Proceedings of the IEEE, 69(1): 14-47 [DOI: 10.1109/proc.1981.11918http://dx.doi.org/10.1109/proc.1981.11918]
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2017. Densely connected convolutional networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE [DOI: 10.1109/CVPR.2017.243http://dx.doi.org/10.1109/CVPR.2017.243]
Huang L C, Lin L, Jiang L M and Zhang T J. 2018. Automatic mapping of thermokarst landforms from remote sensing images using deep learning: a case study in the northeastern Tibetan plateau. Remote Sensing, 10(12): 2067 [DOI: 10.3390/rs10122067http://dx.doi.org/10.3390/rs10122067]
Ioffe S and Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR.org: 448-456
Jasiewicz J and Stepinski T F. 2013. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182: 147-156 [DOI: 10.1016/j.geomorph.2012.11.005http://dx.doi.org/10.1016/j.geomorph.2012.11.005]
Lecours V, Devillers R, Simms A E, Lucieer V L and Brown C J. 2017. Towards a framework for terrain attribute selection in environmental studies. Environmental Modelling and Software, 89: 19-30 [DOI: 10.1016/j.envsoft.2016.11.027http://dx.doi.org/10.1016/j.envsoft.2016.11.027]
Li F Y, Tang G A, Wang C, Cui L Z and Zhu R. 2016. Slope spectrum variation in a simulated loess watershed. Frontiers of Earth Science, 10(2): 328-339 [DOI: 10.1007/s11707-015-0519-2http://dx.doi.org/10.1007/s11707-015-0519-2]
Li S J, Xiong L Y, Tang G A and Strobl J. 2020. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology, 354: 107045 [DOI: 10.1016/j.geomorph.2020.107045http://dx.doi.org/10.1016/j.geomorph.2020.107045]
Liu J W, Ding X H and Luo X L. 2020. Survey of multimodal deep learning. Application Research of Computers, 37(6): 1601-1614
刘建伟, 丁熙浩, 罗雄麟. 2020. 多模态深度学习综述. 计算机应用研究, 37(6): 1601-1614 [DOI: 10.19734/j.issn.1001-3695.2018.12.0857http://dx.doi.org/10.19734/j.issn.1001-3695.2018.12.0857]
Liu X J, Gong J Y, Zhou Q M and Tang G A. 2004. A study of accuracy and algorithms for calculating slope and aspect based on grid digital elevation model(DEM). Acta Geodaetica et Cartographica Sinica, 33(3): 258-263
刘学军, 龚健雅, 周启鸣, 汤国安. 2004. 基于DEM坡度坡向算法精度的分析研究. 测绘学报, 33(3): 258-263 [DOI: 10.3321/j.issn:1001-1595.2004.03.014http://dx.doi.org/10.3321/j.issn:1001-1595.2004.03.014]
Shumack S, Hesse P and Farebrother W. 2020. Deep learning for dune pattern mapping with the AW3D30 global surface model. Earth Surface Processes and Landforms, 45(11): 2417-2431 [DOI: 10.1002/esp.4888http://dx.doi.org/10.1002/esp.4888]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-06-15]. https://arxiv.org/abs/1409.1556https://arxiv.org/abs/1409.1556
Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. 2016. Rethinking the inception architecture for computer vision//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE [DOI: 10.1109/CVPR.2016.308http://dx.doi.org/10.1109/CVPR.2016.308]
Wang Y W and Qin C Z. 2017. Review of methods for landform automatic classification. Geography and Geo-Information Science, 33(4): 16-21
王彦文, 秦承志. 2017. 地貌形态类型的自动分类方法综述. 地理与地理信息科学, 33(4): 16-21 [DOI: 10.3969/j.issn.1672-0504.2017.04.003http://dx.doi.org/10.3969/j.issn.1672-0504.2017.04.003]
Zhang B. 2018. Remotely Sensed big data era and intelligent information extraction. Geomatics and Information Science of Wuhan University, 43(12): 1861-1871
张兵. 2018. 遥感大数据时代与智能信息提取. 武汉大学学报(信息科学版), 43(12): 1861-1871 [DOI: 10.13203/j.whugis20180172http://dx.doi.org/10.13203/j.whugis20180172]
Zhang H F. 2019. Impacts of Land Use and Land Cover Change on Vegetation Coverage in China North Korea and Russia. Yanbian: Yanbian University: 63
张海凤. 2019. 中朝俄跨境区域LULCC对植被覆盖度的影响. 延边: 延边大学: 63
Zhang L P, Zhang L F and Du B. 2016. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2): 22-40 [DOI: 10.1109/mgrs.2016.2540798http://dx.doi.org/10.1109/mgrs.2016.2540798]
Zhong W J, Xing L X, Pan J, Wang T, Wang K and Zhang W Z. 2018. Study on fast partitioning system of geomorphic types based on DEM data. Journal of Jilin University (Information Science Edition), 36(5): 516-524
仲伟敬, 邢立新, 潘军, 王婷, 王凯, 张文哲. 2018. 基于DEM数据的地貌类型快速划分系统研究. 吉林大学学报(信息科学版), 36(5): 516-524 [DOI: 10.3969/j.issn.1671-5896.2018.05.006http://dx.doi.org/10.3969/j.issn.1671-5896.2018.05.006]
Zhou C H, Cheng W M, Qian J K, Li B Y and Zhang B P. 2009. Research on the classification system of digital land geomorphology of 1:1 000 000 in China. Journal of Geo-information Science, 11(6): 707-724
周成虎, 程维明, 钱金凯, 李炳元, 张百平. 2009. 中国陆地1∶100万数字地貌分类体系研究. 地球信息科学学报, 11(6): 707-724 [DOI: 10.3969/j.issn.1560-8999.2009.06.006http://dx.doi.org/10.3969/j.issn.1560-8999.2009.06.006]
相关作者
相关机构