气溶胶激光雷达的国内外研究进展与展望
An overview of aerosol lidar: Progress and prospect
- 2022年26卷第5期 页码:834-851
纸质出版日期: 2022-05-07
DOI: 10.11834/jrs.20221388
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-05-07 ,
扫 描 看 全 文
黄忠伟,王雍恺,闭建荣,王天河,李武仁,李泽,周天.2022.气溶胶激光雷达的国内外研究进展与展望.遥感学报,26(5): 834-851
Huang Z W,Wang Y K,Bi J R,Wang T H,Li W R,Li Z and Zhou T. 2022. An overview of aerosol lidar: progress and prospect,26:(5):834-851
大气气溶胶具有显著的环境与气侯效应,而定量评估上述效应需要准确了解气溶胶物理化学光学性质的时空分布特征。过去几十年,激光雷达已被国内外学者广泛应用于气溶胶探测研究,主要依赖于其在探测范围、时空分辨率等方面具有独特的技术优势。本文主要总结激光雷达在探测气溶胶方面的国内外研究进展,首先简要介绍可用于探测气溶胶的主要激光雷达类型,然后分别根据气溶胶大小、组分、浓度、形状、光学性质等关键信息介绍相关研究进展,最后进行总结并对气溶胶激光雷达发展进行了展望。
Aerosols
solid or liquid particles suspended in the atmosphere
are an important component in the troposphere. It is well known that atmospheric aerosols have significant impacts on environment
climate and ecosystem. Thus
the knowledge of the spatial-temporal distribution and evolution of aerosol physical-chemical-optical properties with high resolution is of great importance to quantitatively and accurately assess their climate and environmental effects. As an advanced remote sensing technology
lidar has been widely used to observe aerosol properties around the world
which is mainly attributed as its unique advantages in large detection range and high spatial-temporal resolutions. The basic principle of lidar remote sensing is that after sending lasers to the atmosphere backscattering signals from aerosols can be detected and further analyzed. This paper summarizes the research progress of lidar for detecting atmospheric aerosol over the past decades from three aspects: Firstly
the main types of lidar that can be used for atmospheric aerosol detection are briefly introduced
such as Mie scattering lidar
polarized lidar
Raman lidar
high spectral resolution lidar
fluorescent lidar
etc. They usually employ several principles of physics
such as Mie scattering
Raman scattering and fluorescence scattering. Secondly
the lidar-based research progress of aerosol properties at home and aboard
such as optical properties (e.g.
extinction/backscattering coefficient
lidar ratio
aerosol optical depth
Ångström exponent)
size (e.g.
color ratio)
shape (e.g.
depolarization ratio)
composition (e.g.
dust
smoke
sulfate
etc.)
and concentration (e.g.
mass concentration)
are individually introduced. Finally
with the advances of photoelectric technology
artificial intelligence
and precision machining technology in recent years
the future development of aerosol lidar is prospected in this review paper. Lidar will be more miniaturized and intelligent
making it easier to carry on Unmanned Aerial Vehicle platforms. Abundant aerosol parameter inversion algorithms will be established. More ground-based lidar observation network and space-borne lidar projects will be established and improved successively.
激光雷达气溶胶大气遥感遥感
Lidaraerosolatmospheric remote sensingremote sensing
Aloyan A E, Arutyunyan V O, Lushnikov A A and Zagaynov V A. 1997. Transport of coagulating aerosol in the atmosphere. Journal of Aerosol Science, 28(1): 67-85 [DOI: 10.1016/S0021-8502(96)00043-2http://dx.doi.org/10.1016/S0021-8502(96)00043-2]
Andreae M O and Crutzen P J. 1997. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 276(5315): 1052-1058 [DOI: 10.1126/science.276.5315.1052http://dx.doi.org/10.1126/science.276.5315.1052]
Ansmann A, Engelmann R, Althausen D, Wandinger U, Hu M, Zhang Y H and He Q S. 2005. High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer. Geophysical Research Letters, 32(13): L13815 [DOI: 10.1029/2005GL023094http://dx.doi.org/10.1029/2005GL023094]
Ansmann A, Riebesell M, Wandinger U, Weitkamp C, Voss E, Lahmann W and Michaelis W. 1992. Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio. Applied Physics B, 55(1): 18-28 [DOI: 10.1007/BF00348608http://dx.doi.org/10.1007/BF00348608]
Barnes J E, Sebastian B, Robert B and Parikh N C. 2003. Boundary layer scattering measurements with a charge-coupled device camera lidar. Applied Optics, 42(15): 2647-2652 [DOI: 10.1364/AO.42.002647http://dx.doi.org/10.1364/AO.42.002647]
Berjón A, Barreto A, Hernández Y, Yela M, Toledano C and Cuevas E. 2019. A 10-year characterization of the Saharan Air Layer lidar ratio in the subtropical North Atlantic. Atmospheric Chemistry and Physics, 19(9): 6331-6349 [DOI: 10.5194/acp-19-6331-2019http://dx.doi.org/10.5194/acp-19-6331-2019]
Bi J R, Huang J P, Hu Z Y, Holben B N and Guo Z Q. 2014. Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013. Journal of Geophysical Research: Atmospheres, 119(16): 9884-9900 [DOI: 10.1002/2014JD021757http://dx.doi.org/10.1002/2014JD021757]
Bösenberg J and Hoff R. 2007. Plan for the Implementation of the GAW Aerosol Lidar Observation Network GALION. GAW Report No. 178. WMO
Brydegaard M, Gebru A and Svanberg S. 2014. Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects. Progress in Electromagnetics Research, 147: 141-151 [DOI: 10.2528/PIER14101001http://dx.doi.org/10.2528/PIER14101001]
Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B and Froyd K D. 2012. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples. Atmospheric Measurement Techniques, 5(1): 73-98 [DOI: 10.5194/amt-5-73-2012http://dx.doi.org/10.5194/amt-5-73-2012]
Burton S P, Vaughan M A, Ferrare R A and Hostetler C A. 2014. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data. Atmospheric Measurement Techniques, 7(2): 419-436 [DOI: 10.5194/amt-7-419-2014http://dx.doi.org/10.5194/amt-7-419-2014]
Cairo F, Di Donfrancesco G, Adriani A, Pulvirenti L and Fierli F. 1999. Comparison of various linear depolarization parameters measured by lidar. Applied Optics, 38(21): 4425-4432 [DOI: 10.1364/AO.38.004425http://dx.doi.org/10.1364/AO.38.004425]
Chaikovsky A, Ivanov A, Balin Y, Elnikov A, Tulinov G, Plusnin I, Bukin O and Chen B. 2006. Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions//Proceedings Volume 6160, Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics. Tomsk, Russian Federation: SPIE: 616035 [DOI: 10.1117/12.675920]
Chen G B, Li S S, Knibbs L D, Hamm N A S, Cao W, Li T T, Guo J P, Ren H Y, Abramson M J and Guo Y M. 2018. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment, 636: 52-60 [DOI: 10.1016/j.scitotenv.2018.04.251http://dx.doi.org/10.1016/j.scitotenv.2018.04.251]
Cheng X W, Gong S S, Li F Q, Dai Y, Song J, Wang J M and Li F Y. 2007. 24 h continuous observation of sodium layer over Wuhan by lidar. Science in China Series G: Physics, Mechanics and Astronomy, 50(3): 287-293
程学武, 龚顺生, 李发泉, 戴阳, 宋娟, 王嘉珉, 李奉延. 2007. 武汉高空钠层的激光雷达24 h连续观测. 中国科学(G辑: 物理学 力学 天文学), 37(2): 196-201 [DOI: 10.1007/s11433-007-0032-zhttp://dx.doi.org/10.1007/s11433-007-0032-z]
Cheng Z T, Liu D, Liu C, Bai J, Luo J, Tang P J, Zhou Y D, Zhang Y P, Xu P T, Wang K W, Shen Y B and Yang Y Y. 2017. Multi-longitudinal-mode high-spectral-resolution lidar. Acta Optica Sinica, 37(4): 0401001
成中涛, 刘东, 刘崇, 白剑, 罗敬, 唐培钧, 周雨迪, 张与鹏, 徐沛拓, 汪凯巍, 沈亦兵, 杨甬英. 2017. 多纵模高光谱分辨率激光雷达研究. 光学学报, 37(4): 0401001 [DOI: 10.3788/AOS201737.0401001http://dx.doi.org/10.3788/AOS201737.0401001]
Collis R T H and Russell P B. 1976. Lidar measurement of particles and gases by elastic backscattering and differential absorption//Hinkley E D, ed. Laser Monitoring of the Atmosphere. Berlin, Heidelberg: Spring: 71-151 [DOI: 10.1007/3-540-07743-X_18http://dx.doi.org/10.1007/3-540-07743-X_18]
De Mazière M, Thompson A M, Kurylo M J, Wild J D, Bernhard G, Blumenstock T, Braathen G O, Hannigan J W, Lambert J C, Leblanc T, McGee T J, Nedoluha G, Petropavlovskikh I, Seckmeyer G, Simon P C, Steinbrecht W and Strahan S E. 2018. The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmospheric Chemistry and Physics, 18(7): 4935-4964 [DOI: 10.5194/acp-18-4935-2018http://dx.doi.org/10.5194/acp-18-4935-2018]
Di H G, Hou X L, Zhao H, Yan L J, Wei X, Zhao H and Hua D X. 2014. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica, 63(24): 244206
狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 2014. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 63(24): 244206 [DOI: 10.7498/aps.63.244206http://dx.doi.org/10.7498/aps.63.244206]
Feng C Z, Wu S H and Liu B Y. 2018. Research on wind retrieval method of coherent Doppler Lidar and experimental verification. Chinese Journal of Lasers, 45(4): 0410001
冯长中, 吴松华, 刘秉义. 2018. 相干多普勒激光雷达风场反演方法研究与实验印证. 中国激光, 45(4): 0410001 [DOI: 10.3788/CJL201845.0410001http://dx.doi.org/10.3788/CJL201845.0410001]
Fernald F G. 1984. Analysis of atmospheric lidar observations: some comments. Applied Optics, 23(5): 652-653 [DOI: 10.1364/AO.23.000652http://dx.doi.org/10.1364/AO.23.000652]
Ferrare R A, Turner D D, Brasseur L H, Feltz W F, Dubovik O and Tooman T P. 2001. Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains. Journal of Geophysical Research: Atmospheres, 106(D17): 20333-20347 [DOI: 10.1029/2000JD000144http://dx.doi.org/10.1029/2000JD000144]
Fiocco G and DeWolf J B. 1968. Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air. Journal of the Atmospheric Sciences, 25(3): 488-496 [DOI: 10.1175/1520-0469(1968)025<0488:FSOLEF>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1968)025<0488:FSOLEF>2.0.CO;2]
Fiocco G and Smullin L D. 1963. Detection of scattering layers in the upper atmosphere (60-140 km) by optical radar. Nature, 199(4900): 1275-1276 [DOI: 10.1038/1991275a0http://dx.doi.org/10.1038/1991275a0]
Freudenthaler V, Esselborn M, Wiegner M, Heese B, Tesche M, Ansmann A, Müller D, Althausen D, Wirth M, Fix A, Ehret G, Knippertz P, Toledano C, Gasteiger J, Garhammer M and Seefeldner M. 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B, 61(1): 165-179 [DOI: 10.1111/j.1600-0889.2008.00396.xhttp://dx.doi.org/10.1111/j.1600-0889.2008.00396.x]
Gao F, Li W W, Nan H S, Lei N, Yuan F M, Shi D C, Wang L and Hua D X. 2017. Fine detection of aerosol in the lower troposphere using twin scanning lidars. Acta Photonica Sinica, 46(9): 0901002
高飞, 李婉婉, 南恒帅, 雷宁, 袁方苗, 石冬晨, 汪丽, 华灯鑫. 2017. 双扫描激光雷达精细探测低层大气气溶胶方法. 光子学报, 46(9): 0901002 [DOI: 10.3788/gzxb20174609.0901002http://dx.doi.org/10.3788/gzxb20174609.0901002]
Gong W, Liu B M, Ma Y Y, Zhang M. 2015. Mie LIDAR observations of tropospheric aerosol over Wuhan. Atmosphere, 6(8): 1129-1140 [DOI: 10.3390/atmos6081129http://dx.doi.org/10.3390/atmos6081129]
Groß S, Esselborn M, Weinzierl B, Wirth M, Fix A and Petzold A. 2013. Aerosol classification by airborne high spectral resolution lidar observations. Atmospheric Chemistry and Physics, 13(5): 2487-2505 [DOI: 10.5194/acp-13-2487-2013http://dx.doi.org/10.5194/acp-13-2487-2013]
Groß S, Wiegner M, Freudenthaler V and Toledano C. 2011. Lidar ratio of Saharan dust over Cape Verde Islands: assessment and error calculation. Journal of Geophysical Research: Atmospheres, 116(D15): D15203 [DOI: 10.1029/2010jd015435http://dx.doi.org/10.1029/2010jd015435]
Hair J W, Caldwell L M, Krueger D A and She C Y. 2001. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Applied Optics, 40(30): 5280-5294 [DOI: 10.1364/AO.40.005280http://dx.doi.org/10.1364/AO.40.005280]
Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Isquierdo L R and Hovis F E. 2008. Airborne high spectral resolution lidar for profiling aerosol optical properties. Applied Optics, 47(36): 6734-6752 [DOI: 10.1364/AO.47.006734http://dx.doi.org/10.1364/AO.47.006734]
Hoff R M, Gross B, Demoz B, Eloranta E, Philbrick C R, Whiteman D A, Venable D D, Moshery F, Joseph E, Gimmestad G, Dors I G, Mccann K, Strawbridge K B, Newchurch M J, Mccormick M P and Duck T J. 2005. REALM Observations during the 2004 NEAQS/INTEX study period//85th AMS Annual Meeting. San Diego, CA: AMS
Hua W L, Han Y, Qiao H Y, Wang T H, Huang Z W, Bi J R and Zhou T. 2018. Profiling of dust aerosol mass concentration over Dunhuang: case studies. Plateau Meteorology, 37(5): 1428-1439
华雯丽, 韩颖, 乔瀚洋, 王天河, 黄忠伟, 闭建荣, 周天. 2018. 敦煌沙尘气溶胶质量浓度垂直特征个例分析. 高原气象, 37(5): 1428-1439 [DOI: 10.7522/j.issn.1000-0534.2018.00017http://dx.doi.org/10.7522/j.issn.1000-0534.2018.00017]
Huang H L, Liu D, Yang Y Y, Cheng Z T, Luo J and Shen Y B. 2014. Design of the high spectral resolution lidar filter based on a field-widened Michelson interferometer. Chinese Journal of Lasers, 41(9): 0913003
黄寒璐, 刘东, 杨甬英, 成中涛, 罗敬, 沈亦兵. 2014. 基于视场展宽迈克尔孙干涉仪的高光谱分辨率激光雷达滤光器设计研究. 中国激光, 41(9): 0913003 [DOI: 10.3788/CJL201441.0913003http://dx.doi.org/10.3788/CJL201441.0913003]
Huang J P, Liu J J, Chen B and Nasiri S L. 2015a. Detection of anthropogenic dust using CALIPSO lidar measurements. Atmospheric Chemistry and Physics, 15(20): 11653-11665 [DOI: 10.5194/acp-15-11653-2015http://dx.doi.org/10.5194/acp-15-11653-2015]
Huang J P, Minnis P, Yi Y H, Tang Q, Wang X, Hu Y X, Liu Z Y, Ayers K, Trepte C and Winker D. 2007. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophysical Research Letters, 34(18): L18805 [DOI: 10.1029/2007GL029938http://dx.doi.org/10.1029/2007GL029938]
Huang J P, Wang T H, Wang W C, Li Z Q and Yan H R. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research: Atmospheres, 119(19): 11398-11416 [DOI: 10.1002/2014JD021796http://dx.doi.org/10.1002/2014JD021796]
Huang Z W. 2012. Study of Physical and Optical Properties of Atmospheric Aerosols using Lidar. Lanzhou: Lanzhou University
黄忠伟. 2012. 气溶胶物理光学特性的激光雷达遥感研究. 兰州: 兰州大学
Huang Z W, Huang J P, Bi J R, Wang G Y, Wang W C, Fu Q, Li Z Q, Tsay S C and Shi J S. 2010. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. Journal of Geophysical Research: Atmospheres, 115(D7): D00K15 [DOI: 10.1029/2009JD013273http://dx.doi.org/10.1029/2009JD013273]
Huang Z W, Huang J P, Hayasaka T, Wang S S, Zhou T and Jin H C. 2015b. Short-cut transport path for Asian dust directly to the Arctic: a case study. Environmental Research Letters, 10(11): 114018 [DOI: 10.1088/1748-9326/10/11/114018http://dx.doi.org/10.1088/1748-9326/10/11/114018]
Huang Z W, Qi S Q, Zhou T, Dong Q Q, Ma X J, Zhang S, Bi J R and Shi J S. 2020. Investigation of aerosol absorption with dual-polarization lidar observations. Optics Express, 28(5): 7028-7035 [DOI: 10.1364/OE.390475http://dx.doi.org/10.1364/OE.390475]
Joshi D, Kumar D, Maini A K and Sharma R C. 2013. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112: 446-456 [DOI: 10.1016/j.saa.2013.04.082http://dx.doi.org/10.1016/j.saa.2013.04.082]
Kim M H, Omar A H, Tackett J L, Vaughan M A, Winker D M, Trepte C R, Hu Y X, Liu Z Y, Poole L R, Pitts M C, Kar J and Magill B E. 2018. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmospheric Measurement Techniques, 11(11): 6107-6135 [DOI: 10.5194/amt-11-6107-2018http://dx.doi.org/10.5194/amt-11-6107-2018]
Klett J D. 1981. Stable analytical inversion solution for processing lidar returns. Applied Optics, 20(2): 211-220 [DOI: 10.1364/AO.20.000211http://dx.doi.org/10.1364/AO.20.000211]
Koelemeijer R B A, Homan C D and Matthijsen J. 2006. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 40(27): 5304-5315 [DOI: 10.1016/j.atmosenv.2006.04.044http://dx.doi.org/10.1016/j.atmosenv.2006.04.044]
Lanzhou University. 2014. Multiband Raman-fluorescence laser radar system. CN, 201410363057.8
兰州大学. 2014. 多波段拉曼-荧光激光雷达系统. 中国, 201410363057.8
Li B W, Chen S Y, Zhang Y C, Guo P and Chen H. 2019. The calibration of a fluorescence-Mie polarization lidar system. Optical Technique, 45(5): 590-595
李保卫, 陈思颖, 张寅超, 郭磐, 陈和. 2019. 荧光-米偏振激光雷达系统定标. 光学技术, 45(5): 590-595 [DOI: 10.13741/j.cnki.11-1879/o4.2019.05.015http://dx.doi.org/10.13741/j.cnki.11-1879/o4.2019.05.015]
Lin C Q, Li Y, Yuan Z B, Lau A K H, Li C C and Fung J C H. 2015. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sensing of Environment, 156: 117-128 [DOI: 10.1016/j.rse.2014.09.015http://dx.doi.org/10.1016/j.rse.2014.09.015]
Liu D, Qi F D, Jin C J, Yue G M and Zhou J. 2003. Polarization Lidar observations of cirrus clouds and Asian dust aerosols over Hefei. Chinese Journal of Atmospheric Sciences, 27(6): 1093-1100
刘东, 戚福弟, 金传佳, 岳古明, 周军. 2003. 合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测. 大气科学, 27(6): 1093-1100 [DOI: 10.3878/j.issn.1006-9895.2003.06.12http://dx.doi.org/10.3878/j.issn.1006-9895.2003.06.12]
Liu D, Tao Z M, Wu D C, Wang Z Z, Wang B X, Zhong Z Q, Bo G Y, Xie C B, Zhou J and Wang Y J. 2013. Development of Three-Wavelength-Raman-Polarization lidar system and case study. Acta Optica Sinica, 33(2): 0228001
刘东, 陶宗明, 吴德成, 王珍珠, 王邦新, 钟志庆, 伯广宇, 谢晨波, 周军, 王英俭. 2013. 三波长拉曼偏振激光雷达系统研制及探测个例. 光学学报, 33(2): 0228001 [DOI: 10.3788/aos201333.0228001http://dx.doi.org/10.3788/aos201333.0228001]
Liu D, Yang Y Y, Zhou Y D, Huang H L, Cheng Z T, Luo J, Zhang Y P, Duan L L, Shen Y B, Bai J and Wang K W. 2015. High spectral resolution lidar for atmosphere remote sensing: a review. Infrared and Laser Engineering, 44(9): 2535-2546
刘东, 杨甬英, 周雨迪, 黄寒璐, 成中涛, 罗敬, 张与鹏, 段绿林, 沈亦兵, 白剑, 汪凯巍. 2015. 大气遥感高光谱分辨率激光雷达研究进展. 红外与激光工程, 44(9): 2535-2546 [DOI: 10.3969/j.issn.1007-2276.2015.09.001http://dx.doi.org/10.3969/j.issn.1007-2276.2015.09.001]
Liu J T, Chen W B and Liu Z S. 2003. A simulation of simultaneously measuring wind and aerosol optical properties using high spectral resolution lidar. Chinese Journal of Atmospheric Sciences, 27(1): 115-122
刘金涛, 陈卫标, 刘智深. 2003. 高光谱分辨率激光雷达同时测量大气风和气溶胶光学性质的模拟研究. 大气科学, 27(1): 115-122 [DOI: 10.3878/j.issn.1006-9895.2003.01.11http://dx.doi.org/10.3878/j.issn.1006-9895.2003.01.11]
Liu Z Y, Omar A, Vaughan M, Hair J, Kittaka C, Hu Y X, Powell K, Trepte C, Winker D, Hostetler C, Ferrare R and Pierce R. 2008. CALIPSO lidar observations of the optical properties of Saharan dust: a case study of long-range transport. Journal of Geophysical Research: Atmospheres, 113(D7): D07207 [DOI: 10.1029/2007JD008878http://dx.doi.org/10.1029/2007JD008878]
Liu Z Y, Sugimoto N and Murayama T. 2002. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Applied Optics, 41(15): 2760-2767
Lü D R, Wei Z, Lin H, Gu S F, Shi B Z, Ma H Y and Zhang D G. 1977. Vertial distribution of the extinction coefficient of lower atmosphere explorated by lidar. Scientia Atmopherica Sinica, 1(3): 199-205
吕达仁, 魏重, 林海, 谷淑芳, 施秉钊, 马惠英, 张东光. 1977. 低层大气消光系数分布的激光探测. 大气科学, 1(3): 199-205 [DOI: 10.3878/j.issn.1006-9895.1977.03.05http://dx.doi.org/10.3878/j.issn.1006-9895.1977.03.05]
Ma X J, Huang Z W, Qi S Q, Huang J P, Zhang S, Dong Q Q and Wang X. 2020. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. Science of the Total Environment, 721: 137699 [DOI: 10.1016/j.scitotenv.2020.137699http://dx.doi.org/10.1016/j.scitotenv.2020.137699]
Ma X M, Tao Z M, Zhang L L, Shan H H, Zhang H, Ma M J, Wang S H and Wang Y J. 2018. Ground layer aerosol detection technology during daytime based on side-scattering lidar. Acta Optica Sinica, 38(4): 0401005
麻晓敏, 陶宗明, 张璐璐, 单会会, 张辉, 马明俊, 王申浩, 王英俭. 2018. 侧向散射激光雷达探测白天近地面气溶胶探测技术. 光学学报, 38(4): 0401005 [DOI: 10.3788/AOS201838.0401005http://dx.doi.org/10.3788/AOS201838.0401005]
Ma Y Y, Gong W and Zhu Z M. 2009. Aerosol optical characteristics in South east China determined using spaceborne lidar. Journal of Remote Sensing, 13(4): 707-722
马盈盈, 龚威, 朱忠敏. 2009. 中国东南部地区气溶胶光学特性激光雷达探测. 遥感学报, 13(4): 707-722
Mao J D, Hua D X and He T Y. 2010. A compact Mie scattering lidar and its observation. Acta Photonica Sinica, 39(2): 284-288
毛建东, 华灯鑫, 何廷尧. 2010. 小型米散射激光雷达的研制及其探测. 光子学报, 39(2): 284-288 [DOI: 10.3788/gzxb20103902.0284http://dx.doi.org/10.3788/gzxb20103902.0284]
Mao J T, Zhang J H and Wang M H. 2002. Summary comment on research of atmospheric aerosl in China. Acta Meteorologica Sinica, 60(5): 625-634
毛节泰, 张军华, 王美华. 2002. 中国大气气溶胶研究综述. 气象学报, 60(5): 625-634 [DOI: 10.3321/j.issn:0577-6619.2002.05.014http://dx.doi.org/10.3321/j.issn:0577-6619.2002.05.014]
McCormick M P and Hostetler C A. 1995. LITE-the first spaceborne lidar//Conference Proceedings Second Topical Symposium on Combined Optical-microwave Earth and Atmosphere Sensing. Atlanta, GA, USA: IEEE: 163-166 [DOI: 10.1109/COMEAS.1995.472376http://dx.doi.org/10.1109/COMEAS.1995.472376]
McGill M J, Yorks J E, Scott V S, Kupchock A W and Selmer P A. 2015. The Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space Station//Proceedings Volume 9612, Lidar Remote Sensing for Environmental Monitoring XV. San Diego, California, United States: SPIE: 96120A [DOI: 10.1117/12.2190841http://dx.doi.org/10.1117/12.2190841]
Measures R M. 1984. Laser Remote Sensing: Fundamentals and Applications. Hoboken: Wiley
Mei L and Brydegaard M. 2015. Atmospheric aerosol and gas sensing using Scheimpflug lidar//EGU General Assembly Conference Abstracts. Vienna, Austria: EGU
Mei L. 2018. Shahler atmospheric lidar technology and its research progress. Laser & optoelectronics progress,2018,55(09):44-57
梅亮.沙氏大气激光雷达技术及其研究进展[J].激光与光电子学进展,2018,55(09):44-57 [DOI: 10.3788/LOP55.090004http://dx.doi.org/10.3788/LOP55.090004]
Mishchenko M I and Sassen K. 1998. Depolarization of lidar returns by small ice crystals: an application to contrails. Geophysical Research Letters, 25(3): 309-312 [DOI: 10.1029/97GL03764http://dx.doi.org/10.1029/97GL03764]
Murayama T, Müller D, Wada K, Shimizu A, Sekiguchi M and Tsukamoto T. 2004. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003. Geophysical Research Letters, 31(23): L23103 [DOI: 10.1029/2004GL021105http://dx.doi.org/10.1029/2004GL021105]
Murayama T, Sugimoto N, Uno I, Kinoshita K, Aoki K, Hagiwara N, Liu Z Y, Matsui I, Sakai T, Shibata T, Arao K, Sohn B J, Won J G, Yoon S C, Li T, Zhou J, Hu H L, Abo M, Iokibe K, Koga R and Iwasaka Y. 2001. Ground-based network observation of Asian dust events of April 1998 in East Asia. Journal of Geophysical Research: Atmospheres, 106(D16): 18345-18359 [DOI: 10.1029/2000JD900554http://dx.doi.org/10.1029/2000JD900554]
Müller D, Mattis I, Ansmann A, Wehner B, Althausen D, Wandinger U and Dubovik O. 2004. Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer. Journal of Geophysical Research: Atmospheres, 109(D13): D13206 [DOI: 10.1029/2003JD004200http://dx.doi.org/10.1029/2003JD004200]
Müller D, Mattis I, Wandinger U, Ansmann A, Althausen D, Dubovik O, Eckhardt S and Stohl A. 2003. Saharan dust over a central European EARLINET-AERONET site: combined observations with Raman lidar and Sun photometer. Journal of Geophysical Research: Atmospheres, 108(D12): 4345 [DOI: 10.1029/2002JD002918http://dx.doi.org/10.1029/2002JD002918]
Noh Y M, Kim Y J, Choi B C and Murayama T. 2007. Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea. Atmospheric Research, 86(1): 76-87 [DOI: 10.1016/j.atmosres.2007.03.006http://dx.doi.org/10.1016/j.atmosres.2007.03.006]
Noh Y M, Kim Y J and Müller D. 2008. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn. Atmospheric Environment, 42(9): 2208-2224 [DOI: 10.1016/j.atmosenv.2007.11.045http://dx.doi.org/10.1016/j.atmosenv.2007.11.045]
Omar A, Vaughan M, Kittaka C and Winker D. 2008. Case studies and comparisons of the CALIPSO aerosol optical depth measurements and aerosol type estimates//Proceedings Volume 7111, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing IV. Cardiff, Wales, United Kingdom: SPIE: 71110A [DOI: 10.1117/12.800353http://dx.doi.org/10.1117/12.800353]
Pappalardo G, Amodeo A, Apituley A, Comeron A, Freudenthaler V, Linné H, Ansmann A, Bösenberg J, D’Amico G, Mattis I, Mona L, Wandinger U, Amiridis V, Alados-Arboledas L, Nicolae D and Wiegner M. 2014. EARLINET: towards an advanced sustainable European aerosol lidar network. Atmospheric Measurement Techniques, 7(8): 2389-2409 [DOI: 10.5194/amt-7-2389-2014http://dx.doi.org/10.5194/amt-7-2389-2014]
Prata A T, Young S A, Siems S T and Manton M J. 2017. Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements. Atmospheric Chemistry and Physics, 17(13): 8599-8618 [DOI: 10.5194/acp-17-8599-2017http://dx.doi.org/10.5194/acp-17-8599-2017]
Qi S Q. 2020. Study on discrimination of aerosols and clouds and aerosols absorption properties by using dual-wavelength polarization lidar observation. Lanzhou: Lanzhou University
齐思齐. 2020. 利用双波段偏振激光雷达观测研究气溶胶与云的识别及气溶胶吸收特性. 兰州: 兰州大学
Qiu J H and Lü D R. 1992. Parameterized multiple scatter lidar equation and its inversion theory Part Ⅱ: Inversion theory. Scientia Atmopherica Sinica, 16(6): 725-736
邱金桓, 吕达仁. 1992. 参数化的多次散射雷达方程和它的反演理论 Ⅱ: 反演理论. 大气科学, 16(6): 725-736 [DOI: 10.3878/j.issn.1006-9895.1992.06.10http://dx.doi.org/10.3878/j.issn.1006-9895.1992.06.10]
Qiu J H, Lü D R, Chen H B, Wang G C and Shi G Y. 2003. Modern research progresses in atmospheric physics. Chinese Journal of Atmospheric Sciences, 27(4): 628-652
邱金桓, 吕达仁, 陈洪滨, 王庚辰, 石广玉. 2003. 现代大气物理学研究进展. 大气科学, 27(4): 628-652 [DOI: 10.3878/j.issn.1006-9895.2003.04.14http://dx.doi.org/10.3878/j.issn.1006-9895.2003.04.14]
Qiu J H, Quenzel H and Wiegner M. 1992. Parameterized lidar equation of multiple scattering and its retrieval theory Ⅰ: Equations. Scientia Atmopherica Sinica, 16(5): 601-611
邱金桓, Quenzel H, Wiegner M. 1992. 参数化的多次散射激光雷达方程和它的反演理论 Ⅰ: 方程. 大气科学, 16(5): 601-611 [DOI: 10.3878/j.issn.1006-9895.1992.05.12http://dx.doi.org/10.3878/j.issn.1006-9895.1992.05.12]
Rao Z M, He T Y, Hua D X and Chen R X. 2018. Remote sensing of particle mass concentration using multi-wavelength lidar. Spectroscopy and Spectral Analysis, 38(4): 1025-1030
饶志敏, 何廷尧, 华灯鑫, 陈若曦. 2018. 多波段激光雷达颗粒物质量浓度探测方法. 光谱学与光谱分析, 38(4): 1025-1030 [DOI: 10.3964/j.issn.1000-0593http://dx.doi.org/10.3964/j.issn.1000-0593(201804-1025-06]
Rao Z M, Hua D X, He T Y, Wang Q and Le J. 2017. Performance analysis of double wavelength fluorescence lidar in detecting atmospheric biological aerosols. Spectroscopy and Spectral Analysis, 37(9): 2804-2808
饶志敏, 华灯鑫, 何廷尧, 王强, 乐静. 2017. 双波长荧光雷达探测大气生物气溶胶的性能分析. 光谱学与光谱分析, 37(9): 2804-2808 [DOI: 10.3964/j.issn.1000-0593(2017)09-2804-05http://dx.doi.org/10.3964/j.issn.1000-0593(2017)09-2804-05]
Ru J B. 2017. Dust Aerosol Properties over East Asia Derived from Satellite-Based Lidar. Lanzhou: Lanzhou University
茹建波. 2017. 基于星载激光雷达的东亚地区沙尘气溶胶特性研究. 兰州: 兰州大学
Sakai T, Nagai T, Nakazato M, Mano Y and Matsumura T. 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Applied Optics, 42(36): 7103-7116 [DOI: 10.1364/AO.42.007103http://dx.doi.org/10.1364/AO.42.007103]
Sassen K. 1991. The polarization lidar technique for cloud research: a review and current assessment. Bulletin of the American Meteorological Society, 72(12): 1848-1866 [DOI: 10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2]
Sassen K, Comstock J M, Wang Z and Mace G G. 2001. Cloud and aerosol research capabilities at FARS: the facility for atmospheric remote sensing. Bulletin of the American Meteorological Society, 82(6): 1119-1138 [DOI: 10.1175/1520-0477(2001)082<1119:CAARCA>2.3.CO;2http://dx.doi.org/10.1175/1520-0477(2001)082<1119:CAARCA>2.3.CO;2]
Schotland R M, Sassen K and Stone R. 1971. Observations by lidar of linear depolarization ratios for hydrometeors. Journal of Applied Meteorology and Climatology, 10(5): 1011-1017 [DOI: 10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2]
Shen H F, Li T W, Yuan Q Q and Zhang L P. 2018. Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks. Journal of Geophysical Research: Atmospheres, 123(24): 13875-13886 [DOI: 10.1029/2018JD028759http://dx.doi.org/10.1029/2018JD028759]
Shi B, Tao Z M, Ma X M, Shan H H, Zhao S G, Liu D and Xie C B. 2015. Measurements of near-ground aerosol backscattering coefficient profile with side-scatter technique. Acta Optica Sinica, 35(5): 0501006
史博, 陶宗明, 麻晓敏, 单会会, 赵素贵, 刘东, 谢晨波. 2015. 基于侧向散射技术的近地面气溶胶后向散射系数廓线探测. 光学学报, 35(5): 0501006 [DOI: 10.3788/AOS201535.0501006http://dx.doi.org/10.3788/AOS201535.0501006]
Shi G Y, Wang B, Zhang H, Zhao J Q, Tan S C and Wen T X. 2008. The radiative and climatic effects of atmospheric aerosols. Chinese Journal of Atmospheric Science, 32(4): 826-840
石广玉, 王标, 张华, 赵剑琦, 檀赛春, 温天雪. 2008. 大气气溶胶的辐射与气候效应. 大气科学, 32(4): 826-840 [DOI: 10.3878/j.issn.1006-9895.2008.04.11http://dx.doi.org/10.3878/j.issn.1006-9895.2008.04.11]
Shiina T. 2013. LED mini-lidar for air and dust monitoring//Proceedings Volume 8905, International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications. Beijing, China: SPIE: 890533 [DOI: 10.1117/12.2042370]
Shiina T, Yamada S, Senshu H, Otobe N, Hashimoto G and Kawabata Y. 2016. LED minilidar for Mars rover//Proceedings Volume 10006, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XII. Edinburgh, United Kingdom: SPIE: 100060F [DOI: 10.1117/12.2241976http://dx.doi.org/10.1117/12.2241976]
Shimizu H, Lee S A and She C Y. 1983. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. Applied Optics, 22(9): 1373-1381 [DOI: 10.1364/AO.22.001373http://dx.doi.org/10.1364/AO.22.001373]
Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L and Weinman J A. 1983. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Applied Optics, 22(23): 3716-3724 [DOI: 10.1364/AO.22.003716http://dx.doi.org/10.1364/AO.22.003716]
Stowers M A, van Wuijckhuijse A L, Marijnissen J C M, Kientz C E and Ciach T. 2006. Fluorescence preselection of bioaerosol for single-particle mass spectrometry. Applied Optics, 45(33): 8531-8536 [DOI: 10.1364/AO.45.008531http://dx.doi.org/10.1364/AO.45.008531]
Stubenrauch C J, Rossow W B, Kinne S, Ackerman S, Cesana G, Chepfer H, Di Girolamo L, Getzewich B, Guignard A, Heidinger A, Maddux B C, Menzel W P, Minnis P, Pearl C, Platnick S, Poulsen C, Riedi J, Sun-Mack S, Walther A, Winker D, Zeng S and Zhao G. 2013. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bulletin of the American Meteorological Society, 94(7): 1031-1049 [DOI: 10.1175/BAMS-D-12-00117.1http://dx.doi.org/10.1175/BAMS-D-12-00117.1]
Sugimoto N and Lee C H. 2006. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. Applied Optics, 45(28): 7468-7474 [DOI: 10.1364/AO.45.007468http://dx.doi.org/10.1364/AO.45.007468]
Sugimoto N, Shimizu A, Nishizawa T and Jin Y. 2018. Recent developments with the Asian dust and aerosol lidar observation network (AD-NET). EPJ Web of Conferences, 176: 09001 [DOI: 10.1051/epjconf/201817609001http://dx.doi.org/10.1051/epjconf/201817609001]
Sun H B. 2017. Research on the correlation between aerosol optic properties and logarithmic ratio of aerosol backscatter-to-extinction. Nanjing: Nanjing University of Information Science and Technology (孙海波. 2017. 气溶胶光学特性与后向散射消光对数比的相关性研究. 南京: 南京信息工程大学)
Sun R, Wang H Y, Ma X J, Chen Y H, Zhao B K, Qin Y, Zhang H and Ye W. 2017. Aerosol optical properties and formation mechanism of a typical air pollution episode in Shanghai during different weather condition periods. Acta Scientiae Circumstantiae, 37(3): 814-823
孙冉, 王鸿宇, 马骁骏, 陈勇航, 赵兵科, 秦艳, 张华, 叶文. 2017. 上海一次典型雾霾过程中不同天气现象的气溶胶光学特性及转化机制. 环境科学学报, 37(3): 814-823 [DOI: 10.13671/j.hjkxxb.2016.0265http://dx.doi.org/10.13671/j.hjkxxb.2016.0265]
Tao Z M, Liu D, Ma X M, Chen X C, Wang Z Z, Xie C B and Wang Y J. 2014. Development and case study of side-scatter lidar system based on charge-coupled device. Infrared and Laser Engineering, 43(10): 3282-3286
陶宗明, 刘东, 麻晓敏, 陈向春, 王珍珠, 谢晨波, 王英俭. 2014. 基于CCD的侧向激光雷达系统研制及探测个例. 红外与激光工程, 43(10): 3282-3286 [DOI: 10.3969/j.issn.1007-2276.2014.10.019http://dx.doi.org/10.3969/j.issn.1007-2276.2014.10.019]
Tao Z M, Shi Q B, Xie C B, Liu D and Zhang S. 2019. Precise detection of near ground aerosol extinction coefficient profile based on CCD and backscattering lidar. Infrared and Laser Engineering, 48(S1): S106007
陶宗明, 施奇兵, 谢晨波, 刘东, 张帅. 2019. 利用CCD和后向散射激光雷达精确探测近地面气溶胶消光系数廓线. 红外与激光工程, 48(S1): S106007
Tao Z M, Wang Z Z, Yang S J, Shan H H, Ma X M, Zhang H, Zhao S G, Liu D, Xie C B and Wang Y J. 2016. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer. Atmospheric Measurement Techniques, 9(3): 1369-1376 [DOI: 10.5194/amt-9-1369-2016http://dx.doi.org/10.5194/amt-9-1369-2016]
Tatarov B and Sugimoto N. 2005. Estimation of quartz concentration in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars. Optics Letters, 30(24): 3407-3409 [DOI: 10.1364/OL.30.003407http://dx.doi.org/10.1364/OL.30.003407]
Tatarov B, Sugimoto N and Matsui I. 2008. Lidar method for determination of quartz concentration in the tropospheric mineral aerosols//2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain: IEEE: 5262-5265 [DOI: 10.1109/IGARSS.2007.4424049http://dx.doi.org/10.1109/IGARSS.2007.4424049]
Thurmond K, Loparo Z, Partridge W and Vasu S S. 2016. A Light-Emitting Diode- (LED-) based absorption sensor for simultaneous detection of carbon monoxide and carbon dioxide. Applied Spectroscopy, 70(6): 962-971 [DOI: 10.1177/0003702816641261http://dx.doi.org/10.1177/0003702816641261]
Toth T D, Zhang J L, Reid J S and Vaughan M A. 2019. A bulk-mass-modeling-based method for retrieving particulate matter pollution using CALIOP observations. Atmospheric Measurement Techniques, 12(3): 1739-1754 [DOI: 10.5194/amt-12-1739-2019http://dx.doi.org/10.5194/amt-12-1739-2019]
Vaughan M A, Young S A, Winker D M, Powell K A, Omar A H, Liu Z Y, Hu Y X and Hostetler C A. 2004. Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products//Proceedings Volume 5575, Laser Radar Techniques for Atmospheric Sensing. Maspalomas, Canary Islands, Spain: SPIE: 16-30 [DOI: 10.1117/12.572024http://dx.doi.org/10.1117/12.572024]
Wang Q M and Zhang Y M. 2006. Development of meteorological lidar. Meteorological Science and Technology, 34(3): 246-249
王青梅, 张以谟. 2006. 气象激光雷达的发展现状. 气象科技, 34(3): 246-249 [DOI: 10.3969/j.issn.1671-6345.2006.03.002http://dx.doi.org/10.3969/j.issn.1671-6345.2006.03.002]
Wang T H, Han Y, Hua W L, Tang J Y, Huang J P, Zhou T, Huang Z W, Bi J R and Xie H L. 2021. Profiling dust mass concentration in northwest china using a joint lidar and sun-photometer setting. Remote Sensing, 13(6): 1099 [DOI: 10.3390/rs13061099http://dx.doi.org/10.3390/rs13061099]
Wang X C and Rao R Z. 2005. Lidar ratios for atmospheric aerosol and cloud particles. Chinese Journal of Lasers, 32(10): 1321-1324
王向川, 饶瑞中. 2005. 大气气溶胶和云雾粒子的激光雷达比. 中国激光, 32(10): 1321-1324 [DOI: 10.3321/j.issn:0258-7025.2005.10.005http://dx.doi.org/10.3321/j.issn:0258-7025.2005.10.005]
Wang Z H, He Y H, Li Z S, Zuo H Y, He J, Zheng Y C and Yang J G. 2006. Effects of backscatter extinction logarithmic ratio on the inversion of aerosol extinction coefficiency. Chinese Journal of Quantum Electronics, 23(3): 335-340
王治华, 贺应红, 李振声, 左浩毅, 何捷, 郑玉臣, 杨经国. 2006. 气溶胶后向散射消光对数比对消光系数反演的影响研究. 量子电子学报, 23(3): 335-340 [DOI: 10.3969/j.issn.1007-5461.2006.03.012http://dx.doi.org/10.3969/j.issn.1007-5461.2006.03.012]
Welton E J and Campbell J R. 2002. Micropulse lidar signals: Uncertainty analysis. Journal of Atmospheric and Oceanic Technology, 19(12): 2089-2094 [DOI: 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2]
Welton E J, Stewart S A, Lewis J R, Belcher L R, Campbell J R and Lolli S. 2018. Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL. EPJ Web of Conferences, 176: 09003 [DOI: 10.1051/epjconf/201817609003http://dx.doi.org/10.1051/epjconf/201817609003]
Winker D M, Hunt W H and McGill M J. 2007. Initial performance assessment of CALIOP. Geophysical Research Letters, 34(19): L19803 [DOI: 10.1029/ 2007GL030135http://dx.doi.org/10.1029/2007GL030135]
Wojtanowski J, Zygmunt M, Muzal M, Knysak P, Młodzianko A, Gawlikowski A, Drozd T, Kopczyński K, Mierczyk Z, Kaszczuk M, Traczyk M, Gietka A, Piotrowski W, Jakubaszek M and Ostrowski R. 2015. Performance verification of a LIF-LIDAR technique for stand-off detection and classification of biological agents. Optics and Laser Technology, 67: 25-32 [DOI: 10.1016/j.optlastec.2014.08.013http://dx.doi.org/10.1016/j.optlastec.2014.08.013]
Yan Q, Hua D X, Li S C and Ai Y. 2013. Observation and productization of the micro-pulsed Mie scattering lidar system. Chinese Journal of Quantum Electronics, 30(1): 123-128
闫庆, 华灯鑫, 李仕春, 艾宇. 2013. 微脉冲米散射激光雷达系统的产品化研发及实验观测研究. 量子电子学报, 30(1): 123-128
Zhang J P, Guo Y L, Qu Z X, Yang F Y, Li H F and Zhang W Y. 2016. Research into inversion parameter k of laser radar in semi-arid areas. Journal of Lanzhou University(Natural Sciences), 52(5): 639-643
张京朋, 郭燕玲, 曲宗希, 杨飞跃, 李海飞, 张文煜. 2016. 半干旱区激光雷达反演参数κ值研究. 兰州大学学报(自然科学版), 52(5): 639-643 [DOI: 10.13885/j.issn.0455-2059.2016.05.012http://dx.doi.org/10.13885/j.issn.0455-2059.2016.05.012]
Zhang W Y, Wang Y Q, Song J Y, Zhang L and Sun L. 2008. Research on logarithmic ratio k of aerosol backscatter extinction using lidar. Plateau Meteorology, 27(5): 1083-1087
张文煜, 王音淇, 宋嘉尧, 张镭, 孙璐. 2008. 激光雷达反演参数k值的研究. 高原气象, 27(5): 1083-1087
Zhang Z Y, Su L and Chen L F. 2013. Retrieval and analysis of aerosol lidar ratio at several typical regions in China. Chinese Journal of Lasers, 40(5): 0513002
张朝阳, 苏林, 陈良富. 2013. 中国典型地区气溶胶激光雷达比反演与分析. 中国激光, 40(5): 0513002 [DOI: 10.3788/CJL201340.0513002http://dx.doi.org/10.3788/CJL201340.0513002]
Zhao Y M, Li Y H, Shang Y N, Li J, Yu Y and Li L H. 2014. Application and development direction of lidar. Journal of Telemetry, Tracking and Command, 35(5): 4-22
赵一鸣, 李艳华, 商雅楠, 李静, 于勇, 李凉海. 2014. 激光雷达的应用及发展趋势. 遥测遥控, 35(5): 4-22 [DOI: 10.3969/j.issn.2095-1000.2014.05.002http://dx.doi.org/10.3969/j.issn.2095-1000.2014.05.002]
Zhong W T, Hua D X, Liu J, Zhang C and Yan K J. 2016. Optimal design and preliminary experiments on new type of LED light source radar system for aerosol detection. Acta Optica Sinica, 36(10): 1028001
钟文婷, 华灯鑫, 刘君, 张宸, 晏克俊. 2016. 新型LED光源气溶胶探测雷达系统优化设计与初步实验. 光学学报, 36(10): 1028001 [DOI: 10.3788/AOS201636.1028001http://dx.doi.org/10.3788/AOS201636.1028001]
Zhong W T, Hua D X, Liu J, Zhang C and Yan K J. 2018. Development of LED light source for aerosol detection optical radar. Journal of Xi'an University of Technology, 34(1): 6-13
钟文婷, 华灯鑫, 刘君, 张宸, 晏克俊. 2018. 用于气溶胶探测光学雷达的LED光源的研制. 西安理工大学学报, 34(1): 6-13 [DOI: 10.19322/j.cnki.issn.1006-4710.2018.01.002http://dx.doi.org/10.19322/j.cnki.issn.1006-4710.2018.01.002]
Zhou J, Yue G M, Jin C J, Qi F D, Yi W N, Li T, Chen Y H and Xiong L M. 2000. Two-wavelength Mie lidar for monitoring of tropospheric aerosol. Acta Optica Sinica, 20(10): 1412-1417
周军, 岳古明, 金传佳, 戚福第, 易维宁, 李陶, 陈毓红, 熊黎明. 2000. 探测对流层气溶胶的双波长米氏散射激光雷达. 光学学报, 20(10): 1412-1417 [DOI: 10.3321/j.issn:0253-2239.2000.10.021http://dx.doi.org/10.3321/j.issn:0253-2239.2000.10.021]
Zhou J, Yue G M, Qi F D, Jin C J, Wu Y H, Xiong L M, Chen Y H, Dou G D and Hu H L. 1998. Optical properties of aerosol derived from lidar measurements. Chinese Journal of Quantum Electronics, 15(2): 140-148
周军, 岳古明, 戚福第, 金传佳, 吴永华, 熊黎明, 陈毓红, 窦根娣, 胡欢陵. 1998. 大气气溶胶光学特性激光雷达探测. 量子电子学报, 15(2): 140-148
Zhou S J, Tao L J and Zhu W Q. 1981. Comparison among several methods for lidar probing of atmospheric extinction coefficient. Scientia Atmopherica Sinica, 5(4): 444-449
周诗健, 陶丽君, 朱文琴. 1981. 几种激光探测大气消光系数方法的比较. 大气科学, 5(4): 444-449 [DOI: 10.3878/j.issn.1006-9895.1981.04.11http://dx.doi.org/10.3878/j.issn.1006-9895.1981.04.11]
Zhou T, Huang Z W, Huang J P, Li J M, Bi J R and Zhang W. 2013. Study of vertical distribution of cloud over loess plateau based on a ground-based lidar system. Journal of Arid Meteorology, 31(2): 246-253, 271
周天, 黄忠伟, 黄建平, 李积明, 闭建荣, 张武. 2013. 黄土高原地区云垂直结构的激光雷达遥感研究. 干旱气象, 31(2): 246-253, 271 [DOI: 10.11755/j.issn.1006-7639(2013)-02-0246http://dx.doi.org/10.11755/j.issn.1006-7639(2013)-02-0246]
Zou B F, Zhang Y C and Hu S X. 2008. Study on the design of measuring organic aerosol fluorescence lidar. Laser Technology, 32(3): 287-289, 292
邹炳芳, 张寅超, 胡顺星. 2008. 探测有机气溶胶荧光激光雷达的设计研究. 激光技术, 32(3): 287-289, 292
相关作者
相关机构