风云三号卫星微波载荷历史数据再定标
Recalibration of the FY-3 microwave payload historical data records
- 2023年27卷第10期 页码:2252-2269
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20221436
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
谷松岩,郭杨,谢鑫新,何杰颖,窦芳丽,吴琼,王振占,张升伟,安大伟,武胜利,张鹏.2023.风云三号卫星微波载荷历史数据再定标.遥感学报,27(10): 2252-2269
Gu S Y,Gou Y,Xie X X,He J Y,Dou F L,Wu Q,Wang Z Z,Zhang S W,An D W,Wu S L and Zhang P. 2023. Recalibration of the FY-3 microwave payload historical data records. National Remote Sensing Bulletin, 27(10):2252-2269
本文在综述国际上星载微波辐射计历史数据再定标技术基础上,介绍了风云三号卫星微波载荷特点,综述业务辐射定标和历史数据再定标共性技术,阐述风云三号卫星微波载荷通过仪器系统全链路辐射传递仿真构建在轨特殊工况辐射修正模型后,以国际参考载荷为参考消除代际间辐射差异的历史数据再定标技术路线;简介了风云三号卫星微波载荷在轨基本业务状态以及历史数据再定标研究成果,再定标生成的风云三号微波长时序L1科学数据集,经与国际同类载荷交叉比对表明氧气吸收通道长时间序列亮温数据RMSE为0.77 K,标准差为0.28 K;水汽吸收通道再定标后长时间序列数据的RMSE最优达到0.80 K,标准差为0.20 K;窗区通道以23.8 GHz的V极化通道为例再定标后长时间序列数据的RMSE最优达到1.29 K,标准差为0.15 K;在定标后最大RMSE不超过1.5 K。风云卫星微波载荷与参考载荷之间具有非常好的辐射一致性。风云三号卫星微波载荷历史数据再定标结果为后续建立风云卫星微波载荷基础气候数据集(FCDR)、和包含关键气候变量的网格化气候数据集(CDR)提供了基础性支撑。
This study focuses on the latest recalibration results of the historical data of domestic satellite microwave payload
which is a national key research and development plan
to apply the long-time passive microwave historical data from Chinese satellites to the study of climate and climate change. Chinese Feng Yun 3 series satellites (FY-3) have accumulated historical microwave remote sensing data of microwave radiometer imager (MWRI)
microwave temperature sounder (MWTS)
and microwave humidity sounder (MWHS) for more than 13 years from May 27
2008. We have also completed the launch and operation of four satellites in two batches. During this period
the microwave payload data of FY-3 satellite played an active role in disaster prevention and mitigation and numerical weather forecast assimilation.
Based on the review of the international satellite borne microwave radiometer historical data recalibration technology
the characteristics of the microwave load of FY-3 satellite is introduced
the common technologies of operational radiation calibration and historical data recalibration are summarized
and the microwave load of the FY-3 satellite that passes through the entire link radiation transfer simulation of the instrument system is expounded. After constructing the radiation correction model under special conditions in orbit
the technical route of rescaling historical data to eliminate the radiation difference between generations based on the international reference load
the basic operational status of the FY-3 microwave payload in orbit
and the research results of historical data recalibration are introduced.
The long-time sequence L1 scientific dataset of FY-3 microwave generated by recalibration is cross compared with similar international loads. Results show that the RMSE of long-time series brightness temperature data of oxygen absorption channel is 0.77 k
and the standard deviation is 0.28 k. After rescaling the water vapor absorption channel
the optimal RMSE of the long-time series data is 0.80 k
and the standard deviation is 0.20 k. In the window channel
considering the 23.8 ghz V polarization channel as an example
the RMSE of the long-time series data after re calibration is the best up to 1.29 k
and the standard deviation is 0.15k. After calibration
the maximum RMSE shall not exceed 1.5 k.Conclusion The microwave load of the FY-3 satellite has very good radiation consistency with the reference load. The recalibration results of the historical data of the FY-3 satellite microwave load provide basic support for the subsequent establishment of the FY-3 satellite microwave load basic climate data set (FCDR)
Climate Data Set (CDR)
and climate variable data set (ECV).
风云三号气象卫星微波大气探测仪微波成像仪历史数据再定标交叉定标
FY-3 meteorological satellitemicrowave atmosphere detectorMicrowave Imagerhistorical data re calibrationcross calibration
An D W, Gu S Y, Yang Z D and Chen W X. 2016. On-orbit radiometric calibration for nonlinear of FY-3C MWTS. Journal of Infrared and Millimeter Waves, 35(3): 317-321
安大伟, 谷松岩, 杨忠东, 陈文新. 2016. FY-3C微波温度计在轨辐射非线性定标新方法. 红外与毫米波学报, 35(3): 317-321 [DOI: 10.11972/j.issn.1001-9014.2016.03.011http://dx.doi.org/10.11972/j.issn.1001-9014.2016.03.011]
Berg W, Bilanow S, Chen R Y, Datta S, Draper D, Ebrahimi H, Farrar S, Jones W L, Kroodsma R, McKague D, Payne V, Wang J, Wilheit T and Yang J X. 2016. Intercalibration of the GPM microwave radiometer constellation. Journal of Atmospheric and Oceanic Technology, 33(12): 2639-2654 [DOI: 10.1175/JTECH-D-16-0100.1http://dx.doi.org/10.1175/JTECH-D-16-0100.1]
Berg W, Kroodsma R, Kummerow C D and McKague D S. 2018. Fundamental climate data records of microwave brightness temperatures. Remote Sensing, 10(8): 1306 [DOI: 10.3390/rs10081306http://dx.doi.org/10.3390/rs10081306]
Biswas S K, Farrar S, Gopalan K, Santos-Garcia A, Jones W L and Bilanow S. 2013. Intercalibration of microwave radiometer brightness temperatures for the global precipitation measurement mission. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1465-1477 [DOI: 10.1109/TGRS.2012.2217148http://dx.doi.org/10.1109/TGRS.2012.2217148]
Bormann N, Duncan D, English S, Healy S, Lonitz K, Chen K Y, Lawrence H and Lu Q F. 2021. Growing operational use of FY-3 data in the ECMWF system. Advances in Atmospheric Sciences, 38(8): 1285-1298 [DOI: 10.1007/s00376-020-0207-3http://dx.doi.org/10.1007/s00376-020-0207-3]
Carminati F, Atkinson N, Candy B and Lu Q F. 2021. Insights into the microwave instruments onboard the Fengyun 3D satellite: Data quality and assimilation in the Met Office NWP system. Advances in Atmospheric Sciences, 38(8): 1379-1396 [DOI: 10.1007/s00376-020-0010-1http://dx.doi.org/10.1007/s00376-020-0010-1]
Carminati F, Candy B, Bell W and Atkinson N. 2018. Assessment and assimilation of FY-3 humidity sounders and imager in the UK met office global model. Advances in Atmospheric Sciences, 35(8): 942-954 [DOI: 10.1007/s00376-018-7266-8http://dx.doi.org/10.1007/s00376-018-7266-8]
Chander G, Hewison T J, Fox N, Wu X Q, Xiong X X and Blackwell W J. 2013. Overview of intercalibration of satellite instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1056-1080 [DOI: 10.1109/TGRS.2012.2228654http://dx.doi.org/10.1109/TGRS.2012.2228654]
Chen H and Jin Y Q. 2012. In-orbit intercalibration of FY-3B/MWRI and applications for monitoring drought and flooding. Journal of Remote Sensing, 16(5): 1024-1034
陈昊, 金亚秋. 2012. FY-3B MWRI在轨辐射校准及其对旱涝灾害监测应用. 遥感学报, 16(5): 1024-1034 [DOI: 10.11834/jrs.20121299http://dx.doi.org/10.11834/jrs.20121299]
Chen W X, Chi J D, Li Y M and Li H. 2013. Microwave temperature sounding (MWTS) for FY-3 meteorology satellite. Strategic Study of CAE, 15(7): 88-91
陈文新, 迟吉东, 李延明, 李浩. 2013. 风云三号气象卫星微波温度计(MWTS). 中国工程科学, 15(7): 88-91 [DOI: 10.3969/j.issn.1009-1742.2013.07.013http://dx.doi.org/10.3969/j.issn.1009-1742.2013.07.013]
Colton M C and Poe G A. 1999. Intersensor Calibration of DMSP SSM/I’s: F-8 to F-14, 1987–1997. IEEE Transactions on Geoscience and Remote Sensing, 37(1): 418-439 [DOI: 10.1109/36.739079http://dx.doi.org/10.1109/36.739079]
Dong K S, Xie X X, Li X and Liu W L. 2020. Nonlinear characteristics of FY-3D microwave radiation imager and an optimal calculation method. Journal of Remote Sensing, 24(3): 226-232
董克松, 谢鑫新, 李雪, 刘伟亮. 2020. FY-3D微波成像仪非线性特征及计算方法优化. 遥感学报, 24(3): 226-232 [DOI: 10.11834/jrs.20208274http://dx.doi.org/10.11834/jrs.20208274]
Draper D, Newell D and Wentz F. 2016. Global precipitation measurement microwave imager (GMI) on-orbit calibration//2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment. Espoo: IEEE: 166-169 [DOI: 10.1109/MICRORAD.2016.7530527http://dx.doi.org/10.1109/MICRORAD.2016.7530527]
Draper D W, Newell D A, Wentz F J, Krimchansky S and Skofronick-Jackson G M. 2015. The global precipitation measurement (GPM) microwave imager (GMI): instrument overview and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3452-3462 [DOI: 10.1109/JSTARS.2015.2403303http://dx.doi.org/10.1109/JSTARS.2015.2403303]
Du J Y, Kimball J S, Shi J C, Jones L A, Wu S L, Sun R J and Yang H. 2014. Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sensing, 6(9): 8594-8616 [DOI: 10.3390/rs6098594http://dx.doi.org/10.3390/rs6098594]
Ferraro R, Meng H and NOAA CDR Program. 2018. NOAA climate data records (CDR) of AMSU-A/B and MHS hydrological properties, Version 1. Asheville: NOAA National Centers for Environmental Information [DOI: 10.7289/V5V69GM6http://dx.doi.org/10.7289/V5V69GM6]
Ferraro R R, Weng F Z, Grody N C, Zhao L M, Meng H, Kongoli C, Pellegrino P, Qiu S and Dean C. 2005. NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Transactions on Geoscience and Remote Sensing, 43(5): 1036-1049 [DOI: 10.1109/TGRS.2004.843249http://dx.doi.org/10.1109/TGRS.2004.843249]
Grody N C, Vinnikov K Y, Goldberg M D, Sullivan J T and Tarpley J D. 2004. Calibration of multisatellite observations for climatic studies: microwave sounding unit (MSU). Journal of Geophysical Research: Atmospheres, 109(D24): D24104 [DOI: 10.1029/2004JD005079http://dx.doi.org/10.1029/2004JD005079]
Gu S Y, Guo Y, Dou F L, Wu Q and Lu N M. 2021. Radiometric calibration technology of microwave atmospheric sounders of FY-3 satellites. Remote Sensing Technology and Application, 36(1): 141-154
谷松岩, 郭杨, 窦芳丽, 吴琼, 卢乃锰. 2021. 风云三号微波大气探测载荷辐射定标. 遥感技术与应用, 36(1): 141-154 [DOI: 10.11873/j.issn.1004-0323.2021.1.0141http://dx.doi.org/10.11873/j.issn.1004-0323.2021.1.0141]
Gu S Y, Wang Z Z, Li J, Zhang S W and Zhang L. 2013. FY-3A/MWHS data calibration and validation analysis. Strategic Study of CAE, 15(7): 92-100
谷松岩, 王振占, 李靖, 张升伟, 张丽. 2013. FY-3A/MWHS在轨辐射定标及结果分析. 中国工程科学, 15(7): 92-100 [DOI: 10.3969/j.issn.1009-1742.2013.07.014http://dx.doi.org/10.3969/j.issn.1009-1742.2013.07.014]
Guan L and Lu W J. 2016. Scan correction scheme of FY-3A microwave atmospheric humidity sounder radiance for data assimilation. Transactions of Atmospheric Sciences, 39(3): 400-408
官莉, 陆文婧. 2016. 风云三号卫星微波湿度计的扫描角偏差订正. 大气科学学报, 39(3): 400-408 [DOI: 10.13878/j.cnki.dqkxxb.20130408002http://dx.doi.org/10.13878/j.cnki.dqkxxb.20130408002]
Guan L, Zou X, Weng F and Li G. 2011. Assessments of FY-3A microwave humidity sounder measurements using NOAA-18 microwave humidity sounder. Journal of Geophysical Research: Atmospheres, 116(D10): D10106 [DOI: 10.1029/2010JD015412http://dx.doi.org/10.1029/2010JD015412]
Guo Y, He J Y, Gu S Y and Lu N M. 2020. Calibration and validation of Feng Yun-3-D microwave humidity sounder II. IEEE Geoscience and Remote Sensing Letters, 17(11): 1846-1850 [DOI: 10.1109/LGRS.2019.2957403http://dx.doi.org/10.1109/LGRS.2019.2957403]
Guo Y, Lu N M, Gu S Y, He J Y and Wang Z Z. 2014. Radiometric characteristics of FY-3C microwave humidity and temperature sounder. Journal of Applied Meteorological Science, 25(4): 436-444
郭杨, 卢乃锰, 谷松岩, 何杰颖, 王振占. 2014. FY-3C微波湿温探测仪辐射测量特性. 应用气象学报, 25(4): 436-444
Guo Y, Lu N M, Qi C L, GU S Y and Xu J M. 2015. Calibration and validation of microwave humidity and temperature sounder onboard FY-3C satellite. Chinese Journal of Geophysics, 58(1): 20-31
郭杨, 卢乃锰, 漆成莉, 谷松岩, 许健民. 2015. 风云三号C星微波湿温探测仪的定标和验证. 地球物理学报, 58(1): 20-31 [DOI: 10.6038/cjg20150103http://dx.doi.org/10.6038/cjg20150103]
Hans I, Burgdorf M, Buehler S A, Prange M, Lang T and John V O. 2019. An uncertainty quantified fundamental climate data record for microwave humidity sounders. Remote Sensing, 11(5): 548 [DOI: 10.3390/rs11050548http://dx.doi.org/10.3390/rs11050548]
He J Y and Chen H N. 2019. Atmospheric retrievals and assessment for microwave observations from Chinese FY-3C satellite during hurricane Matthew. Remote Sensing, 11(8): 896 [DOI: 10.3390/rs11080896http://dx.doi.org/10.3390/rs11080896]
Hersbach H, de Rosnay P, Bell B, Schepers D, Simmons A, Soci C, Abdalla S, Alonso-Balmaseda M, Balsamo G, Bechtold P, Berrisfold P, Bidlot J R, de Boisséson E, Bonavita M, Browne P, Buizza R, Dahlgren P, Dee D, Dragani R, Diamantakis M, Flemming J, Forbes R, Geer A J, Haiden T, Holm E, Haimberger L, Hogan R, Horanyi A, Janiskova M, Laloyaux P, Lopez P, Munoz-Sabater J, Peubey C, Radu R, Richardson D, Thépaut J N, Vitart F, Yang X, Zsoter E and Zuo H. 2018. Operational global reanalysis: progress, future directions and synergies with NWP. ERA Report Series 27 [DOI: 10.21957/tkic6g3wmhttp://dx.doi.org/10.21957/tkic6g3wm]
Hollinger J P, Peirce J L and Poe G A. 1990. SSM/I instrument evaluation. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 781-790 [DOI: 10.1109/36.58964http://dx.doi.org/10.1109/36.58964]
Hou X Y, Han Y, Hu X Q and Weng F Z. 2019. Verification of Fengyun-3D MWTS and MWHS calibration accuracy using GPS radio occultation data. Journal of Meteorological Research, 33(4): 695-704 [DOI: 10.1007/s13351-019-8208-9http://dx.doi.org/10.1007/s13351-019-8208-9]
Jin X, Chi J D, Hu T Y, Chen W X, Gu S Y and An D W. 2019. Research on stripe noise suppression of microwave temperature sounder on FY-3D satellite. Infrared, 40(12): 28-37
金旭, 迟吉东, 胡泰洋, 陈文新, 谷松岩, 安大伟. 2019. 风云三号D星微波温度计条带噪声抑制研究. 红外, 40(12): 28-37 [DOI: 10.3969/j.issn.1672-8785.2019.12.005http://dx.doi.org/10.3969/j.issn.1672-8785.2019.12.005]
Lang T, Buehler S A, Burgdorf M, Hans I and John V O. 2020. A new climate data record of upper-tropospheric humidity from microwave observations. Scientific Data, 7(1): 218 [DOI: 10.1038/s41597-020-0560-1http://dx.doi.org/10.1038/s41597-020-0560-1]
Lawrence H, Bormann N, Geer A J, Lu Q F and English S J. 2018. Evaluation and assimilation of the Microwave Sounder MWHS-2 onboard FY-3C in the ECMWF numerical weather prediction system. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3333-3349 [DOI: 10.1109/TGRS.2018.2798292http://dx.doi.org/10.1109/TGRS.2018.2798292]
Li J Y, Wang Z Z, Gu S Y and Zhang S W. 2019. Common Re-calibration technology for spaceborne microwave atmospheric humidity sounder. Remote Sensing Technology and Application, 34(6): 1212-1220
李娇阳, 王振占, 谷松岩, 张升伟. 2019. 星载微波大气湿度探测仪再定标共性技术分析. 遥感技术与应用, 34(6): 1212-1220 [DOI: 10.11873/j.issn.1004-0323.2019.6.1212http://dx.doi.org/10.11873/j.issn.1004-0323.2019.6.1212]
Liu G F, Wu S L, Chen W Y, Pan L and He J K. 2014. Calibration system and achievement of microwave radiation imager of FY-3 satellite. Journal of Microwaves, 30(S1): 576-579
刘高峰, 武胜利, 陈卫英, 潘莉, 何嘉恺. 2014. FY-3卫星微波成像仪定标系统及实现. 微波学报, 30(S1): 576-579 [DOI: 10.14183/j.cnki.1005-6122.2014.s1.164http://dx.doi.org/10.14183/j.cnki.1005-6122.2014.s1.164]
Lu Q F. 2011. Initial evaluation and assimilation of FY-3A atmospheric sounding data in the ECMWF System. Science China Earth Sciences, 54(10): 1453-1457
陆其峰. 2011. 风云三号A星大气探测资料数据在欧洲中期天气预报中心的初步评价与同化研究. 中国科学: 地球科学, 41(7): 890-894 [DOI: 10.1360/zd-2011-41-7-890http://dx.doi.org/10.1360/zd-2011-41-7-890]
Mo T. 2002. Calibration of the advanced microwave sounding unit-A radiometers for NOAA-N and NOAA-N. NOAA Technical Report NESDIS 106
Newell D, Draper D, Remund Q, Figgins D, Krimchansky S, Wentz F and Meissner T. 2015. GPM microwave imager (GMI) on-orbit performance and calibration results//2015 IEEE International Geoscience and Remote Sensing Symposium. Milan: IEEE: 5158-5161 [DOI: 10.1109/IGARSS.2015.7326995http://dx.doi.org/10.1109/IGARSS.2015.7326995]
Newman S, Carminati F, Lawrence H, Bormann N, Salonen K and Bell W. 2020. Assessment of new satellite missions within the framework of numerical weather prediction. Remote Sensing, 12(10): 1580 [DOI: 10.3390/rs12101580http://dx.doi.org/10.3390/rs12101580]
Qiao M, Yang H, He J K and Lv L Q. 2012. On-orbit performance stability analysis of microwave radiometer imager onboard FY-3 Satellite. Journal of Remote Sensing, 16(6): 1246-1261
乔木, 杨虎, 何嘉恺, 吕利清. 2012. 风云三号卫星微波成像仪在轨性能稳定性分析. 遥感学报, 16(6): 1246-1261 [DOI: 10.11834/jrs.20121318http://dx.doi.org/10.11834/jrs.20121318]
Rienecker M M, Suarez M J, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich M G, Schubert S D, Takacs L, Kim G K, Bloom S, Chen J Y, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster R D, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder C R, Reichle R, Robertson F R, Ruddick A G, Sienkiewicz M and Woollen J. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14): 3624-3648 [DOI: 10.1175/JCLI-D-11-00015.1http://dx.doi.org/10.1175/JCLI-D-11-00015.1]
Sapiano M R P, Berg W K, McKague D S and Kummerow C D. 2013. Toward an intercalibrated fundamental climate data record of the SSM/I sensors. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1492-1503 [DOI: 10.1109/TGRS.2012.2206601http://dx.doi.org/10.1109/TGRS.2012.2206601]
Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M M B and Miller Jr H L. 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press
Tang X T, Chen H H, Guan L and Li L L. 2020. Intercalibration of FY-3B/MWRI and GCOM-W1/AMSR-2 brightness temperature over the Arctic. Journal of Remote Sensing, 24(8): 1032-1044
唐晓彤, 陈海花, 管磊, 李乐乐. 2020. FY-3B/MWRI与GCOM-W1/AMSR-2亮温数据在北极地区的交叉定标. 遥感学报, 24(8): 1032-1044 [DOI: 10.11834/jrs.20208436http://dx.doi.org/10.11834/jrs.20208436]
Wang X, Ren Y F and Wu B. 2017. Absolute calibration of MWTS sounding channels using GPS RO data. Transactions of Atmospheric Sciences, 40(1): 81-89
王祥, 任义方, 吴彬. 2017. 用GPS资料对风云三号微波温度计资料进行绝对校准. 大气科学学报, 40(1): 81-89 [DOI: 10.13878/j.cnki.dqkxxb.20150312001http://dx.doi.org/10.13878/j.cnki.dqkxxb.20150312001]
Wang Z Z, Zhang S W, Li J, Li Y and Wu Q. 2013. Thermal/vacuum calibration of microwave humidity sounder on FY-3B satellite. Strategic Study of CAE, 15(10): 33-46, 53
王振占, 张升伟, 李靖, 李芸, 吴琼. 2013. FY-3B卫星微波湿度计热真空定标方法和结果分析. 中国工程科学, 15(10): 33-46, 53 [DOI: 10.3969/j.issn.1009-1742.2013.10.005http://dx.doi.org/10.3969/j.issn.1009-1742.2013.10.005]
Weng F, Zou X, Wang X, Yang S and Goldberg M D. 2012. Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. Journal of Geophysical Research: Atmospheres, 117(D19): D19112 [DOI: 10.1029/2012JD018144http://dx.doi.org/10.1029/2012JD018144]
Wu B H, Wang Y, Zou C Z, Li R, Liu S, Liu G S and Fu Y F. 2020. A fundamental climate data record derived from AMSR-E, MWRI, and AMSR2. IEEE Transactions on Geoscience and Remote Sensing, 58(8): 5450-5461 [DOI: 10.1109/TGRS.2020.2966055http://dx.doi.org/10.1109/TGRS.2020.2966055]
Xie X X, Dong K S, Yu W M, Meng W T and Gu S Y. 2021a. In-orbit calibration of FengYun-3C microwave radiation imager: nonlinearity correction. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7618-7626 [DOI: 10.1109/TGRS.2020.3034302http://dx.doi.org/10.1109/TGRS.2020.3034302]
Xie X X, Meng W T, He J K, Yu W M and Li X. 2021b. In-orbit calibration uncertainty of the microwave radiation imager on board FengYun-3C. Journal of Meteorological Research, 35(6): 943-951 [DOI: 10.1007/s13351-021-0220-1http://dx.doi.org/10.1007/s13351-021-0220-1]
Xie X X, Wu S L, Xu H X, Yu W M, He J K and Gu S Y. 2019. Ascending-descending bias correction of microwave radiation imager on board FengYun-3C. IEEE Transactions on Geoscience and Remote Sensing, 57(6): 3126-3134 [DOI: 10.1109/TGRS.2018.2881094http://dx.doi.org/10.1109/TGRS.2018.2881094]
Yang H, Weng F Z, Lv L Q, Lu N M, Liu G F, Bai M, Qian Q Y, He J K and Xu H X. 2011. The FengYun-3 microwave radiation imager on-orbit verification. IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4552-4560 [DOI: 10.1109/TGRS.2011.2148200http://dx.doi.org/10.1109/TGRS.2011.2148200]
Yang H, Zou X L, Li X Q and You R. 2012a. Environmental data records from FengYun-3B microwave radiation imager. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4986-4993 [DOI: 10.1109/TGRS.2012.2197003http://dx.doi.org/10.1109/TGRS.2012.2197003]
Yang J, Zhang P, Lu N M, Yang Z D, Shi J M and Dong C H. 2012b. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. International Journal of Digital Earth, 5(3): 251-265 [DOI: 10.1080/17538947.2012.658666http://dx.doi.org/10.1080/17538947.2012.658666]
You R, Gu S Y, Guo Y, Wu X B, Yang H and Chen W X. 2012. Long-term calibration and accuracy assessment of the fengyun-3 microwave temperature sounder radiance measurements. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4854-4859 [DOI: 10.1109/TGRS.2012.2200257http://dx.doi.org/10.1109/TGRS.2012.2200257]
Zeng Z Q and Jiang G M. 2020. Intercalibration of FY-3C MWRI against GMI using the ocean microwave radiative transfer mode. IEEE Access, 8: 63320-63335 [DOI: 10.1109/ACCESS.2020.2984090http://dx.doi.org/10.1109/ACCESS.2020.2984090]
Zhang M, Lu Q F, Gu S Y, Hu X Q and Wu S L. 2019. Analysis and correction 0f the difference between the ascending and descending orbits of the FY-3C microwaVe imager. Journal of Remote Sensing, 23(5): 841-849
张淼, 陆其峰, 谷松岩, 胡秀清, 武胜利. 2019. 风云三号C星微波成像仪升降轨偏差问题分析及订正. 遥感学报, 23(5): 841-849 [DOI: 10.11834/jrs.20198235http://dx.doi.org/10.11834/jrs.20198235]
Zhang P, Chen L, Xian D and Xu Z. 2018. Recent progress of Fengyun meteorology satellites. Chinese Journal of Space Science, 38(5): 788-796 [DOI: 10.11728/cjss2018.05.788http://dx.doi.org/10.11728/cjss2018.05.788]
Zhang P, Lu Q F, Hu X Q, Gu S Y, Yang L, Min M, Chen L, Xu N, Sun L, Bai W G, Ma G and Xian D. 2019. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Advances in Atmospheric Sciences, 36(9): 1027-1045 [DOI: 10.1007/s00376-019-8215-xhttp://dx.doi.org/10.1007/s00376-019-8215-x]
Zou C Z, Gao M and Goldberg M D. 2009. Error structure and atmospheric temperature trends in observations from the microwave sounding unit. Journal of Climate, 22(7): 1661-1681 [DOI: 10.1175/2008JCLI2233.1http://dx.doi.org/10.1175/2008JCLI2233.1]
Zou C Z, Goldberg M D, Cheng Z H, Grody N C, Sullivan J T, Cao C Y and Tarpley D. 2006. Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. Journal of Geophysical Research: Atmospheres, 111(D19): D19114 [DOI: 10.1029/2005JD006798http://dx.doi.org/10.1029/2005JD006798]
Zou C Z, Goldberg M D and Hao X J. 2018. New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection. Science Advances, 4(10): eaau0049 [DOI: 10.1126/sciadv.aau0049http://dx.doi.org/10.1126/sciadv.aau0049]
Zou C Z and Qian H F. 2016. Stratospheric temperature climate data record from merged SSU and AMSU-A observations. Journal of Atmospheric and Oceanic Technology, 33(9): 1967-1984 [DOI: 10.1175/JTECH-D-16-0018.1http://dx.doi.org/10.1175/JTECH-D-16-0018.1]
Zou C Z and Wang W H. 2010. Stability of the MSU-derived atmospheric temperature trend. Journal of Atmospheric and Oceanic Technology, 27(11): 1960-1971 [DOI: 10.1175/2009JTECHA1333.1http://dx.doi.org/10.1175/2009JTECHA1333.1]
Zou C Z and Wang W H. 2011. Intersatellite calibration of AMSU-A observations for weather and climate applications. Journal of Geophysical Research: Atmospheres, 116(D23): D23113 [DOI: 10.1029/2011JD016205http://dx.doi.org/10.1029/2011JD016205]
Zou C Z, Zhou L H, Lin L, Sun N H, Chen Y, Flynn L E, Zhang B, Cao C Y, Iturbide-Sanchez F, Beck T, Yan B H, Kalluri S, Bai Y, Blonski S, Choi T, Divakarla M, Gu Y L, Hao X J, Li W, Liang D, Niu J G, Shao X, Strow L, Tobin D C, Tremblay D, Uprety S, Wang W H, Xu H, Yang H and Goldberg M D. 2020. The reprocessed Suomi NPP satellite observations. Remote Sensing, 12(18): 2891 [DOI: 10.3390/rs12182891http://dx.doi.org/10.3390/rs12182891]
Zou X L, Chen X and Weng F Z. 2014. Polarization signature from the FengYun-3 microwave humidity sounder. Frontiers of Earth Science, 8(4): 625-633 [DOI: 10.1007/s11707-014-0479-yhttp://dx.doi.org/10.1007/s11707-014-0479-y]
Zou X L, Ma Y and Qin Z K. 2012. FengYun-3B Microwave Humidity Sounder (MWHS) data noise characterization and filtering using principle component analysis. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4892-4902 [DOI: 10.1109/TGRS.2012.2202122http://dx.doi.org/10.1109/TGRS.2012.2202122]
Zou X, Wang X, Weng F and Li G. 2011. Assessments of Chinese FengYun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. Journal of Atmospheric and Oceanic Technology, 28(10): 1206-1227 [DOI: 10.1175/JTECH-D-11-00023.1http://dx.doi.org/10.1175/JTECH-D-11-00023.1]
Zou X L. 2021. Studies of FY-3 observations over the past 10 years: a review. Remote Sensing, 13(4): 673 [DOI: 10.3390/rs13040673http://dx.doi.org/10.3390/rs13040673]
相关作者
相关机构