长短时记忆网络TS-InSAR地表形变预测
Surface deformation prediction based on TS-InSAR technology and long short-term memory networks
- 2022年26卷第7期 页码:1326-1341
纸质出版日期: 2022-07-07
DOI: 10.11834/jrs.20221457
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-07-07 ,
扫 描 看 全 文
陈毅,何毅,张立峰,陈宝山,何旭,蒲虹宇,曹胜鹏,高丽雅,杨旺.2022.长短时记忆网络TS-InSAR地表形变预测.遥感学报,26(7): 1326-1341
Chen Y,He Y,Zhang L F,Chen B S,He X,Pu H Y,Cao S P,Gao L Y and Yang W. 2022. Surface deformation prediction based on TS-InSAR technology and long short-term memory networks. National Remote Sensing Bulletin, 26(7):1326-1341
预测地面沉降对于城市基础设施损害的早期预警和及时采取补救措施具有重要意义。本文提出基于时序InSAR数据采用长短时记忆网络(LSTM)模型来预测地面沉降。以香港国际机场为研究区域,基于Sentinel-1A升轨影像利用时序雷达干涉技术(TS-InSAR)获取2015年—2020年机场时序地面沉降监测InSAR结果;利用机场时序InSAR形变结果建立堆叠式LSTM预测模型,并将预测结果与InSAR真实结果进行对比分析。结果表明,2015年—2020年香港国际机场地表垂直方向的平均形变速率为-19—5 mm/a。预测值与真实值的拟合均方根误差和平均绝对误差均较低,分别为0.75 mm和0.61 mm,同时其相关系数为0.99,表明LSTM预测模型在点级尺度上具有良好的性能,能够基于时序InSAR数据较准确预测地面沉降。但预测过程中发现,LSTM模型不适合长期预测,长期预测会出现失效性。本文提出的堆叠式LSTM预测模型可以作为一种有效方法来预测地表形变,尽管LSTM模型只是适用于短期预测,但其预测结果可用于辅助决策、早期预警和减轻危害。
Urban land subsidence is a geological disaster formed by natural and human factors. Cumulative land subsidence easily causes damage to buildings
infrastructure
underground engineering
and other hazards
which seriously threaten the safety of people’s lives and property and cause national economic losses. In the face of urban land subsidence
monitoring
analyzing
and predicting spatiotemporal changes in land subsidence are necessary. The prediction of land subsidence is a crucial step for the early warning of urban infrastructure damage and establishment of a timely remedy.
In this study
the Time Series Interferometric Synthetic Aperture Radar (TS-InSAR) technique was utilized to monitor the time series land subsidence at Hong Kong International Airport from 2015 to 2020 by using 152 Sentinel-1A images with an ascending orbit. The local weighted scatter smoothing (Loess) method was used to reduce and smooth the noise in the original data of surface deformation points. Given that the advantages of LSTM correspond to the results of TS-InSAR
on the basis of TS-InSAR data
a stacked LSTM neural network was used to construct a surface deformation prediction model with two LSTM layers
two dense layers
and three dropout layers. The stacked LSTM model was employed to predict the surface deformation of the airport
and its results were compared the predicted results obtained with the true InSAR findings.
The average vertical deformation rate of Hong Kong International Airport’s surface for 2015—2020 was -19—5 mm/year. The surface subsidence of the airport gradually increased
and the cumulative subsidence in the vertical direction reached 116 mm in December 2020. The cross-validation of the two time-series analysis methods and the comparison of the monitoring results with the level data showed that the InSAR monitoring results in this study had high accuracy and reliability. A stacked LSTM prediction model was established based on the time-series InSAR monitoring results
and the InSAR observation results were compared with the stacked LSTM prediction results. The root-mean-square error and mean absolute error of the predicted and true values were low
namely
0.75 and 0.61 mm
respectively
and the correlation coefficient was 0.99. The LSTM prediction model demonstrated good performance at the point level scale and could predict ground subsidence accurately on the basis of TS-InSAR data. The stacked LSTM model was employed to predict the time-series subsidence of Hong Kong International Airport in 2021 by using TS-InSAR deformation data from 2015—2020. The analysis revealed that the long-term prediction process of the stacked LSTM prediction model became invalid after six months. Therefore
the stacked LSTM prediction model is suitable for short-term predictions with a short-term prediction scale of about six months
and the maximum cumulative vertical subsidence of the airport will reach 114 mm in June 2021.
In summary
the stacked LSTM prediction model proposed in this study can be used as an effective method to predict surface deformation
and although the LSTM model is only suitable for short-term predictions
its prediction results can be used to assist in decision-making
early warning
and hazard mitigation. In the future
additional data can be incorporated into the LSTM model to accurately determine if the model is suitable for long-term predictions and improve the robustness of the prediction model.
遥感地面沉降TS-InSAR地表形变预测深度学习LSTM
remote sensingland deformationTS-InSARsurface deformation predictiondeep LearningLSTM
Aobpaet A, Cuenca M C, Hooper A and Trisirisatayawong I. 2013. InSAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing, 34 (8): 2969-2982 [DOI: 10.1080/01431161.2012.756596http://dx.doi.org/10.1080/01431161.2012.756596]
Berardino P, Fornaro G, Lanari R and Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383 [DOI: 10.1109/TGRS.2002.803792http://dx.doi.org/10.1109/TGRS.2002.803792]
Cao Q, Chen B B, Gong H L, Zhou C F, Luo Y, Gao M L, Wang X, Shi M, Zhao X X and Zuo J J. 2019. Monitoring of land subsidence in Beijing-Tianjin-Hebei Urban by combination of SBAS and IPTA. Journal of Nanjing University (Natural Science), 55(3): 381-391
曹群, 陈蓓蓓, 宫辉力, 周超凡, 罗勇, 高明亮, 王旭, 史珉, 赵笑笑, 左俊杰. 2019. 基于SBAS和IPTA技术的京津冀地区地面沉降监测. 南京大学学报(自然科学), 55(3): 381-391 [DOI: 10.13232/j.cnki.jnju.2019.03.005http://dx.doi.org/10.13232/j.cnki.jnju.2019.03.005]
Chen Y D, Zhang L F, He Y, Wang W H and Yang W. 2021. Ground deformation monitoring and analysis of Zhongchuan International Airport based on the time series InSAR of Sentinel-1A with ascending and descending orbits. Journal of Engineering Geology
陈有东, 张立峰, 何毅, 王文辉, 杨旺. 升降轨Sentinel-1A时序InSAR的中川国际机场地表形变监测与分析. 工程地质学报 [DOI: 10.13544/j.cnki.jeg.2020-609http://dx.doi.org/10.13544/j.cnki.jeg.2020-609]
Dehghan-Soraki Y, Sharifikia M and Sahebi M R. 2015. A comprehensive Interferometric process for monitoring land deformation using ASAR and PALSAR satellite Interferometric data. GIScience and Remote Sensing, 52(1): 58-77 [DOI: 10.1080/15481603.2014.989774http://dx.doi.org/10.1080/15481603.2014.989774]
Deng Z, Ke Y H, Gong H L, Li X J and Li Z H. 2017. Land subsidence prediction in Beijing based on PS-InSAR technique and improved grey-Markov model. Giscience and Remote Sensing, 54(6): 797-818. [DOI: 10.1080/15481603.2017.1331511http://dx.doi.org/10.1080/15481603.2017.1331511]
Ferretti A, Novali F, Bürgmann R, Hilley G and Prati C. 2004. InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay Area. Eos, Transactions American Geophysical Union, 85(34): 317-324 [DOI: 10.1029/2004EO340002http://dx.doi.org/10.1029/2004EO340002]
Ferretti A, Prati C and Rocca F. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20 [DOI: 10.1109/36.898661http://dx.doi.org/10.1109/36.898661]
Galloway D L and Burbey T J. 2011. Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8): 1459-1486 [DOI: 10.1007/s10040-011-0775-5http://dx.doi.org/10.1007/s10040-011-0775-5]
Graves A. 2012. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer [DOI: 10.1007/978-3-642-24797-2http://dx.doi.org/10.1007/978-3-642-24797-2]
He Y, Chen Y D, Wang W H, Yan H W, Zhang L F and Liu T. 2021. TS-InSAR analysis for monitoring ground deformation in Lanzhou New District, the loess Plateau of China, from 2017 to 2019. Advances in Space Research, 67(4): 1267-1283 [DOI: 10.1016/j.asr.2020.11.004http://dx.doi.org/10.1016/j.asr.2020.11.004]
He Y, Wang W H, Yan H W, Zhang L F, Chen Y D and Yang S W. 2020. Characteristics of surface deformation in Lanzhou with sentinel-1A TOPS. Geosciences, 10(3): 99 [DOI: 10.3390/geosciences10030099http://dx.doi.org/10.3390/geosciences10030099]
He Y, Yang T B, Chen J and Ji Q. 2015. Remote sensing detection of glacier changes in Dong Tianshan Bogda region in 1972-2013. Scientia Geographica Sinica, 35(7): 925-932
何毅, 杨太保, 陈杰, 冀琴. 1972~2013年东天山博格达峰地区冰川变化遥感监测. 地理科学, 35(7): 925-932 [DOI: 10.13249/j.cnki.sgs.2015.07.925http://dx.doi.org/10.13249/j.cnki.sgs.2015.07.925]
Hochreiter S and Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735-1780 [DOI: 10.1162/neco.1997.9.8.1735http://dx.doi.org/10.1162/neco.1997.9.8.1735]
Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M and Pepe A. 2007. An overview of the small BAseline subset algorithm: a DInSAR technique for surface deformation analysis. Pure and Applied Geophysics, 164(4): 637-661 [DOI: 10.1007/s00024-007-0192-9http://dx.doi.org/10.1007/s00024-007-0192-9]
Lin H, Ma P F and Wang W X. 2017. Urban Infrastructure Health Monitoring with Spaceborne Multi-temporal Synthetic Aperture Radar Interferometry. Acta Geodaetica et Cartographica Sinica, 46(10): 1421-1433
林珲, 马培峰, 王伟玺. 2017. 监测城市基础设施健康的星载MT-InSAR方法介绍. 测绘学报, 46(10): 1421-1433 [DOI: 10.11947/j.AGCS.2017.20170339http://dx.doi.org/10.11947/j.AGCS.2017.20170339]
Liu G X, Chen Q, Luo X and Cai G L. 2012. Theory and Method of Permanent Scatterer Radar Interferometry. Beijing: Science Press
刘国祥, 陈强, 罗小军, 蔡国林. 2012. 永久散射体雷达干涉理论与方法. 北京: 科学出版社
Liu X, Zhao N, Guo J Y and Guo B. 2020. Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network. Journal of Geo-information Science, 2020, 22(8): 1617-1629
刘新, 赵宁, 郭金运, 郭斌. 2020. 基于LSTM神经网络的青藏高原月降水量预测. 地球信息科学学报, 22(8): 1617-1629 [DOI: 10.12082/dqxxkx.2020.190378http://dx.doi.org/10.12082/dqxxkx.2020.190378]
Ma P F, Wang W X, Zhang B W, Wang J L, Shi G Q, Huang G Q, Chen F L, Jiang L M and Lin H. 2019. Remotely sensing large-and small-scale ground subsidence: a case study of the Guangdong-Hong Kong-Macao Greater Bay Area of China. Remote Sensing of Environment, 232: 111282 [DOI: 10.1016/j.rse.2019.111282http://dx.doi.org/10.1016/j.rse.2019.111282]
Qu F F, Lu Z, Zhang Q, Bawden G W, Kim J W, Zhao C Y and Qu W. 2015. Mapping ground deformation over Houston-Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 169: 290-306 [DOI: 10.1016/j.rse.2015.08.027http://dx.doi.org/10.1016/j.rse.2015.08.027]
Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Networks, 61: 85-117 [DOI: 10.1016/j.neunet.2014.09.003http://dx.doi.org/10.1016/j.neunet.2014.09.003]
Wang H X and Li K Y. 2019. Lithium-ion battery life prediction based on modified extend Kalman Filter. Computer Measurement and Control, 27(8): 271-275
王海霞, 李凯勇. 2019. 基于扩展卡尔曼滤波的锂离子电池寿命预测方法. 计算机测量与控制, 27(8): 271-275 [DOI: 10.16526/j.cnki.11-4762/tp.2019.08.057http://dx.doi.org/10.16526/j.cnki.11-4762/tp.2019.08.057]
Wang W H, He Y, Zhang L F, Chen Y D, Qiu L S and Pu H Y. 2020. Analysis of surface deformation and driving forces in Lanzhou. Open Geosciences, 12(1): 1127-1145 [DOI: 10.1515/geo-2020-0128http://dx.doi.org/10.1515/geo-2020-0128]
Wei F Y. 2007. Modern Climate Statistical Diagnosis and Prediction Technology. 2nd ed. Beijing: China Meteorological Press: 175-181
魏凤英. 现代气候统计诊断与预测技术. 2版. 北京: 气象出版社: 175-181
Wu S B, Yang Z F, Ding X L, Zhang B C, Zhang L and Lu Z. 2020. Two decades of settlement of Hong Kong International Airport measured with multi-temporal InSAR. Remote Sensing of Environment, 248: 111976 [DOI: 10.1016/j.rse.2020.111976http://dx.doi.org/10.1016/j.rse.2020.111976]
Ye S J, Luo Y, Wu J C, Yan X X, Wang H M, Jiao X and Teatini P. 2016. Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrogeology Journal, 24(3): 695-709 [DOI: 10.1007/s10040-016-1382-2http://dx.doi.org/10.1007/s10040-016-1382-2]
Zhao Q, Lin H, Wei G, Zebker H, Chen A and Yeung K. 2011. InSAR detection of residual settlement of an ocean reclamation engineering project: a case study of Hong Kong International Airport. Journal of Oceanography, 67(4): 415-426 [DOI: 10.1007/s10872-011-0034-3http://dx.doi.org/10.1007/s10872-011-0034-3]
相关作者
相关机构