无人机多光谱和LiDAR的红树林精细识别与生物量估算
Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR
- 2022年26卷第6期 页码:1169-1181
纸质出版日期: 2022-06-07
DOI: 10.11834/jrs.20221484
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-07 ,
扫 描 看 全 文
吴培强,任广波,张程飞,王浩,刘善伟,马毅.2022.无人机多光谱和LiDAR的红树林精细识别与生物量估算.遥感学报,26(6): 1169-1181
Wu P Q,Ren G B,Zhang C F,Wang H,Liu S W and Ma Y. 2022. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR. National Remote Sensing Bulletin, 26(6):1169-1181
红树林是生长在热带和亚热带海岸潮间带、受到海水周期性浸淹的木本植物群落,被公认为是海陆边缘重要的蓝色碳汇,但由于其地处海岸带区域,受人类开发利用活动的影响严重。本文选择广西茅尾海红树林保护区为研究区,以无人机多光谱和激光雷达影像为数据源,利用支持向量机分类方法对红树林优势种类进行分类;提出了单木分层分区距离判别聚类分割方法,准确提取了红树林的单木结构信息;估算了研究区红树林地上生物量。得出以下结论:(1)综合利用无人机多光谱和激光雷达数据,对研究区红树林种间类型识别总体精度可达90.69%;(2)基于分层分区距离判别聚类方法能够较好的提取红树林单木结构特征,树高的提取精度优于冠幅;(3)构建了红树林高度、冠幅与地上生物量回归模型,其中桐花树生物量回归模型的决定系数
R
²最高,达0.83;(4)研究区内红树林地上生物量主要分布范围为1.24—3.6 kg/m
2
,其中无瓣海桑最高,老鼠簕最低。
Mangroves are special types of woody plants that grow exclusively in the intertidal zones of the tropics and the subtropics. With respect to environmental and ecological values
mangroves protect the shoreline from tides
winds
and storms and act as the first line of defense against extreme weather in coastal areas. Moreover
mangroves have a continuous carbon fixation capacity
which is much higher than those of peat swamp and coastal salt marsh. Mangroves are an important part of the earth carbon cycle system and considered an important blue carbon sink on the sea and land margin. However
mangrove habitat is threatened all over the world due to human development and utilization activities. Therefore
monitoring the spatial distribution of mangrove types and biomass will help guide policy-makers in taking effective utilization and protection measures.
In this paper
on the basis of UAV multispectral images and LiDAR point cloud data
the support vector machine classification method is used for mangrove identification. Furthermore
mangrove species are distinguished according to different heights and distribution areas using the elevation information in the UAV LiDAR point cloud data. The structure characteristics of mangrove single wood are extracted by the point-cloud-based cluster segmentation method
and an estimation model of the tree height
canopy
and aboveground biomass obtained by LiDAR remote sensing is constructed
Finally
the aboveground biomass of mangrove in the study area is calculated
and its spatial distribution information is analyzed.
The classification result of the species types of mangroves
which is combined with the multi spectrum and LiDAR point cloud data
can reach 90.69% in total accuracy. The kappa coefficient is 0.88. The accuracies of the algorithm in identifying single trees of
Kandelia candel
and
Aegiceras corniculata
are 86.71% and 60.21%
respectively. Among them
the middle errors of the heights of
K. candel
and
A. corniculata
are 0.36 and 0.18 m
respectively
and the crown width extraction precision of
K. candel
is higher than that of
A. corniculata
. The regression models of the aboveground biomass of
K. candel
and
A. corniculata
are constructed. The accuracy of the fusion model is the highest
and the respective decision coefficients (
R
²) are 0.678 and 0.832 for
K. candel
and
A. corniculata
.
Mangroves are mostly planted artificially in the study area and distributed in a belt perpendicular to the dam:
K. candel
—
Cyperus malaccensis
Lam. and
Acanthus ilicifolius
L. —
A. corniculata
. The area of
A. corniculata
is the largest
which is approximately 8.91 hm
2
and distributed on both sides of the tidal ditch far from the dam. The area of
K. candel
is 4.69 hm
2
which is distributed in the area near the dam.
C. malaccensis
Lam. and
A. ilicifolius
L. are scattered in small areas among the different types of objects. The aboveground biomass of mangrove is calculated by the estimation model of above ground biomass. The aboveground biomass follows the order
Sonneratia apetala
>
A. corniculata
>
C. malaccensis
Lam.
>
K. candel > A. ilicifolius
L
.
The distribution range of mangrove’s aboveground biomass is 1.24—3.6 kg/m
2
.
遥感红树林无人机多光谱激光雷达树种分类地上生物量
remote sensingmangroveUAVmultispectralLiDARtree species classificationaboveground biomass
Chadwick J. 2011. Integrated LiDAR and IKONOS multispectral imagery for mapping mangrove distribution and physical properties. International Journal of Remote Sensing, 32(21): 6765-6781 [DOI: 10.1080/01431161.2010.512944http://dx.doi.org/10.1080/01431161.2010.512944]
Duarte C M, Middelburg J J and Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1): 1-8 [DOI: 10.5194/bg-2-1-2005http://dx.doi.org/10.5194/bg-2-1-2005]
Duke N C, Meynecke J O, Dittmann S, Ellison A M, Anger K, Berger U, Cannicci S, Diele K, Ewel K C, Field C D, Koedam N, Lee S Y, Marchand C, Nordhaus I and Dahdouh-Guebas F. 2007. A world without mangroves? Science, 317(5834): 41-42 [DOI: 10.1126/science.317.5834.41bhttp://dx.doi.org/10.1126/science.317.5834.41b]
Fatoyinbo T, Feliciano E A, Lagomasino D, Lee S K and Trettin C. 2018. Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta. Environmental Research Letters, 13(2): 025012 [DOI: 10.1088/1748-9326/aa9f03http://dx.doi.org/10.1088/1748-9326/aa9f03]
Feliciano E A, Wdowinski S and Potts M D. 2014. Assessing mangrove above-ground biomass and structure using terrestrial laser scanning: a case study in the Everglades National Park. Wetlands, 34(5): 955-968 [DOI: 10.1007/s13157-014-0558-6http://dx.doi.org/10.1007/s13157-014-0558-6]
Feliciano E A, Wdowinski S, Potts M D, Lee S K and Fatoyinbo T E. 2017. Estimating mangrove canopy height and above-ground biomass in the Everglades National Park with airborne LiDAR and TanDEM-X data. Remote Sensing, 9(7): 702 [DOI: 10.3390/rs9070702http://dx.doi.org/10.3390/rs9070702]
He Q F, Zheng W, Huang X R, Liu X, Shen W H and He F. 2017. Carbon storage and distribution of mangroves at Qinzhou bay. Journal of Central South University of Forestry and Technology, 37(11): 121-126
何琴飞, 郑威, 黄小荣, 刘秀, 申文辉, 何峰. 2017. 广西钦州湾红树林碳储量与分配特征. 中南林业科技大学学报, 37(11): 121-126
Hickey S M, Callow N J, Phinn S, Lovelock C E and Duarte C M. 2018. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: a remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science, 200: 194-201 [DOI: 10.1016/j.ecss.2017.11.004http://dx.doi.org/10.1016/j.ecss.2017.11.004]
Hu T Y, Zhang Y Y, Su Y J, Zheng Y, Lin G H and Guo Q H. 2020. Mapping the global mangrove forest aboveground biomass using multisource remote sensing data. Remote Sensing, 12(10): 1690 [DOI: 10.3390/rs12101690http://dx.doi.org/10.3390/rs12101690]
Huang Y Q, Wu X F, Han W D and Liu X T. 2002. A study on biomass of Sonneratia apetala artificial stands. Acta Agriculturae Universitatis Jiangxiensis, 24(4): 533-536
黄月琼, 吴小凤, 韩维栋, 刘新田. 2002. 无瓣海桑人工林林分生物量的研究. 江西农业大学学报(自然科学版), 24(4): 533-536 [DOI: 10.3969/j.issn.1000-2286.2002.04.024http://dx.doi.org/10.3969/j.issn.1000-2286.2002.04.024]
Jia M M. 2014. Remote Sensing Analysis of China’s Mangrove Forests Dynamic during 1973 to 2013. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences
贾明明. 2014. 1973—2013年中国红树林动态变化遥感分析. 长春: 中国科学院研究生院(东北地理与农业生态研究所)
Jia M M, Zhang Y Z, Wang Z M, Song K S and Ren C Y. 2014. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data. International Journal of Applied Earth Observation and Geoinformation, 33: 226-231 [DOI: 10.1016/j.jag.2014.06.006http://dx.doi.org/10.1016/j.jag.2014.06.006]
Li Q S, Wong F K K and Fung T. 2019. Classification of mangrove species using combined WordView-3 and LiDAR data in Mai Po nature reserve, Hong Kong. Remote Sensing, 11(18): 2114 [DOI: 10.3390/rs11182114http://dx.doi.org/10.3390/rs11182114]
Li W K, Guo Q H, Jakubowski M K and Kelly M. 2012. A new method for segmenting individual trees from the Lidar point cloud. Photogrammetric Engineering and Remote Sensing, 78(1): 75-84 [DOI: 10.14358/PERS.78.1.75http://dx.doi.org/10.14358/PERS.78.1.75]
Liao B W and Zhang Q M. 2014. Area, distribution and species composition of mangroves in China. Wetland Science, 12(4): 435-440
廖宝文, 张乔民. 2014. 中国红树林的分布、面积和树种组成. 湿地科学, 12(4): 435-440 [DOI: 10.13248/j.cnki.wetlandsci.2014.04.005http://dx.doi.org/10.13248/j.cnki.wetlandsci.2014.04.005]
Lin P. 1997. Mangrove Ecosystem in China. Beijing: Science Press
林鹏. 1997. 中国红树林生态系统. 北京: 科学出版社
Lu D S, Chen Q, Wang G X, Liu L J, Li G Y and Moran E. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1): 63-105 [DOI: 10.1080/17538947.2014.990526http://dx.doi.org/10.1080/17538947.2014.990526]
Manna S, Nandy S, Chanda A, Akhand A, Hazra S and Dadhwal V K. 2014. Estimating aboveground biomass in Avicennia marina plantation in Indian Sundarbans using high-resolution satellite data. Journal of Applied Remote Sensing, 8(1): 083638 [DOI: 10.1117/1.JRS.8.083638http://dx.doi.org/10.1117/1.JRS.8.083638]
Navarro A, Young M, Allan B, Carnell P, Macreadie P and Ierodiaconou D. 2020. The application of Unmanned Aerial Vehicles (UAVs) to estimate aboveground biomass of mangrove ecosystems. Remote Sensing of Environment, 242: 11747 [DOI: 10.1016/j.rse.2020.111747http://dx.doi.org/10.1016/j.rse.2020.111747]
Olagoke A, Proisy C, Féret J B, Blanchard E, Fromard F, Mehlig U, De Menezes M M, Dos Santos V F and Berger U. 2016. Extended biomass allometric equations for large mangrove trees from terrestrial LiDAR data. Trees, 30(3): 935-947 [DOI: 10.1007/s00468-015-1334-9http://dx.doi.org/10.1007/s00468-015-1334-9]
Pan L H, Shi X F and Fan H Q. 2015. Research on biomass estimate model of Cyperus malaccensis Lam. Journal of Guangxi Academy of Sciences, 31(4): 259-263
潘良浩, 史小芳, 范航清. 2015. 茳芏(Cyperus malaccensis Lam.)生物量估测模型. 广西科学院学报, 31(4): 259-263 [DOI: 10.13657/j.cnki.gxkxyxb.20151126.009http://dx.doi.org/10.13657/j.cnki.gxkxyxb.20151126.009]
Pham L T H and Brabyn L. 2017. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS Journal of Photogrammetry and Remote Sensing, 128: 86-97 [DOI: 10.1016/j.isprsjprs.2017.03.013http://dx.doi.org/10.1016/j.isprsjprs.2017.03.013]
Qiu P H, Wang D Z, Zou X Q, Yang X, Xie G Z, Xu S J and Zhong Z Q. 2019. Finer resolution estimation and mapping of mangrove biomass using UAV LiDAR and WorldView-2 data. Forests, 10(10): 871 [DOI: 10.3390/f10100871http://dx.doi.org/10.3390/f10100871]
Salum R B, Souza-Filho P W M, Simard M, Silva C A, Fernandes M E B, Cougo M F, Do Nascimento W and Rogers K. 2020. Improving mangrove above-ground biomass estimates using LiDAR. Estuarine, Coastal and Shelf Science, 236: 106585 [DOI: 10.1016/j.ecss.2020.106585http://dx.doi.org/10.1016/j.ecss.2020.106585]
Salum R B, Robinson S A and Rogers K. 2021. A validated and accurate method for quantifying and extrapolating mangrove above-ground biomass using LiDAR data. Remote Sensing, 13(14): 2763 [DOI: 10.3390/rs13142763http://dx.doi.org/10.3390/rs13142763]
Silván-Cárdenas J L, Gallardo-Cruz J A and Hernández-Huerta LM. 2020. Structured pointcloud segmentation for individual mangrove tree modeling//12th Mexican Conference on Pattern Recognition. Morelia, Mexico: Springer: 172-182 [DOI: 10.1007/978-3-030-49076-8_17http://dx.doi.org/10.1007/978-3-030-49076-8_17]
Simard M, Rivera-Monroy V H, Mancera-Pineda J E, Castañeda-Moya E and Twilley R R. 2008. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment, 112(5): 2131-2144 [DOI: 10.1016/j.rse.2007.10.012http://dx.doi.org/10.1016/j.rse.2007.10.012]
Tang H L, Liu K, Zhu Y H, Wang S G, Liu L and Song S. 2015. Mangrove community classification based on WorldView-2 image and SVM method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 54(4): 102-111
唐焕丽, 刘凯, 朱远辉, 王树功, 柳林, 宋莎. 2015. 基于WorldView-2数据和支持向量机的红树林群落分类研究. 中山大学学报(自然科学版), 54(4): 102-111 [DOI: 10.13471/j.cnki.acta.snus.2015.04.020http://dx.doi.org/10.13471/j.cnki.acta.snus.2015.04.020]
Wang L, Sousa W P, Gong P and Biging G S. 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91(3/4): 432-440 [DOI: 10.1016/j.rse.2004.04.005http://dx.doi.org/10.1016/j.rse.2004.04.005]
Wang D Z, Wan B, Qiu P H, Zuo Z J, Wang R and Wu X C. 2019. Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV-LiDAR sampling. Remote Sensing, 11(18): 2156 [DOI: 10.3390/rs11182156http://dx.doi.org/10.3390/rs11182156]
Wang H, Ren G B, Wu P Q, Liu A C, Pan L H, Ma Y M, Ma Y and Wang J J. 2020. Analysis on the remote sensing monitoring and landscape pattern change of mangrove in China from 1990 to 2019. Journal of Ocean Technology, 39(5): 1-12
王浩, 任广波, 吴培强, 刘爱超, 潘良浩, 马云梅, 马毅, 王锦锦. 2020. 1990—2019年中国红树林变迁遥感监测与景观格局变化分析. 海洋技术学报, 39(5): 1-12 [DOI: 10.3969/j.issn.1003-2029.2020.05.001http://dx.doi.org/10.3969/j.issn.1003-2029.2020.05.001]
Wen X, Jia M M, Li X Y, Wang Z M, Zhong C R and Feng E H. 2020. Identification of mangrove canopy species based on visible unmanned aerial vehicle images. Journal of Forest and Environment, 40(5): 486-496
闻馨, 贾明明, 李晓燕, 王宗明, 钟才荣, 冯尔辉. 2020. 基于无人机可见光影像的红树林冠层群落识别. 森林与环境学报, 40(5): 486-496 [DOI: 10.13324/j.cnki.jfcf.2020.05.005http://dx.doi.org/10.13324/j.cnki.jfcf.2020.05.005]
Xu Y, Zhen J N, Jiang X P and Wang J J. 2021. Mangrove species classification with UAV-based remote sensing data and XGBoost. National Remote Sensing Bulletin, 25(3): 737-752
徐逸, 甄佳宁, 蒋侠朋, 王俊杰. 2021. 无人机遥感与XGBoost的红树林物种分类. 遥感学报, 25(3): 737-752 [DOI: 10.11834/jrs.20210281http://dx.doi.org/10.11834/jrs.20210281]
Yin D M and Wang L. 2019. Individual mangrove tree measurement using UAV-based LiDAR data: possibilities and challenges. Remote Sensing of Environment, 223: 34-49 [DOI: 10.1016/j.rse.2018.12.034http://dx.doi.org/10.1016/j.rse.2018.12.034]
Zhen J N, Liao J J and Shen G Z. 2019. Remote sensing monitoring and analysis on the dynamics of mangrove forests in Qinglan Habor of Hainan province since 1987. Wetland Science, 17(1): 44-51
甄佳宁, 廖静娟, 沈国状. 2019. 1987以来海南省清澜港红树林变化的遥感监测与分析. 湿地科学, 17(1): 44-51 [DOI: 10.13248/j.cnki.wetlandsci.2019.01.006http://dx.doi.org/10.13248/j.cnki.wetlandsci.2019.01.006]
Zhu Y H, Liu K, Liu L, Myint S W, Wang S G, Cao J J and Wu Z F. 2020. Estimating and mapping mangrove biomass dynamic changes using WorldView-2 images and digital surface models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 2123-2134 [DOI: 10.1109/JSTARS.2020.2989500http://dx.doi.org/10.1109/JSTARS.2020.2989500]
Zhu Y H, Liu K, Liu L, Wang S G and Liu H X. 2015. Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images. Remote Sensing, 7(9): 12192-12214 [DOI: 10.3390/rs70912192http://dx.doi.org/10.3390/rs70912192]
Zhu Y H, Liu L, Liu K, Wang S G and Ai B. 2014. Progress in researches on plant biomass of mangrove forests. Wetland Science, 12(4): 515-526
朱远辉, 柳林, 刘凯, 王树功, 艾彬. 2014. 红树林植物生物量研究进展. 湿地科学, 12(4): 515-526 [DOI: 10.13248/j.cnki.wetlandsci.2014.04.016http://dx.doi.org/10.13248/j.cnki.wetlandsci.2014.04.016]
相关作者
相关机构