哨兵1号和高分三号SAR数据海浪谱反演精度评估
Accuracy evaluation of wave spectrum inversion based on Sentinel-1 and GF-3 SAR data
- 2023年27卷第4期 页码:891-904
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20221503
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
万勇,马恩男,曲若钊,戴永寿.2023.哨兵1号和高分三号SAR数据海浪谱反演精度评估.遥感学报,27(4): 891-904
Wan Y, Ma E N, Qu R Z and Dai Y S. 2023. Accuracy evaluation of wave spectrum inversion based on Sentinel-1 and GF-3 SAR data. National Remote Sensing Bulletin, 27(4):891-904
合成孔径雷达SAR(Synthetic Aperture Radar)是一种重要的海浪观测手段,研究其SAR图像海浪谱反演结果的精度,是其广泛应用于海浪观测的前提。欧洲航天局ESA(European Space Agency)的哨兵1号卫星(Sentinel-1)和中国自主研发的高分三号卫星(GF-3)是目前在轨运行的两颗SAR卫星,利用两颗卫星的SAR数据反演海浪和风场参数是目前国内外研究团队最为关注的问题之一。本文重点研究并对比了哨兵1号卫星SAR IW模式(Interferometric Wide swath)和GF-3卫星SAR条带模式数据海浪谱反演的精度。选取印度洋海上丝绸之路海域和太平洋、大西洋近岸海域不同海况下的两卫星SAR数据进行海浪参数反演,将反演结果分别与欧洲天气预报中心ECMWF(European Center for Medium-range Weather Forecasts)的ERA-5数据和浮标海浪数据进行了对比,结果显示,与ERA-5数据对比,Sentinel-1卫星反演有效波高和平均波周期的均方根误差RMSE(Root Mean Squared Error)分别为0.30 m、0.63 s,GF-3卫星反演有效波高和平均波周期的均方根误差分别为0.37 m、0.99 s;与浮标数据对比,哨兵1号卫星反演有效波高和平均波周期的均方根误差分别为0.40 m、0.91 s,GF-3卫星反演有效波高和平均波周期的均方根误差分别为0.42 m、0.94 s。结果表明,基于海浪谱反演的GF-3卫星与Sentinel-1卫星SAR海浪参数反演精度满足海洋遥感领域的要求,二者海浪谱反演结果精度相当。
Ocean wave is one of the important marine dynamic phenomenon that affect human activities. At present
the main observation means include buoy observation
marine numerical prediction model
and microwave remote sensing observation. However
we cannot conduct large-scale observation by buoy
and the marine numerical prediction model’s result is not measured data. Spectrometers and altimeters in microwave remote sensing instruments can also measure spectral parameters. However
SAR
which has a higher resolution
can provide 2D sea surface information. The Sentinel-1 satellite of ESA and GF-3 satellite independently developed by China are now in orbit
and numerous teams are working to retrieve wave parameters from SAR data of these two satellites. In this work
we compared the wave parameter inversion accuracy of Sentinel-1 SAR Interferometric Wide Swath model and GF-3 SAR strip model based on wave spectrum
which provides a reference for the wide application of GF-3 SAR data.
The sea states according to the ERA-5 data of ECMWF are divided into three categories: low
moderate
and high sea states. The sea areas of Hormuz and Malacca Straits of the maritime Silk Road in the Indian Ocean and the coastal waters of the Pacific and Atlantic Ocean are selected as the study areas. Meanwhile
the SAR data of Sentinel-1 and GF-3 satellites under different sea states are selected as the data source. The MPI method is used to retrieve the wave spectrum and wave parameters using the E spectrum as the initial guess. Subsequently
the SAR data inversion results of the two satellites under different sea states are compared with the ERA-5 and buoy wave data. The inversion accuracy of the wave parameters can be verified by calculating the values of the Root Mean Square Error (RMSE) and Scatter Index (SI)
and the inversion accuracy of the wave parameters of the two satellites under different sea conditions can be compared.
The RMSEs of significant wave height (
H
s
) retrieved by GF-3 SAR under low
moderate
and high sea conditions are 0.30
0.34
and 0.48 m
and those of mean wave period (
T
m
) are 1.02
0.99
and 0.95 s
respectively
compared with the ERA-5 data. In addition
the RMSE of
H
s
retrieved by Sentinel-1 SAR under low
moderate
and high sea conditions are 0.30
0.29
and 0.33 m
respectively
and the RMSEs of
T
m
are 0.94
0.51
and 0.64 s
respectively. The RMSEs of
H
s
and
T
m
under different sea conditions retrieved by GF-3 SAR are 0.38 m and 0.99 s
and those of
H
s
and
T
m
retrieved by Sentinel-1 SAR are 0.31 m and 0.70 s
respectively
compared with the ERA-5 data. The RMSEs of the retrieved
H
s
and
T
m
of GF-3 satellite are 0.42 m and 0.94 s
and those of the retrieved
H
s
and
T
m
of Sentinel-1 are 0.40 m and 0.91 s
respectively
compared with the buoy data.
The SAR wave parameter inversion of Sentinel-1 and GF-3 SAR based on the wave spectrum shows that the inversion results of the two satellites meet the index requirements in this field
and the accuracy of the inversion results of wave spectrum is the same. The strip mode SAR data of GF-3 satellite
China’s first self-developed SAR satellite
has broad prospects in marine research fields.
SAR高分三号(GF-3)哨兵1号(Sentinel-1)海浪谱反演精度比对
SARGF-3Sentinel-1wave spectrum inversionaccuracy comparison
Abdalla S, De Chiara G, Bidlot J and Isaksen L. 2019. Use of satellite data to support ocean wind and wave forecasting: a review.
Dai L and Gao M G. 2006. A high-efficient realization algorithm of multi-look processing. Modern Radar, 28(5): 30-33
戴乐, 高梅国. 2006. 一种高效的多视处理实现算法. 现代雷达, 28(5): 30-33 [DOI: 10.3969/j.issn.1004-7859.2006.05.009http://dx.doi.org/10.3969/j.issn.1004-7859.2006.05.009]
Elfouhaily T, Chapron B, Katsaros K and Vandemark D. 1997. A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research: Oceans, 102(C7): 15781-15796 [DOI: 10.1029/97JC00467http://dx.doi.org/10.1029/97JC00467]
Engen G and Johnsen H. 1995. SAR-ocean wave inversion using image cross spectra. IEEE Transactions on Geoscience and Remote Sensing, 33(4): 1047-1056 [DOI: 10.1109/36.406690http://dx.doi.org/10.1109/36.406690]
Hasselmann K and Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research: Oceans, 96(C6): 10713-10729 [DOI: 10.1029/91JC00302http://dx.doi.org/10.1029/91JC00302]
Hasselmann S, Brüning C, Hasselmann K and Heimbach P. 1996. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. Journal of Geophysical Research: Oceans, 101(C7): 16615-16629 [DOI: 10.1029/96jc00798http://dx.doi.org/10.1029/96jc00798]
Li X F, Pichel W G, He M X, et al. 2002. Observation of hurricane-generated ocean swell refraction at the Gulf Stream north wall with the RADARSAT-1 synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 40(10): 2131-2142 [DOI: 10.1109/TGRS.2002.802474http://dx.doi.org/10.1109/TGRS.2002.802474]
Li X M. 2010. Study of Algorithms for Ocean Wave Retrieval Using ENVISAT Advanced Synthetic Aperture Radar Wave Mode Data. Qingdao: Ocean University of China
李晓明. 2010. ENVISAT卫星ASAR波模式数据海浪反演算法研究. 青岛: 中国海洋大学
Li X M, Lehner S and Bruns T. 2011. Ocean wave integral parameter measurements using envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 155-174 [DOI: 10.1109/TGRS.2010.2052364http://dx.doi.org/10.1109/TGRS.2010.2052364]
Mastenbroek C and de Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research: Oceans, 105(C2): 3497-3516 [DOI: 10.1029/1999JC900282http://dx.doi.org/10.1029/1999JC900282]
Monaldo F, Jackson C, Li X F and Pichel W G. 2016. Preliminary evaluation of sentinel-1A wind speed retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6): 2638-2642 [DOI: 10.1109/JSTARS.2015.2504324http://dx.doi.org/10.1109/JSTARS.2015.2504324]
Schulz-Stellenfleth J, König T and Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research: Oceans, 112(C3): C03019 [DOI: 10.1029/2006JC003970http://dx.doi.org/10.1029/2006JC003970]
Schulz-Stellenfleth J, Lehner S and Hoja D. 2005. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. Journal of Geophysical Research: Oceans, 110(C5): C05004 [DOI: 10.1029/2004JC002822http://dx.doi.org/10.1029/2004JC002822]
Sheng Y X, Shao W Z, Zhu S, Sun J, Yuan X Z, Li S Q, Shi J and Zuo J C. 2018. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery by using an improved algorithm. Acta Oceanologica Sinica, 37(6): 1-10. [DOI: 10.1007/s13131-018-1217-1http://dx.doi.org/10.1007/s13131-018-1217-1]
Sreelakshmi S and Bhaskaran P K. 2020. Wind-generated wave climate variability in the Indian Ocean using ERA-5 dataset. Ocean Engineering, 209: 107486 [DOI: 10.1016/j.oceaneng.2020.107486http://dx.doi.org/10.1016/j.oceaneng.2020.107486]
Stopa J E and Mouche A. 2017. Significant wave heights from Sentinel‐1 SAR: validation and applications. Journal of Geophysical Research: Oceans, 122(3): 1827-1848 [DOI: 10.1002/2016JC012364http://dx.doi.org/10.1002/2016JC012364]
Sun J and Guan G L. 2006. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chinese Journal of Oceanology and Limnology, 24(1): 12-20 [DOI: 10.1007/BF02842769http://dx.doi.org/10.1007/BF02842769]
Sun J and Kawamura H. 2009. Retrieval of surface wave parameters from SAR images and their validation in the coastal seas around Japan. Journal of Oceanography, 65(4): 567-577 [DOI: 10.1007/s10872-009-0048-2http://dx.doi.org/10.1007/s10872-009-0048-2]
Wan Y, Qu R Z, Dai Y S and Zhang X Y. 2020. Research on the applicability of the E spectrum and PM spectrum as the first guess spectrum of SAR wave spectrum inversion. IEEE Access, 8: 169082-169095 [DOI: 10.1109/ACCESS.2020.3023012http://dx.doi.org/10.1109/ACCESS.2020.3023012]
Wang J. 2019. The Research of Retrieving Wave Information from GF-3 SAR Wave Mode Images. Zhoushan: Zhejiang Ocean University
王婧. 2019. 高分三号(GF-3)卫星波模式SAR海浪信息反演研究. 舟山: 浙江海洋大学
Wang J J, Li B X, Gao Z Y and Wang J K. 2019. Comparison of ECMWF significant wave height forecasts in the China Sea with Buoy Data. Weather and Forecasting, 34(6): 1693-1704 [DOI: 10.1175/WAF-D-19-0043.1http://dx.doi.org/10.1175/WAF-D-19-0043.1]
Wen B and Liu J. 2006. Review of history and prospect for study of sea wave numerical modeling. Marine Forecasts, 23(4): 76-81
闻斌, 刘俊. 2006. 海浪数值模式研究回顾与进展. 海洋预报, 23(4): 76-81 [DOI: 10.3969/j.issn.1003-0239.2006.04.010http://dx.doi.org/10.3969/j.issn.1003-0239.2006.04.010]
Xu F X. 1988. Numerical forecasting experiment on sea waves of the north pacific. Marine Forecasts, 5(2): 29-34
许富祥. 1988. 北太平洋海浪数值预报试验. 海洋预报, 5(2): 29-34
Zhang L T. 2014. The Influence of Parameter and Operating Mode of Synthetic Aperture Radar on Sea Wave Retrival. Qingdao: Ocean University of China
张丽婷. 2014. SAR雷达参数及工作模式对海浪反演的影响研究. 青岛: 中国海洋大学
Zhang Z. 2017. The Research of Retrieving Sea Surface Wind and Ocean Wave Parameters from Synthetic Aperture Radar. Zhoushan: Zhejiang Ocean University
张政. 2017. 合成孔径雷达提取海面风、浪参数的研究. 舟山: 浙江海洋大学
Zhu S, Shao W Z, Armando M, Shi J, Sun J, Yuan X Z, Hu J C and Yang D K. 2018. Evaluation of Chinese quad-polarization gaofen-3 SAR wave mode data for significant wave height retrieval. Canadian Journal of Remote Sensing, 44(6): 588-600 [DOI: 10.1080/07038992.2019.1573136http://dx.doi.org/10.1080/07038992.2019.1573136]
相关作者
相关机构