利用FY-3B MWRI遥感数据反演南极海冰表面积雪厚度
Retrieval of snow depth on the Antarctic Sea Ice from the FY-3B MWRI satellite data
- 2023年27卷第4期 页码:986-997
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20221508
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
闫忠男,庞小平,季青,肖泽辉.2023.利用FY-3B MWRI遥感数据反演南极海冰表面积雪厚度.遥感学报,27(4): 986-997
Yan Z N,Pang X P,Ji Q and Xiao Z H. 2023. Retrieval of snow depth on the Antarctic Sea Ice from the FY-3B MWRI satellite data. National Remote Sensing Bulletin, 27(4):986-997
海冰表面积雪厚度是冰冻圈和全球气候系统的重要组成部分,在海洋、海冰和大气的能量传输中起着关键的作用。针对目前缺乏南极海冰表面积雪厚度国产卫星遥感数据产品的问题,本文探索应用FY-3B MWRI被动微波亮温数据开展南极海冰表面积雪厚度的遥感反演研究。结果表明基于2016年FY-3B MWRI 18.7 GHz、36.5 GHz垂直极化亮温及海冰密集度数据,采用Comiso03模型反演的积雪厚度结果较Markus98更好,与AWI 2016年部署在威德尔海的浮标(2016S31、2016S37、2016S40)观测的积雪厚度同日同像元对比的偏差为-1.72 cm。FY-3B MWRI反演的2016年南极海冰表面积雪厚度与美国雪冰数据中心发布的GCOM-W1 AMSR-2积雪厚度产品整体上具有较好的一致性(时空平均偏差为-0.11 cm、相关系数为0.90),积累期和稳定期(4—10月)两者差异较小(时空平均偏差为-0.81 cm,相关系数为0.93),消融期(11月—次年3月)差异较大(时空平均偏差为2.76 cm,相关系数为0.85),差异主要分布在威德尔海北部和东南极冰边缘区。开展FY-3B MWRI南极海冰表面积雪厚度遥感反演研究可为应用国产卫星数据开展业务化极地冰雪环境动态监测、评估南极海冰变化及其全球效应提供科学数据和技术支撑。
Snow depth on sea ice is an important part of the cryosphere and global climate system because it is essential in the energy transfer of the ocean
sea ice
and atmosphere. Monitoring and understanding the change of snow depth on the Antarctic sea ice is beneficial to sea ice research and global climate change. Given the lack of Chinese satellite data products for snow depth on the Antarctic sea ice
we explored the application of FY-3B MWRI passive microwave brightness temperature data to retrieve the snow depth on the Antarctic sea ice.
We used FY-3B MWRI 18.7 GHz
36.5 GHz vertical polarization brightness temperature
and sea ice concentration data to retrieve the snow depth on the Antarctic sea ice by using Comiso03 model. The accuracy of snow depth on the Antarctic sea ice based on Markus98 and Comiso03 models was evaluated and compared with GCOM-W1 AMSR-2 snow depth product. The influence of brightness temperature on the retrieval of snow depth on Antarctic sea ice from FY-3B MWRI was discussed.
Snow depth on the Antarctic sea ice retrieved by using Comiso03 model than Markus98 model is better based on FY-3B MWRI 18.7 GHz
36.5 GHz vertical polarization brightness temperature
and sea ice concentration data in 2016
and the average deviation against with ice mass balance buoy measurements (2016S31
2016S37
and 2016S40) in the Weddell Sea in 2016 is -1.72 cm. The snow depth retrieved on the Antarctic sea ice in 2016 form FY-3B MWRI
which is consistent with that of GCOM-W1 AMSR-2 released data product by NSIDC (the average deviation is -0.11 cm
and the correlation coefficient is 0.90). The difference between the FY-3B-derived and the NSIDC-released AMSR-2 snow depths is small (the spatial-temporal average deviation is -0.80 cm
and the correlation coefficient is 0.93) in the snow accumulation and stable period (from April to October)
and relative large (the spatial–temporal average deviation is 2.76 cm
and the correlation coefficient is 0.85) in the snow melting period (from November to March). These differences mainly distributed in the northern Weddell Sea and margin ice zones.
Snow depth on the Antarctic sea ice retrieved by Comiso03 model based on FY-3B MWRI satellite data is in good agreement with the GCOM-W1 AMSR-2 snow depth product released by NSIDC. The study on the retrieval of snow depth on the Antarctic sea ice using FY-3B MWRI satellite data can provide scientific data and technical support for monitoring polar ice and snow environment and evaluation of Antarctic sea ice change with its global effects.
积雪厚度南极海冰被动微波卫星遥感
snow depthAntarctic Sea Icepassive microwave remote sensingsatellite remote sensing
Bian L G and Lin X C. 2005. Variation of antarctic sea ice in the latest 30 Years. Chinese Journal of Polar Research, 17(4): 233-244
卞林根, 林学椿. 2005. 近30年南极海冰的变化特征. 极地研究, 17(4): 233-244
Brucker L and Markus T. 2013. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research: Oceans, 118(6): 2892-2905 [DOI: 10.1002/jgrc.20228http://dx.doi.org/10.1002/jgrc.20228]
Chen Y, Zhao X, Pang X P and Ji Q. 2022. Daily sea ice concentration product based on brightness temperature data of FY-3D MWRI in the Arctic. Big Earth Data, 6(2): 164-178 [DOI: 10.1080/20964471.2020.1865623http://dx.doi.org/10.1080/20964471.2020.1865623]
Comiso J C, Cavalieri D J and Markus T. 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 243-252 [DOI: 10.1109/TGRS.2002.808317http://dx.doi.org/10.1109/TGRS.2002.808317]
Du J Y, Kimball J S, Shi J C, Jones L A, Wu S L, Sun R J and Yang H. 2014. Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sensing, 6(9): 8594-8616 [DOI: 10.3390/rs6098594http://dx.doi.org/10.3390/rs6098594]
Eicken H, Lange M A and Wadhams P. 1994. Characteristics and distribution patterns of snow and meteoric ice in the Weddell Sea and their contribution to the mass balance of sea ice. Annales Geophysicae, 12(1): 80-93 [DOI: 10.1007/s00585-994-0080-xhttp://dx.doi.org/10.1007/s00585-994-0080-x]
Kelly R E, Chang A T, Tsang L and Foster J L. 2003. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 230-242 [DOI: 10.1109/TGRS.2003.809118http://dx.doi.org/10.1109/TGRS.2003.809118]
Kern S and Ozsoy B. 2019. An attempt to improve snow depth retrieval using satellite microwave radiometry for rough Antarctic Sea Ice. Remote Sensing, 11(19): 2323 [DOI: 10.3390/rs11192323http://dx.doi.org/10.3390/rs11192323]
Kern S, Ozsoy-Cicek B, Willmes S, Nicolaus M, Haas C and Ackley S. 2011. An intercomparison between AMSR-E snow-depth and satellite C- and Ku-band radar backscatter data for Antarctic sea ice. Annals of Glaciology, 52(57): 279-290 [DOI: 10.3189/172756411795931750http://dx.doi.org/10.3189/172756411795931750]
Kwok R and Maksym T. 2014. Snow depth of the Weddell and Bellingshausen Sea Ice covers from IceBridge surveys in 2010 and 2011: An examination. Journal of Geophysical Research: Oceans, 119(7): 4141-4167 [DOI: 10.1002/2014JC009943http://dx.doi.org/10.1002/2014JC009943]
Lavergne T, Sorensen A M, Kern S, Tonboe R, Notz D, Aaboe S, Bell L, Dybkjær G, Eastwood S, Gabarro C, Heygster G, Killie A M, Kreiner M B, Lavelle J, Saldo R, Sandven S and Pedersen L T. 2019. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. The Cryosphere, 13(1): 49-78 [DOI: 10.5194/tc-13-49-2019http://dx.doi.org/10.5194/tc-13-49-2019]
Li L L, Chen H H and Guan L. 2019. Retrieval of snow depth on sea ice in the arctic using the FengYun-3B microwave radiation imager. Journal of Ocean University of China, 18(3): 580-588 [DOI: 10.1007/s11802-019-3873-yhttp://dx.doi.org/10.1007/s11802-019-3873-y]
Markus T and Cavalieri D J. 1998. Snow depth distribution over sea ice in the southern ocean from satellite passive microwave data//Jeffrie M O, ed. Antarctic Sea Ice: Physical Processes, Interactions and Variability, Volume 74. [s.l.]: American Geophysical Union (AGU): 19-39 [DOI: 10.1029/AR074p0019http://dx.doi.org/10.1029/AR074p0019]
Markus T and Cavalieri D J. 2009. The AMSR-E NT2 sea ice concentration algorithm: its basis and implementation. Journal of the Remote Sensing Society of Japan, 29(1): 216-225 [DOI: 10.11440/rssj.29.216http://dx.doi.org/10.11440/rssj.29.216]
Markus T, Cavalieri D J, Gasiewski A J, Klein M, Maslanik J A, Powell D C, Stankov B B, Stroeve J C and Sturm M. 2006. Microwave signatures of snow on sea ice: observations. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3081-3090 [DOI: 10.1109/TGRS.2006.883134http://dx.doi.org/10.1109/TGRS.2006.883134]
Markus T, Massom R, Worby A, Lytle V, Kurtz N and Maksym T. 2011. Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data. Annals of Glaciology, 52(57): 242-248 [DOI: 10.3189/172756411795931570http://dx.doi.org/10.3189/172756411795931570]
Maykut G A. 1986. The surface heat and mass balance//Untersteiner N, ed. The Geophysics of Sea Ice. Boston: Springer [DOI: 10.1007/978-1-4899-5352-0_6http://dx.doi.org/10.1007/978-1-4899-5352-0_6]
Powell D C, Markus T, Cavalieri D J, Gasiewski A J, Klein M, Maslanik J A, Stroeve J C and Sturm M. 2006. Microwave signatures of snow on sea ice: modeling. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3091-3102 [DOI: 10.1109/TGRS.2006.882139http://dx.doi.org/10.1109/TGRS.2006.882139]
Stroeve J C, Markus T, Maslanik J A, Cavalieri D J, Gasiewski A J, Heinrichs J F, Holmgren J, Perovich D K and Sturm M. 2006. Impact of surface roughness on AMSR-E sea ice products. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3103-3117 [DOI: 10.1109/TGRS.2006.880619http://dx.doi.org/10.1109/TGRS.2006.880619]
Sturm M, Perovich D K and Holmgren J. 2002. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. Journal of Geophysical Research: Oceans, 107(C10): 8043 [DOI: 10.1029/2000JC000409http://dx.doi.org/10.1029/2000JC000409]
Tang X T, Chen H H, Guan L and Li L L. 2020. Intercalibration of FY-3B/MWRI and GCOM-W1/AMSR-2 brightness temperature over the Arctic. Journal of Remote Sensing, 24(8): 1032-1044
唐晓彤, 陈海花, 管磊, 李乐乐. 2020. FY-3B/MWRI与GCOM-W1/AMSR-2亮温数据在北极地区的交叉定标. 遥感学报, 24(8): 1032-1044 [DOI: 10.11834/jrs.20208436http://dx.doi.org/10.11834/jrs.20208436]
Wang G X, Jiang L M, Wu S L, Liu X J and Hao S R. 2017. Intercalibrating FY-3B and FY-3C/MWRI for synergistic implementing to snow depth retrieval algorithm. Remote Sensing Technology and Application, 32(1): 49-56
王功雪, 蒋玲梅, 武胜利, 刘晓敬, 郝诗睿. 2017. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用. 遥感技术与应用, 32(1): 49-56 [DOI: 10.11873/j.issn.1004-0323.2017.1.004http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.004]
Wang X Y, Guan L and Li L L. 2018. Comparison and validation of sea ice concentration from FY-3B/MWRI and Aqua/AMSR-E observations. Journal of Remote Sensing, 22(5): 723-736
王晓雨, 管磊, 李乐乐. 2018. FY-3B/MWRI和Aqua/AMSR-E海冰密集度比较及印证. 遥感学报, 22(5): 723-736 [DOI: 10.11834/jrs.20187419http://dx.doi.org/10.11834/jrs.20187419]
Webster M, Gerland S, Holland M, Hunke E, Kwok R, Lecomte O, Massom R, Perovich D and Sturm M. 2018. Snow in the changing sea-ice systems. Nature Climate Change, 8(11): 946-953 [DOI: 10.1038/s41558-018-0286-7http://dx.doi.org/10.1038/s41558-018-0286-7]
Worby A P, Geiger C A, Paget M J, van Woert M, Ackley S F and DeLiberty T L. 2008. Thickness distribution of Antarctic sea ice. Journal of Geophysical Research: Oceans, 113(C5): C05S92 [DOI: 10.1029/2007JC004254http://dx.doi.org/10.1029/2007JC004254]
Wu Z K, Wang X D and Wang F. 2020. Inversion of Arctic sea ice concentration based on FY-3 MWRI data. Journal of Glaciology and Geocryology, 42(4): 1135-1144
吴展开, 王星东, 王峰. 2020. 基于FY-3 MWRI数据的北极海冰密集度反演研究[J]. 冰川冻土, 42(4): 1135-1144 [DOI: 10.7522/j.issn.1000-0240.2018.1146http://dx.doi.org/10.7522/j.issn.1000-0240.2018.1146]
Yang J, Dong C H, Lu N M, Yang Z D, Shi J M, Zhang P, Liu Y J and Cai B. 2009. FY-3A: the new generation polar-orbiting meteorological satellite of China. Acta Meteorologica Sinica, 67(4): 501-509
杨军, 董超华, 卢乃锰, 杨忠东, 施进明, 张鹏, 刘玉洁, 蔡斌. 2009. 中国新一代极轨气象卫星——风云三号. 气象学报, 67(4): 501-509 [DOI: 10.11676/qxxb2009.050http://dx.doi.org/10.11676/qxxb2009.050]
Zhang X, Zhou C X, E D C and An J C. 2014. Monitoring of Antarctic sea ice based on the multichannel MODIS Data. Geomatics and Information Science of Wuhan University, 39(10): 1194-1198
张辛, 周春霞, 鄂栋臣, 安家春. 2014. MODIS多波段数据对南极海冰变化的监测研究. 武汉大学学报(信息科学版), 39(10): 1194-1198 [DOI: 10. 13203/j. whugis20130007http://dx.doi.org/10.13203/j.whugis20130007]
相关作者
相关机构