HY-1/CZI卫星影像的海上运动船只自动检测方法
Automatic detection method of a moving ship based on an HY-1/CZI satellite image
- 2023年27卷第4期 页码:965-972
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20221525
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
李鸿喆,龚芳,朱乾坤,何贤强.2023.HY-1/CZI卫星影像的海上运动船只自动检测方法.遥感学报,27(4): 965-972
Li H Z, Gong F, Zhu Q K and He X Q. 2023. Automatic detection method of a moving ship based on an HY-1/CZI satellite image. National Remote Sensing Bulletin, 27(4):965-972
船只遥感检测对于海上航行安全保障和海洋权益维护具有重要意义,传统基于极高空间分辨率的合成孔径雷达(SAR)和光学卫星影像的船只检测由于重访周期长,难以实现高频监测应用。中国自主“海洋一号”系列卫星(HY-1)搭载的中分辨率海岸带成像仪(CZI),虽然空间分辨率相对较低(星下点50 m),但HY-1C、HY-1D形成双星上下午组网观测,具有重访周期短的优势,对于海上船只监测具有重要价值。本文利用卷积神经网络进行特征学习和目标提取,建立了HY-1/CZI影像船只自动检测方法。验证结果表明,相对于传统图像处理方法,本文方法具有不需要调整阈值、适应性强的特点,检测精度达到77.71%,可应用于HY-1/CZI影像的海上运动船只自动监测。
Ship detection by satellite remote sensing is of great significance for the safety of maritime navigation and the maintenance of maritime rights and interests. The traditional ship detection based on high spatial resolution Synthetic Aperture Radar (SAR) and optical satellite images cannot easily realize high-frequency monitoring application due to the long revisit period. The medium resolution Coastal Zone Imager (CZI) carried by China’s “Ocean-1” series satellites (HY-1) has a relatively low spatial resolution (50 m). However
HY-1C and HY-1D form a double satellite network observation in the morning and afternoon
which has the advantage of short revisit period and is of great value for marine vessel monitoring. We attempt to realize the ship automatic detection and orientation technology of medium-resolution CZI images
which will be of great value to the monitoring of ships at sea. In this study
a convolutional neural network is used for feature learning and target extraction
and an automatic ship detection method of HY-1/CZI image is established. Verification results show that this method has the advantages of not requiring threshold adjustment and strong adaptability
and the detection accuracy reaches 77.71%
which can be applied to the automatic monitoring of marine moving ships in the HY-1/CZI image. The algorithm in this work can directly detect the position and motion information of marine moving ships from the medium-resolution HY-1/CZI image without manual screening
realize the automatic extraction of wake
and overcome the problem of insufficient resolution of the medium-resolution optical image. Based on the detection results
this work further quantitatively describes the wake and obtains the information of the ship's position and movement direction.
海岸带成像仪船只检测卷积神经网络卫星遥感
coastal zone imagervessel inspectionconvolutional neural networksatellite remote sensing
Bochkovskiy A, Wang C Y and Liao H Y M. 2020. YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934
Everingham M, Van Gool L, Williams C K I, Winn J and Zisserman A. 2010. The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2): 303-338 [DOI: 10.1007/s11263-009-0275-4http://dx.doi.org/10.1007/s11263-009-0275-4]
Grosso E and Guida R. 2020. A new automatic ship wake detection for Sentinel-1 imagery//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE: 1259-1262 [DOI: 10.1109/IGARSS39084.2020.9324604http://dx.doi.org/10.1109/IGARSS39084.2020.9324604]
Jiang D D, Xu Z L and Li K D. 2004. Ship trace detection of SAR image based on radon transform. Hydrographic Surveying and Charting, 24(2): 50-52
蒋定定, 许兆林, 李开端. 2004. 基于Radon变换的SAR图像船迹检测研究. 海洋测绘, 24(2): 50-52 [DOI: 10.3969/j.issn.1671-3044.2004.02.013http://dx.doi.org/10.3969/j.issn.1671-3044.2004.02.013]
Jiang Y and Li J W. 2015. A method of ship wake detection in SAR imagery based on localized ridgelet transform. Ship Science and Technology, 37(11): 146-150
江源, 李健伟. 2015. 基于局部脊波变换的SAR图像舰船尾迹检测方法. 舰船科学技术, 37(11): 146-150 [DOI: 10.3404/j.issn.1672-7649.2015.11.032http://dx.doi.org/10.3404/j.issn.1672-7649.2015.11.032]
Kang K M and Kim D J. 2019. Ship velocity estimation from ship wakes detected using convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(11): 4379-4388 [DOI: 10.1109/JSTARS.2019.2949006http://dx.doi.org/10.1109/JSTARS.2019.2949006]
Kun J and Yan C. 2020. SAR image ship detection based on deep learning//2020 International Conference on Computer Engineering and Intelligent Control (ICCEIC). Chongqing: IEEE: 55-59 [DOI: 10.1109/ICCEIC51584.2020.00019http://dx.doi.org/10.1109/ICCEIC51584.2020.00019]
Li H K. 2008. Research on Ship Target and Wake Detection in Marine Remote Sensing Images. Chengdu: University of Electronic Science and Technology of China
李红康. 2008. 海洋遥感图像舰船目标及尾迹检测研究. 成都: 电子科技大学 [DOI: 10.7666/d.Y1314592http://dx.doi.org/10.7666/d.Y1314592]
Lin Q W, Wang B W and Wang Y F. 2021. SAR image ship detection based on improved YOLOv4//2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Dalian: IEEE: 1130-1135 [DOI: 10.1109/ICAICA52286.2021.9498214http://dx.doi.org/10.1109/ICAICA52286.2021.9498214]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//14th European Conference on Computer Vision. Amsterdam: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Liu Y F, Zhao J and Qin Y. 2021. A novel technique for ship wake detection from optical images. Remote Sensing of Environment, 258: 112375 [DOI: 10.1016/j.rse.2021.112375http://dx.doi.org/10.1016/j.rse.2021.112375]
Maini R and Aggarwal H. 2010. A comprehensive review of image enhancement techniques. arXiv preprint arXiv: 1003.4053
Matas J, Galambos C and Kittler J. 2000. Robust detection of lines using the progressive probabilistic Hough transform. Computer Vision and Image Understanding, 78(1): 119-137 [DOI: 10.1006/cviu.1999.0831http://dx.doi.org/10.1006/cviu.1999.0831]
Murphy L M. 1986. Linear feature detection and enhancement in noisy images via the Radon transform. Pattern Recognition Letters, 4(4): 279-284 [DOI: 10.1016/0167-8655(86)90009-7http://dx.doi.org/10.1016/0167-8655(86)90009-7]
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66 [DOI: 10.1109/TSMC.1979.4310076http://dx.doi.org/10.1109/TSMC.1979.4310076]
Ren S Q, He K M, Girshick R and Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal networks//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press: 91-99
Rey M T, Tunaley J K, Folinsbee J T, Jahans P A, Dixon J A and Vant M R. 1990. Application of Radon transform techniques to wake detection in Seasat-A SAR images. IEEE Transactions on Geoscience and Remote Sensing, 28(4): 553-560 [DOI: 10.1109/TGRS.1990.572948http://dx.doi.org/10.1109/TGRS.1990.572948]
Wang S Q and Jin Y Q. 2001. Ship wake detection in SAR images based on radon transformation and morphologic image processing. Journal of Remote Sensing, 5(4): 289-294
王世庆, 金亚秋. 2001. SAR图像船行尾迹检测的Radon变换和形态学图像处理技术. 遥感学报, 5(4): 289-294 [DOI: 10.11834/jrs.20010408http://dx.doi.org/10.11834/jrs.20010408]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Zhang Y, Zhang Y G, Huang W G and Luo X L. 2003. A method for detecting ship wakes in SAR images. Remote Sensing for Land and Resources, (1): 56-58
张宇, 张永刚, 黄韦艮, 楼琇林. 2003. 一种利用SAR图像检测船舶尾迹的方法. 国土资源遥感, (1): 56-58 [DOI: 10.3969/j.issn.1001-070X.2003.01.015http://dx.doi.org/10.3969/j.issn.1001-070X.2003.01.015]
Zhang Z X, Xu Q J, Zhang C and Zhao D. 2019. Ship moving feature detection using a single GF-4 multispectral image. Remote Sensing Technology and Application, 34(4): 892-900
张志新, 徐清俊, 张川, 赵冬. 2019. 基于单景高分四号卫星多光谱影像的舰船运动特征检测. 遥感技术与应用, 34(4): 892-900 [DOI: 10.11873/j.issn.1004-0323.2019.4.0892http://dx.doi.org/10.11873/j.issn.1004-0323.2019.4.0892]
Zhao C H and Luan S J. 2014. Ship wake detection in optical remote sensing image based on modified CGHT. Journal of Shenyang University (Natural Science), 26(5): 362-368
赵春晖, 栾世杰. 2014. 基于改进CGHT的光学遥感图像舰船尾迹检测. 沈阳大学学报(自然科学版), 26(5): 362-368 [DOI: 10.3969/j.issn.2095-5456.2014.05.005http://dx.doi.org/10.3969/j.issn.2095-5456.2014.05.005]
Zhong J S and Zhu H M. 2004. Ship wake detection algorithm in SAR image based on normalized grey level Hough transform. Journal of Image and Graphics, 9(2): 146-150
种劲松, 朱敏慧. 2004. 基于归一化灰度 Hough 变换的 SAR 图像舰船尾迹检测算法. 中国图象图形学报, 9(2): 146-150 [DOI: 10.3969/j.issn.1006-8961.2004.02.004http://dx.doi.org/10.3969/j.issn.1006-8961.2004.02.004]
Zou Z X and Shi Z W. 2016. Ship detection in spaceborne optical image with SVD networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10): 5832-5845 [DOI: 10.1109/TGRS.2016.2572736http://dx.doi.org/10.1109/TGRS.2016.2572736]
相关作者
相关机构