改进型遥感生态指数及干旱区生态环境评价
Enhanced remote sensing ecological index and ecological environment evaluation in arid area
- 2023年27卷第2期 页码:299-317
纸质出版日期: 2023-02-07
DOI: 10.11834/jrs.20221527
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-07 ,
扫 描 看 全 文
张伟,杜培军,郭山川,林聪,郑鸿瑞,付萍杰.2023.改进型遥感生态指数及干旱区生态环境评价.遥感学报,27(2): 299-317
Zhang W,Du P J,Guo S C,Lin C,Zheng H R and Fu P J. 2023. Enhanced remote sensing ecological index and ecological environment evaluation in arid area. National Remote Sensing Bulletin, 27(2):299-317
利用遥感影像对大尺度区域生态环境质量进行长期、定量、动态监测可为区域可持续发展提供有力的决策支撑。基于遥感生态指数(RSEI),针对干旱区生态环境的地域特点和应用需求,从耦合生态系统组成要素的角度出发提出一种改进型遥感生态指数(ERSEI),即在顾及绿度(NDVI)、湿度(Wet)、干度(NDBSI)、热度(LST)因子的同时,引入综合盐度指标(CSI)和水网密度遥感估算模型(EMW),将盐度和水网密度(WND)纳入生态环境质量评价。在Google Earth Engine(GEE)云计算平台上实现ERSEI并将其应用于地处西北干旱区的呼包鄂榆城市群,结果表明,ERSEI可充分体现干旱区地表细节特征,有力突显了水网对周边环境辐射影响的渐变信息。由呼包鄂榆城市群范围内2000年—2020年间ERSEI的空间测度和时序演变分析发现,生态环境质量较好的区域主要分布在河套平原、大青山一线以及靠近吕梁山的一侧,较差的区域主要集中分布在蒙古高原、库布齐沙漠附近以及毛乌素沙地部分地域,且生态环境质量呈现持续性下降,应作为生态风险预警区加强治理。ERSEI为干旱区生态环境质量常态化监测提供了一种快速有效的新方法。
Long-term
quantitative and dynamic monitoring of large-scale regional ecological environmental quality using remote sensing images can provide strong decision support for regional sustainable development. Based on the Remote Sensing based Ecological Index (RSEI)
an enhanced Remote Sensing Ecological Index (ERSEI) is proposed from the perspective of the elements of the coupled ecosystem considering regional characteristics and application requirements of the ecological environment in arid areas. The ERSEI considers the factors of greenness (NDVI)
wetness (Wet)
dryness (NDBSI)
and heat (LST) while introducing the Comprehensive Salinity Index (CSI) and estimation model of water network density (EMW). The salinity and Water Network Density (WND) are included in the ecological environment quality assessment. With the help of the Google Earth Engine (GEE) cloud computing platform
ERSEI is applied to the Hohhot-Baotou-Ordos-Yulin urban agglomeration in the arid area of northwestern China. The results show that the ERSEI can fully reflect the detailed characteristics of the surface in arid areas and effectively highligh the gradual information of the radiation impact of the water network on the surrounding environment. According to the spatial measurement and time series evolution analysis of ERSEI in the Hohhot-Baotou-Ordos-Yulin urban agglomeration from 2000 to 2020
it is found that areas with good ecological environment quality are mainly distributed in the Hetao Plain
Daqing Mountain and the side close to Luliang Mountain. Areas with poor ecological environment quality are mainly concentrated in the Mongolian Plateau
near the Hobq Desert and the Mu Us Sandy Land
and the quality of the ecological environment has shown a continuous decline. Therefore
these areas should be treated as ecological risk early warning zones to strengthen governance. The ERSEI provides a fast and effective new method for the normalized monitoring of ecological environment quality in arid areas.
改进型遥感生态指数生态环境质量评价时序演变分析Google Earth Engine呼包鄂榆城市群生态风险预警区
ERSEIspatial measurement of ecological environmenttime series evolution analysisGoogle Earth EngineHohhot-Baotou-Ordos-Yulin urban agglomerationecological risk warning zone
Allbed A, Kumar L and Aldakheel Y Y. 2014. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region. Geoderma, 230-231: 1-8 [DOI: 10.1016/j.geoderma.2014.03.025http://dx.doi.org/10.1016/j.geoderma.2014.03.025]
Alsterberg C, Roger F, Sundbäck K, Juhanson J, Hulth S, Hallin S and Gamfeldt L. 2017. Habitat diversity and ecosystem multifunctionality—The importance of direct and indirect effects. Science Advances, 3(2): e1601475 [DOI: 10.1126/sciadv.1601475http://dx.doi.org/10.1126/sciadv.1601475]
Baig M H A, Zhang L F, Shuai T and Tong Q X. 2014. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5(5): 423-431 [DOI: 10.1080/2150704X.2014.915434http://dx.doi.org/10.1080/2150704X.2014.915434]
Bioresita F, Puissant A, Stumpf A and Malet J P. 2018. A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sensing, 10(2): 217 [DOI: 10.3390/rs10020217http://dx.doi.org/10.3390/rs10020217]
Burke M, Driscoll A, Lobell D B and Ermon S. 2021. Using satellite imagery to understand and promote sustainable development. Science, 371(6535): 1219 [DOI: 10.1126/science.abe8628http://dx.doi.org/10.1126/science.abe8628]
Cheng L L, Wang Z W, Tian S F, Liu Y T, Sun M Y and Yang Y M. 2021. Evaluation of eco-environmental quality in Mentougou District of Beijing based on improved remote sensing ecological index. Chinese Journal of Ecology, 40(4): 1177-1185
程琳琳, 王振威, 田素锋, 柳亚彤, 孙梦尧, 杨玉曼. 2021. 基于改进的遥感生态指数的北京市门头沟区生态环境质量评价. 生态学杂志, 40(4): 1177-1185 [DOI: 10.13292/j.1000-4890.202104.021http://dx.doi.org/10.13292/j.1000-4890.202104.021]
Cheng W L, Liu Y H, Guan C H and Wang J J. 2010. The discussion about the scope of ecological impact assessment. Environmental Science and Management, 35(12): 185-189
成文连, 刘玉虹, 关彩虹, 王家骥. 2010. 生态影响评价范围探讨. 环境科学与管理, 35(12): 185-189 [DOI: 10.3969/j.issn.1673-1212.2010.12.043http://dx.doi.org/10.3969/j.issn.1673-1212.2010.12.043]
Crist E P. 1985. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17(3): 301-306 [DOI: 10.1016/0034-4257(85)90102-6http://dx.doi.org/10.1016/0034-4257(85)90102-6]
Dinerstein E, Joshi A R, Vynne C, Lee A T L, Pharand-Deschênes F, França M, Fernando S, Birch T, Burkart K, Asner G P and Olson D. 2020. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances, 6(36): eabb2824 [DOI: 10.1126/sciadv.abb2824http://dx.doi.org/10.1126/sciadv.abb2824]
Douaoui A E K, Nicolas H and Walter C. 2006. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1-2): 217-230 [DOI: 10.1016/j.geoderma.2005.10.009http://dx.doi.org/10.1016/j.geoderma.2005.10.009]
Fang C L. 2015. Scientific selection and grading cultivation of China's urban agglomeration adaptive to new normal in China. Bulletin of the Chinese Academy of Sciences, 30(2): 127-136
方创琳. 2015. 科学选择与分级培育适应新常态发展的中国城市群. 中国科学院院刊, 30(2): 127-136 [DOI: 10.16418/j.issn.1000-3045.2015.02.001http://dx.doi.org/10.16418/j.issn.1000-3045.2015.02.001]
Fang C L, Zhou C H, Gu C L, Chen L D and Li S C. 2016. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 71(4): 531-550
方创琳, 周成虎, 顾朝林, 陈利顶, 李双成. 2016. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径. 地理学报, 71(4): 531-550 [DOI: 10.11821/dlxb201604001http://dx.doi.org/10.11821/dlxb201604001]
Guo S C, Du P J, Meng Y P, Wang X, Tang P F, Lin C and Xia J S. 2021. Dynamic monitoring on flooding situation in the Middle and Lower Reaches of the Yangtze River Region using Sentinel-1A time series.National Remote Sensing Bulletin, 25(10): 2127-2141
郭山川, 杜培军, 蒙亚平, 王欣, 唐鹏飞, 林聪, 夏俊士. 2021. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报, 25(10): 2127-2141 [DOI: 10.11834/jrs.20210547http://dx.doi.org/10.11834/jrs.20210547]
He Y L, You N S, Cui Y P, Xiao T, Hao Y Y and Dong J W. 2021. Spatio-temporal changes in remote sensing-based ecological index in China since 2000. Journal of Natural Resources, 36(5): 1176-1185
何盈利, 尤南山, 崔耀平, 肖桐, 郝媛媛, 董金玮. 2021. 2000年来中国生态状况时空变化格局. 自然资源学报, 36(5): 1176-1185 [DOI: 10.31497/zrzyxb.20210507http://dx.doi.org/10.31497/zrzyxb.20210507]
Hu X S and Xu H Q. 2018. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: a case from Fuzhou City, China. Ecological Indicators, 89: 11-21 [DOI: 10.1016/j.ecolind.2018.02.006http://dx.doi.org/10.1016/j.ecolind.2018.02.006]
Islam A R M T, Islam H M T, Shahid S, Khatun M K, Ali M M, Rahman M S, Ibrahim S M and Almoajel A M. 2021. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. Journal of Environmental Management, 289: 112505 [DOI: 10.1016/j.jenvman.2021.112505http://dx.doi.org/10.1016/j.jenvman.2021.112505]
Jiang L L, Jiapaer G, Bao A M, Guo H and Ndayisaba F. 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599-600: 967-980 [DOI: 10.1016/j.scitotenv.2017.05.012http://dx.doi.org/10.1016/j.scitotenv.2017.05.012]
Jiang Q P, Gao W, Wang S Q, Yue G H, Shao F, Ho Y S and Kwong S. 2020. Blind image quality measurement by exploiting high-order statistics with deep dictionary encoding network. IEEE Transactions on Instrumentation and Measurement, 69(10): 7398-7410 [DOI: 10.1109/TIM.2020.2984928http://dx.doi.org/10.1109/TIM.2020.2984928]
Jolliffe I T and Cadima J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): 20150202 [DOI: 10.1098/rsta.2015.0202http://dx.doi.org/10.1098/rsta.2015.0202]
Khan N M, Rastoskuev V V, Sato Y and Shiozawa S. 2005. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1/3): 96-109 [DOI: 10.1016/j.agwat.2004.09.038http://dx.doi.org/10.1016/j.agwat.2004.09.038]
Lawton J H. 1999. Are there general laws in ecology?. Oikos, 84(2): 177-192 [DOI: 10.2307/3546712http://dx.doi.org/10.2307/3546712]
Li N, Wang J Y and Qin F. 2020. The improvement of ecological environment index model RSEI. Arabian Journal of Geosciences, 13(11): 403 [DOI: 10.1007/s12517-020-05414-7http://dx.doi.org/10.1007/s12517-020-05414-7]
Li X M, Sun C J, Sun J L, Chen W and Li X G. 2021. Ecological security characteristics of main irrigated agricultural areas on the Loess Plateau based on remote sensing information. Chinese Journal of Applied Ecology, 32(9): 3177-3184
李晓明, 孙从建, 孙九林, 陈伟, 李新功. 2021. 基于遥感信息的黄土高原主要灌溉农业分布区生态安全特征. 应用生态学报, 32(9): 3177-3184 [DOI: 10.13287/j.1001-9332.202109.012http://dx.doi.org/10.13287/j.1001-9332.202109.012]
Liang L W, Wang Z B, Fang C L and Sun Z. 2019. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Beijing-Tianjin-Hebei urban agglomeration. Acta Ecologica Sinica, 39(4): 1212-1225
梁龙武, 王振波, 方创琳, 孙湛. 2019. 京津冀城市群城市化与生态环境时空分异及协同发展格局. 生态学报, 39(4): 1212-1225 [DOI: 10.5846/stxb201809162015http://dx.doi.org/10.5846/stxb201809162015]
Liu L X, Yang K, Ye J H, Han Y W, Meng X J, Hou C F and Gao X T. 2021. Spatial variation of urban heat island effect in Xiong’an New Area. Journal of Environmental Engineering Technology, 11(3): 546-553
刘丽香, 杨凯, 叶家慧, 韩永伟, 孟晓杰, 侯春飞, 高馨婷. 2021. 雄安新区城市热岛效应的空间异质性. 环境工程技术学报, 11(3): 546-553 [DOI: 10.12153http://dx.doi.org/10.12153∕j.issn.1674-991X.20200194]
Liu Q H, Wu J J, Li L, Yu L, Li J, Xin X Z, Jia L, Zhong B, Niu Z, Xu X L, Meng Q Y, Zhao J, Zhang H L, Hu G C and Zheng C L. 2018. Ecological environment monitoring for sustainable development goals in the Belt and Road region. Journal of Remote Sensing, 22(4): 686-708
柳钦火, 吴俊君, 李丽, 俞乐, 李静, 辛晓洲, 贾立, 仲波, 牛铮, 徐新良, 孟庆岩, 赵静, 张海龙, 胡光成, 郑超磊. 2018. “一带一路”区域可持续发展生态环境遥感监测. 遥感学报, 22(4): 686-708 [DOI: 10.11834/jrs.20187264http://dx.doi.org/10.11834/jrs.20187264]
Liu Z T, Mao X Q and Jiang H. 2019. Key directions and contents of ecological environment protection during the 14th five-year plan period. Chinese Journal of Environmental Management, 11(3): 40-45
刘峥延, 毛显强, 江河. 2019. “十四五”时期生态环境保护重点方向和任务研究. 中国环境管理, 11(3): 40-45 [DOI: 10.16868/j.cnki.1674-6252.2019.03.040http://dx.doi.org/10.16868/j.cnki.1674-6252.2019.03.040]
Lu D D and Chen M X. 2015. Several viewpoints on the background of compiling the "National New Urbanization Planning (2014-2020)". Acta Geographica Sinica, 70(2): 179-185
陆大道, 陈明星. 2015. 关于“国家新型城镇化规划(2014-2020)”编制大背景的几点认识. 地理学报, 70(2): 179-185 [DOI: 10.11821/dlxb201502001http://dx.doi.org/10.11821/dlxb201502001]
Mi X C, Feng G, Hu Y B, Zhang J, Chen L, Corlett R T, Hughes A C, Pimm S, Schmid B, Shi S H, Svenning J C and Ma K P. 2021. The global significance of biodiversity science in China: an overview. National Science Review, 8(7): nwab032 [DOI: 10.1093/nsr/nwab032http://dx.doi.org/10.1093/nsr/nwab032]
Ministry of Environmental Protection of the People's Republic of China. 2015. HJ 192-2015 Technical criterion for ecosystem status evaluation. Beijing: China Environmental Science Press
中华人民共和国环境保护部. 2015. HJ 192-2015生态环境状况评价技术规范. 北京: 中国环境科学出版社
Pickett S T A, Cadenasso M L, Grove J M, Boone C G, Groffman P M, Irwin E, Kaushal S S, Marshall V, Mcgrath B P, Nilon C H, Pouyat R V, Szlavecz K, Troy A and Warren P. 2011. Urban ecological systems: scientific foundations and a decade of progress. Jounal of Environmental Management, 92(3): 331-362 [DOI: 10.1016/j.jenvman.2010.08.022http://dx.doi.org/10.1016/j.jenvman.2010.08.022]
Pimm S L, Jenkins C N, Abell R, Brooks T M, Gittleman J L, Joppa L N, Raven P H, Roberts C M and Sexton J O. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187): 1246752 [DOI: 10.1126/science.1246752http://dx.doi.org/10.1126/science.1246752]
Ramola A, Shakya A K and Van Pham D. 2020. Study of statistical methods for texture analysis and their modern evolutions. Engineering Reports, 2(4): e12149 [DOI: 10.1002/eng2.12149http://dx.doi.org/10.1002/eng2.12149]
Rikimaru A, Roy P S and Miyatake S. 2002. Tropical forest cover density mapping. Tropical Ecology, 43(1): 39-47
Seddon A W R, Macias-Fauria M, Long P R, Benz D and Willis K J. 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593): 229-232 [DOI: 10.1038/nature16986http://dx.doi.org/10.1038/nature16986]
Sun W Z. 2021. Vegetation Change under the Background of Urban Expansion in China from 2000 to 2019. Kunming: Yunnan Normal University
孙伟钊. 2021. 2000—2019年中国城市扩张背景下植被变化研究. 昆明: 云南师范大学
Tran T V, Tran D X, Nguyen H, Latorre-Carmona P and Myint S W. 2021. Characterising spatiotemporal vegetation variations using LANDSAT time-series and Hurst exponent index in the Mekong River Delta. Land Degradation and Development, 32(12): 3507-3523 [DOI: 10.1002/ldr.3934http://dx.doi.org/10.1002/ldr.3934]
Tripathi N K, Rai B K and Dwivedi P. 1997. Spatial modelling of soil alkalinity in GIS environment using IRS data, Proceedings of the 18th Asian Conference on Remote Sensing, ACRS Kuala Lumpur, Malaysia,2025: 8186.
Tsyganskaya V, Martinis S, Marzahn P and Ludwig R. 2018. Detection of temporary flooded vegetation using Sentinel-1 time series data. Remote Sensing, 10(8): 1286 [DOI: 10.3390/rs10081286http://dx.doi.org/10.3390/rs10081286]
Tu S J, Wang S P, Cheng F C and Chen Y J. 2019. Extraction of gray-scale intensity distributions from micro computed tomography imaging for femoral cortical bone differentiation between low-magnesium and normal diets in a laboratory mouse model. Scientific Reports, 9(1): 8135 [DOI: 10.1038/s41598-019-44610-8http://dx.doi.org/10.1038/s41598-019-44610-8]
Twele A, Cao W X, Plank S and Martinis S. 2016. Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing, 37(13): 2990-3004 [DOI: 10.1080/01431161.2016.1192304http://dx.doi.org/10.1080/01431161.2016.1192304]
Van Nguyen O, Kawamura K, Trong D P, Gong Z and Suwandana E. 2015. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery. Environmental Monitoring and Assessment, 187(7): 464 [DOI: 10.1007/s10661-015-4691-3http://dx.doi.org/10.1007/s10661-015-4691-3]
Wang F, Ding J L, Wei Y, Zhou Q Q, Yang X D and Wang Q F. 2017. Sensitivity analysis of soil salinity and vegetation indices to detect soil salinity variation by using Landsat series images: applications in different oases in Xinjiang, China. Acta Ecologica Sinica, 37(15): 5007-5022
王飞, 丁建丽, 魏阳, 周倩倩, 杨晓东, 王前锋. 2017. 基于Landsat系列数据的盐分指数和植被指数对土壤盐度变异性的响应分析——以新疆天山南北典型绿洲为例. 生态学报, 37(15): 5007-5022 [DOI: 10.5846/stxb201605090890http://dx.doi.org/10.5846/stxb201605090890]
Wang J, Ma J L, Xie F F and Xu X J. 2020. Improvement of remote sensing ecological index in arid regions: taking Ulan Buh Desert as an example. Chinese Journal of Applied Ecology, 31(11): 3795-3804
王杰, 马佳丽, 解斐斐, 徐锡杰. 2020. 干旱地区遥感生态指数的改进——以乌兰布和沙漠为例. 应用生态学报, 31(11): 3795-3804 [DOI: 10.13287/j.1001-9332.202011.011http://dx.doi.org/10.13287/j.1001-9332.202011.011]
Xiong X and Xiao J. 2021. Evaluation of coupling coordination between urbanization and eco-environment in six central cities, Wuling Mountain area. Acta Ecologica Sinica, 41(15): 5973-5987
熊曦, 肖俊. 2021. 武陵山片区城镇化与生态环境耦合协调度时空分异——以六个中心城市为例. 生态学报, 41(15): 5973-5987 [DOI: 10.5846/stxb202012183216http://dx.doi.org/10.5846/stxb202012183216]
Xiong Y, Xu W H, Lu N, Huang S D, Wu C, Wang L G, Dai F and Kou W L. 2021. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: a case study in Erhai Lake Basin, Yunnan province, China. Ecological Indicators, 125: 107518 [DOI: 10.1016/J.ECOLIND.2021.107518http://dx.doi.org/10.1016/J.ECOLIND.2021.107518]
Xu H. 2008. A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29(14): 4269-4276 [DOI: 10.1080/01431160802039957http://dx.doi.org/10.1080/01431160802039957]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Xu H Q. 2013a. A remote sensing urban ecological index and its application. Acta Ecologica Sinica, 33(24): 7853-7862
徐涵秋. 2013a. 城市遥感生态指数的创建及其应用. 生态学报, 33(24): 7853-7862 [DOI: 10.5846/stxb201208301223http://dx.doi.org/10.5846/stxb201208301223]
Xu H Q. 2013b. A remote sensing index for assessment of regional ecological changes. China Environmental Science, 33(5): 889-897
徐涵秋. 2013b. 区域生态环境变化的遥感评价指数. 中国环境科学, 33(5): 889-897 [DOI: 10.3969/j.issn.1000-6923.2013.05.019http://dx.doi.org/10.3969/j.issn.1000-6923.2013.05.019]
Xu H Q, Wang M Y, Shi T T, Guan H D, Fang C Y and Lin Z L. 2018. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecological Indicators, 93: 730-740 [DOI: 10.1016/j.ecolind.2018.05.055http://dx.doi.org/10.1016/j.ecolind.2018.05.055]
Yamazaki D, Ikeshima D, Sosa J, Bates P D, Allen G H and Pavelsky T M. 2019. MERIT hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resources Research, 55(6): 5053-5073 [DOI: 10.1029/2019WR024873http://dx.doi.org/10.1029/2019WR024873]
Yang J Y, Wu T, Pan X Y, Du H T, Li J L, Zhang L, Men M X and Chen Y. 2019. Ecological quality assessment of Xiongan New Area based on remote sensing ecological index. Chinese Journal of Applied Ecology, 30(1): 277-284
杨江燕, 吴田, 潘肖燕, 杜海童, 李金鹿, 张利, 门明新, 陈影. 2019. 基于遥感生态指数的雄安新区生态质量评估. 应用生态学报, 30(1): 277-284 [DOI: 10.13287/j.1001-9332.201901.017http://dx.doi.org/10.13287/j.1001-9332.201901.017]
Yang Y, Li X Y, Dong W, Hong H, He Z, Jin F J and Liu Y. 2019. Comprehensive evaluation on China's man-land relationship: Theoretical model and empirical study. Acta Geographica Sinica, 74(6): 1063-1078
杨宇, 李小云, 董雯, 洪辉, 何则, 金凤君, 刘毅. 2019. 中国人地关系综合评价的理论模型与实证. 地理学报, 74(6): 1063-1078 [DOI: 10.11821/dlxb201906001http://dx.doi.org/10.11821/dlxb201906001]
Yang Z K, Tian J, Li W Y, Su W R, Guo R Y and Liu W J. 2021. Spatio-temporal pattern and evolution trend of ecological environment quality in the Yellow River Basin. Acta Ecologica Sinica, 41(19): 7627-7636
杨泽康, 田佳, 李万源, 苏文瑞, 郭睿妍, 刘文娟. 2021. 黄河流域生态环境质量时空格局与演变趋势. 生态学报, 41(19): 7627-7636 [DOI: 10.5846/stxb202012083131http://dx.doi.org/10.5846/stxb202012083131]
Zhang H, Du P J, Luo J Q and Li E Z. 2017. Ecological change analysis of Nanjing city based on remote sensing ecological index. Geospatial Information, 15(2): 58-62
张浩, 杜培军, 罗洁琼, 李二珠. 2017. 基于遥感生态指数的南京市生态变化分析. 地理空间信息, 15(2): 58-62 [DOI: 10.3969/j.issn.1672-4623.2017.02.019http://dx.doi.org/10.3969/j.issn.1672-4623.2017.02.019]
Zheng Z H, Wu Z F, Chen Y B, Yang Z W and Marinello F. 2020. Exploration of eco-environment and urbanization changes in coastal zones: a case study in China over the past 20 years. Ecological Indicators, 119: 106847 [DOI: 10.1016/j.ecolind.2020.106847http://dx.doi.org/10.1016/j.ecolind.2020.106847]
Zhu D Y, Chen T, Niu R Q and Zhen N. 2021. Analyzing the ecological environment of mining area by using moving window remote sensing ecological index. Geomatics and Information Science of Wuhan University, 46(3): 341-347
朱冬雨, 陈涛, 牛瑞卿, 甄娜. 2021. 利用移动窗口遥感生态指数分析矿区生态环境. 武汉大学学报(信息科学版), 46(3): 341-347 [DOI: 10.13203/j.whugis20190122http://dx.doi.org/10.13203/j.whugis20190122]
相关作者
相关机构