基于深度学习的全极化SAR影像冰川边界识别
Identification of glaciers using fully polarimetric SAR data based on deep-learning
- 2023年27卷第9期 页码:2098-2113
纸质出版日期: 2023-09-07
DOI: 10.11834/jrs.20221541
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-09-07 ,
扫 描 看 全 文
范吉延,柯长青,姚国慧,王梓霏.2023.基于深度学习的全极化SAR影像冰川边界识别.遥感学报,27(9): 2098-2113
Fan J Y,Ke C Q,Yao G H and Wang Z F. 2023. Identification of glaciers using fully polarimetric SAR data based on deep-learning. National Remote Sensing Bulletin, 27(9):2098-2113
冰川识别对于周边地区水资源与气候变化监测具有重要意义。全极化SAR影像包含地物表面散射、偶次散射、体散射、统计特性等丰富的特征,而深度学习能够充分挖掘影像信息,因此使用全极化SAR影像结合深度学习能够得到精确的冰川识别效果。本文基于喜马拉雅山脉西端ALOS2-PALSAR全极化影像,使用VGG16特征提取网络与全卷积神经网络模型U-net相结合的VGG16-unet对冰川进行识别。采用的特征包括极化相干矩阵对角线元素、Freeman-Durden、H/A/α、Pauli、VanZyl、Yamaguchi这5种极化分解参数共计19种特征。为了充分利用影像信息,对这些特征进行分析与组合,并比较它们之间的冰川识别精度,以选取最佳特征。由于冰川与非冰川的地形具有明显差异,因此将DEM、坡度、局部入射角等作为辅助特征与极化特征结合。通过对比不同极化特征分类精度得出,基于物理特性的Pauli、Freeman-Durden、VanZyl、Yamaguchi特征分类的精度较高,其中Pauli特征分类的精度最高,整体精度(OA)达到92.54%,平均用户交并比(mIoU)达到78.78%。加入地形数据后整体精度(OA)提升至94.34%,平均用户交并比(mIoU)提升至82.35%。为了进一步提高冰川的识别精度,提出了一种基于单波段特征整体精度(OA)及召回率(Recall)筛选出的SDV(表面散射、偶次散射、体散射)特征交叉组合方式,结果显示,该组合整体精度(OA)达到94.98%,用户交并比(mIoU)达到85.67%,比Pauli特征分类精度分别高出0.64%和 3.32%。上述结果表明,选择最佳的特征组合方式并结合深度学习在提升冰川识别精度中具有重要的作用。
Glacier identification is important for monitoring water resources and climate change in surrounding areas. Although optical images have achieved high accuracy in glacier boundary identification
optical images are affected by cloud cover
and reproducing information under the clouds is difficult. Fully polarized SAR images contain rich features
and deep learning can fully exploit image information. Therefore
using fully polarized SAR images combined with deep learning can compensate for the lack of optical images and obtain accurate glacier recognition results. In this paper
VGG16-unet (VGG16 combined with U-net) is used to identify glaciers based on ALOS2-PALSAR fully polarized images of the western part of the Himalayas. The features include the diagonal elements of the polarization coherence matrix
Freeman-Durden
H/A/α
Pauli
VanZyl
and Yamaguchi polarization decomposition parameters totaling 19 features. To make full use of the image information
these features are analyzed and combined
and the glacier recognition accuracies are compared to select the best features. Given evident differences between glacier and nonglacier topography
elevation
slope
and local incidence angle are combined with polarization features as auxiliary features.
Comparing the classification accuracy of different polarization features reveals the accuracy of Pauli
Freeman-Durden
VanZyl
and Yamaguchi features based on physical characteristics is higher
among which Pauli features have the highest accuracy with an Overall Accuracy (OA) of 92.54% and an average user intersection ratio (mIoU) of 78.78%. The OA is improved to 94.34%
and the mIoU is improved to 82.35% after adding the topographic data. In order to improve the recognition accuracy of glaciers further
a feature cross-combination approach is proposed
and results show the OA of the combination reaches 94.98%
and the mIoU reaches 85.67%
which are 0.64% and 3.32% higher than the classification accuracy of Pauli features
respectively.
Selecting the best feature combination method and combining with deep learning plays an important role in improving the accuracy of glacier recognition
and the use of neural networks combined with fully polarized SAR images can effectively compensate for the shortcomings of optical images in glacier boundary identification.
遥感冰川ALOS2-PALSAR极化分解图像分割深度学习喜马拉雅
remote sensingglaciersALOS2-PALSARpolarimetric decompositionimage segmentationdeep learningHimalayas
Badrinarayanan V, Kendall A and Cipolla R. 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495 [DOI: 10.1109/TPAMI.2016.2644615http://dx.doi.org/10.1109/TPAMI.2016.2644615]
Brun F, Berthier E, Wagnon P, Kääb A and Treichler D. 2017. A spatially resolved estimate of high mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673 [DOI: 10.1038/ngeo2999http://dx.doi.org/10.1038/ngeo2999]
Callegari M, Carturan L, Marin C, Notarnicola C, Rastner P, Seppi R and Zucca F. 2016. A Pol-SAR analysis for alpine glacier classification and snowline altitude retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 3106-3121 [DOI: 10.1109/JSTARS.2016.2587819http://dx.doi.org/10.1109/JSTARS.2016.2587819]
Cloude S R. 1985. Target decomposition theorems in radar scattering. Electronics Letters, 21(1): 22-24 [DOI: 10.1049/el:19850018http://dx.doi.org/10.1049/el:19850018]
Cloude S R and Pottier E. 1996. A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2): 498-518 [DOI: 10.1109/36.485127http://dx.doi.org/10.1109/36.485127]
Freeman A and Durden S L. 1998. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 963-973
Harris C, Arenson L U, Christiansen H H, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg M A, Lehning M, Matsuoka N, Murton J B, Nözli J, Phillips M, Ross N, Seppälä M, Springman S M and Vonder Mühll D. 2009. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 92(3/4): 117-171 [DOI: 10.1016/j.earscirev.2008.12.002http://dx.doi.org/10.1016/j.earscirev.2008.12.002]
Huang L, Li Z, Tian B S, Zhou J M and Chen Q. 2014. Recognition of supraglacial debris in the Tianshan mountains on polarimetric SAR images. Remote Sensing of Environment, 145: 47-54 [DOI: 10.1016/j.rse.2014.01.020http://dx.doi.org/10.1016/j.rse.2014.01.020]
Immerzeel W W, van Beek L P H and Bierkens M F P. 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385 [DOI: 10.1126/science.1183188http://dx.doi.org/10.1126/science.1183188]
Lee J S, Wen J H, Ainsworth T L, Chen K S and Chen A J. 2009. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(1): 202-213 [DOI: 10.1109/TGRS.2008.2002881http://dx.doi.org/10.1109/TGRS.2008.2002881]
Nie Y, Zhang Y L, Liu L S and Zhang J P. 2010. Monitoring glacier change based on remote sensing in the Mt. Qomolangma national nature preserve, 1976-2006. Acta Geographica Sinica, 65(1): 13-28
聂勇, 张镱锂, 刘林山, 张继平. 2010. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测. 地理学报, 65(1): 13-28 [DOI: 10.11821/xb201001003http://dx.doi.org/10.11821/xb201001003]
Parrella G, Hajnsek I and Papathanassiou K P. 2016. Polarimetric decomposition of L-band PolSAR backscattering over the austfonna ice cap. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1267-1281 [DOI: 10.1109/TGRS.2015.2477168http://dx.doi.org/10.1109/TGRS.2015.2477168]
Paul F, Bolch T, Briggs K, Kääb A, McMillan M, McNabb R, Nagler T, Nuth C, Rastner P, Strozzi T and Wuite J. 2017. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sensing of Environment, 203: 256-275 [DOI: 10.1016/j.rse.2017.08.038http://dx.doi.org/10.1016/j.rse.2017.08.038]
Paul F, Bolch T, Kääb A, Nagler T, Nuth C, Scharrer K, Shepherd A, Strozzi T, Ticconi F, Bhambri R, Berthier E, Bevan S, Gourmelen N, Heid T, Jeong S, Kunz M, Lauknes T R, Luckman A, Boncori J P M, Moholdt G, Muir A, Neelmeijer J, Rankl M, Van Looy J and Van Niel T. 2015. The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 162: 408-426 [DOI: 10.1016/j.rse.2013.07.043http://dx.doi.org/10.1016/j.rse.2013.07.043]
Ronneberger O, Fischer P and Brox T. 2015. U-net: convolutional networks for biomedical image segmentation//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Scherler D, Bookhagen B and Strecker M R. 2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3): 156-159 [DOI: 10.1038/ngeo1068http://dx.doi.org/10.1038/ngeo1068]
Sharma J J, Hajnsek I, Papathanassiou K P and Moreira A. 2011. Polarimetric decomposition over glacier ice using long-wavelength airborne polSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 519-535 [DOI: 10.1109/TGRS.2010.2056692http://dx.doi.org/10.1109/TGRS.2010.2056692]
Shi J C and Dozier J. 1993. Measurements of snow-and glacier-covered areas with single-polarization SAR. Annals of Glaciology, 17: 72-76
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [DOI: 10.48550/arXiv.1409.1556http://dx.doi.org/10.48550/arXiv.1409.1556]
Singh G, Venkataraman G, Yamaguchi Y and Park S E. 2014. Capability assessment of fully polarimetric ALOS-PALSAR data for discriminating wet snow from other scattering types in mountainous regions. IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1177-1196 [DOI: 10.1109/TGRS.2013.2248369http://dx.doi.org/10.1109/TGRS.2013.2248369]
Takeuchi S and Oguro Y. 2003. A comparative study of coherence patterns in C-band and L-band interferometric SAR from tropical rain forest areas. Advances in Space Research, 32(11): 2305-2310 [DOI: 10.1016/S0273-1177(03)90558-8http://dx.doi.org/10.1016/S0273-1177(03)90558-8]
Thakur P K, Aggarwal S P, Arun G, Sood S, Kumar A S, Mani S and Dobhal D P. 2017. Estimation of snow cover area, snow physical properties and glacier classification in parts of western Himalayas using C-band SAR data. Journal of the Indian Society of Remote Sensing, 45(3): 525-539 [DOI: 10.1007/s12524-016-0609-yhttp://dx.doi.org/10.1007/s12524-016-0609-y]
Usami N, Muhuri A, Bhattacharya A and Hirose A. 2016. PolSAR wet snow mapping with incidence angle information. IEEE Geoscience and Remote Sensing Letters, 13(12): 2029-2033 [DOI: 10.1109/LGRS.2016.2621891http://dx.doi.org/10.1109/LGRS.2016.2621891]
van Zyl J J, Arii M and Kim Y. 2011. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3452-3459 [DOI: 10.1109/TGRS.2011.2128325http://dx.doi.org/10.1109/TGRS.2011.2128325]
Vijay S and Braun M. 2018. Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers (Karakoram-Himalaya). Global and Planetary Change, 165: 137-146 [DOI: 10.1016/j.gloplacha.2018.03.014http://dx.doi.org/10.1016/j.gloplacha.2018.03.014]
Yamaguchi Y, Moriyama T, Ishido M and Yamada H. 2005. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1699-1706 [DOI: 10.1109/TGRS.2005.852084http://dx.doi.org/10.1109/TGRS.2005.852084]
Yao G H, Ke C Q, Zhou X B, Lee H, Shen X Y and Cai Y. 2020. Identification of alpine glaciers in the central Himalayas using fully polarimetric L-band SAR data. IEEE Transactions on Geoscience and Remote Sensing, 58(1): 691-703 [DOI: 10.1109/TGRS.2019.2939430http://dx.doi.org/10.1109/TGRS.2019.2939430]
Zhao Q H, Guo S B, Li X L and Li Y. 2018. Polarimetric SAR sea ice classification based on target decompositional features. Acta Geodaetica et Cartographica Sinica, 47(12): 1609-1620
赵泉华, 郭世波, 李晓丽, 李玉. 2018. 利用目标分解特征的全极化SAR海冰分类. 测绘学报, 47(12): 1609-1620 [DOI: 10.11947/j.AGCS.2018.20170551http://dx.doi.org/10.11947/j.AGCS.2018.20170551]
相关作者
相关机构