1990年—2020年广西北仑河口红树林扰动研究
Disturbance of mangrove forests in Guangxi Beilun Estuary during 1990—2020
- 2022年26卷第6期 页码:1112-1120
纸质出版日期: 2022-06-07
DOI: 10.11834/jrs.20221579
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-07 ,
扫 描 看 全 文
陈高,钟才荣,李明玉,余洲,刘心雨,贾明明.2022.1990年—2020年广西北仑河口红树林扰动研究.遥感学报,26(6): 1112-1120
Chen G,Zhong C R,Li M Y,Yu Z,Liu X Y and Jia M M. 2022. Disturbance of mangrove forests in Guangxi Beilun Estuary during 1990—2020. National Remote Sensing Bulletin, 26(6):1112-1120
监测国家级自然保护区内红树林的扰动,可为滨海湿地生态系统的管理和保护提供数据支撑和决策支持。本研究使用谷歌云平台GEE(Google Earth Engine)建立Landsat长时间序列卫星数据集,结合LandTrendr算法研究了广西北仑河口红树林自然保护区1990年—2020年红树林的扰动情况。结果表明:(1)1990年—2020年,共有45.94 ha的红树林发生了扰动,其中2001年保护区内红树林扰动面积最大,为12.91 ha;(2)1990年—2020年,轻微扰动和中度扰动所占比例较大,分别为57.5%和29.17%,严重扰动所占比例最少,只有13.33%;(3)红树林变化像元的总体识别精度达到88.56%,对扰动年份检测的总体精度达到87%,Kappa系数为0.76。本研究基于LandTrendr算法解析了30年间北仑河口保护区内红树林发生扰动的年份、频率和面积,结合实际情况分析了导致扰动的因素,认为人类活动是北仑河口红树林扰动的次要原因,自然因素,如虫灾,台风等是导致扰动的主要原因。本研究的结论和方法可为红树林保护区管理处制定科学合理的保护和恢复政策提供重要的决策支持。
Mangrove forests are highly productive ecosystems that maintain coastal ecological balance and biodiversity by providing breeding and nursing grounds for waterfowl
marine
and pelagic species. Mangroves are highly subjected to natural and anthropogenic disturbances
owing to their intermediate position between the terrestrial and marine environments. This study used Landsat imagery to track the temporal and spatial changes of mangrove forests in Guangxi Beilun Estuary National Nature Reserve. The objectives of this study are (1) to monitor spatial distributions and intensities of mangrove forest disturbances during the past 30 years
and (2) to analyze the natural and anthropogenic factors that cause these disturbances in the reserve.
This study used the Google Earth Engine (GEE) platform to establish a time series Landsat dataset during 1990—2020. And then
GEE constructed the image dataset stack using the Medoid method for annual best pixel composition. Based on LandTrendr algorithm and the dataset
we studied disturbances of mangrove forests in Guangxi Beilun Estuary National Nature Reserve from 1990 to 2020. GEE enables quick access and processes a massive number of Landsat images in a paralleled process. Specifically
the GEE synchronizes all the Landsat data and provides different levels of processed products
including the top of atmosphere and surface reflectance data. LandTrendr algorithm can be used to detect changes in the time series of satellite images pixel by pixel and capture pixel-level subtle disturbances.
The results show that (1) during 1990—2020
the total area of mangrove forest disturbances in the Beilun Estuary Reserve in Guangxi was 45.94 ha. Most disturbances occurred near pearl Bay
and a small amount of disturbances occurred in Beilun estuary; (2) the maximum disturbed area occurred in 2001
which was 12.91 ha
and the minimum disturbed area occurred in 2007
which was 0.09 ha; (3) slight
moderate
and severe disturbances accounted for 57.5%
29.17%
and 13.33% of the total disturbance
respectively
and the areas are 26.42
13.40
and 6.13 ha.
According to our results and literature reviews
the following conclusions can be drawn: natural and anthropogenic factors cause the disturbance of mangrove forest in Guangxi Beilun Estuary National Nature Reserve. In terms of natural factors
sea level rise
extreme weather
pests and diseases
and invasion of spartina alterniflora have seriously threatened the growth environment of mangroves. In terms of human factors
cultivation ponds and farmland reclamation directly occupy the growth environment of mangroves. Mangroves are also threatened by wastewater from aquaculture ponds and pesticide residues in cultivated land. Parts of the terrigenous mangroves are developed as dikes or other artificial surfaces to attract residents or visitors. This condition has also led to an increase in wastewater from domestic production; not only does it hinder the growth of mangroves
but it also hinders the flow of matter and energy between land and sea. In addition
results of this study can serve as an important scientific basis and fundamental data for formulating mangrove protection and restoration strategies.
遥感红树林保护区谷歌地球引擎GEE(Google Earth Engine)LandTrendr算法
remote sensingmangrovesprotected areasGoogle Earth Engine (GEE)Land Trendr algorithm
Awty-Carroll K, Bunting P, Hardy A and Bell G. 2019. Using continuous change detection and classification of Landsat data to investigate long-term mangrove dynamics in the Sundarbans region. Remote Sensing, 11(23): 2833 [DOI: 10.3390/rs11232833http://dx.doi.org/10.3390/rs11232833]
Barg U C. 1992. Guidelines for the promotion of environmental management of coastal aquaculture development. Food & Agriculture Org. Vol. 328
Bouillon S, Borges A V, Castañeda-Moya E, Diele K, Dittmar T, Duke N C, Kristensen E, Lee S Y, Marchand C, Middelburg J J, Rivera-Monroy V H, Smith T J and Twilley R R. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013 [DOI: 10.1029/2007GB003052http://dx.doi.org/10.1029/2007GB003052]
Chen B, Yu W W, Liu W H and Liu Z H. 2012. An assessment on restoration of typical marine ecosystems in China—achievements and lessons. Ocean and Coastal Management, 57: 53-61 [DOI: 10.1016/j.ocecoaman.2011.11.007http://dx.doi.org/10.1016/j.ocecoaman.2011.11.007]
Chen L Z, Wang W Q, Zhang Y H and Lin G H. 2009. Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology, 2(2): 45-54 [DOI: 10.1093/jpe/rtp009http://dx.doi.org/10.1093/jpe/rtp009]
Chu L X. 2019. Anthropogenic Influence on Coastal Environment Using Satellite Cloud-Based Platform. Beijing: China University of Geosciences (Beijing)
楚丽霞. 2019. 利用遥感卫星数据云平台研究人类活动对沿海环境的影响. 北京: 中国地质大学(北京) [DOI: 10.27493/d.cnki.gzdzy.2019.001564http://dx.doi.org/10.27493/d.cnki.gzdzy.2019.001564]
Dan X Q, Liao B W, Wu Z B, Wu H J, Bao D M, Dan W Y and Liu S H. 2016. Resources, conservation status and main threats of mangrove wetlands in China. Ecology and Environmental Sciences, 25(7): 1237-1243
但新球, 廖宝文, 吴照柏, 吴后建, 鲍达明, 但维宇, 刘世好. 2016. 中国红树林湿地资源、保护现状和主要威胁. 生态环境学报, 25(7): 1237-1243 [DOI: 10.16258/j.cnki.1674-5906.2016.07.021http://dx.doi.org/10.16258/j.cnki.1674-5906.2016.07.021]
De Jong S M, Shen Y C, De Vries J, Bijnaar G, Van Maanen B, Augustinus P and Verweij P. 2021. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International Journal of Applied Earth Observation and Geoinformation, 97: 102293 [DOI: 10.1016/j.jag.2020.102293http://dx.doi.org/10.1016/j.jag.2020.102293]
Duke N C, Meynecke J O, Dittmann S, Ellison A M, Anger K, Berger U, Cannicci S, Diele K, Ewel K C, Field C D, Koedam N, Lee S Y, Marchand C, Nordhaus I and Dahdouh-Guebas F. 2007. A world without mangroves? Science, 317(5834): 41-42 [DOI: 10.1126/science.317.5834.41bhttp://dx.doi.org/10.1126/science.317.5834.41b]
防城港市海洋局. 2017. 北仑河口保护区红树林遭受团水虱侵害[EB/OL]. [2017-08-02]. http://www.fcgs.gov.cn/hyj/dtxx/201708/t20170802_44235.htmlhttp://www.fcgs.gov.cn/hyj/dtxx/201708/t20170802_44235.html
Flood N. 2013. Seasonal composite Landsat TM/ETM+images using the Medoid (a multi-dimensional median). Remote Sensing, 5(12): 6481-6500 [DOI: 10.3390/rs5126481http://dx.doi.org/10.3390/rs5126481]
广西壮族自治区海洋局. 2015. 关于印发2015年广西沿海红树林虫害治理实施方案的通知[EB/OL]. [2015-09-28]. http://hyj.gxzf.gov.cn/zwgk_66846/fzjz_66896/t3468417.shtmlhttp://hyj.gxzf.gov.cn/zwgk_66846/fzjz_66896/t3468417.shtml
Jia M M. 2014. Remote Sensing Analysis of China’s Mangrove Forests Dynamics During 1973 to 2013. Changchun: University of Chinese Academy of Science
贾明明. 2014. 1973~2013年中国红树林动态变化遥感分析. 长春: 中国科学院研究生院(东北地理与农业生态研究所)
Jia M M, Wang Z M, Mao D H, Huang C L and Lu C Y. 2021. Spatial-temporal changes of China’s mangrove forests over the past 50 years: an analysis towards the Sustainable development goals (SDGs). Chinese Science Bulletin, 66(30): 3886-6901
贾明明, 王宗明, 毛德华, 黄春林, 路春燕. 2021. 面向可持续发展目标的中国红树林近50年变化分析. 科学通报, 66(30): 3886-6901 [DOI: 10.1360/TB-2020-1412http://dx.doi.org/10.1360/TB-2020-1412]
Jia M M, Wang Z M, Zhang Y Z, Mao D H and Wang C. 2018. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. International Journal of Applied Earth Observation and Geoinformation, 73: 535-545 [DOI: 10.1016/j.jag.2018.07.025http://dx.doi.org/10.1016/j.jag.2018.07.025]
Kennedy R E, Yang Z Q and Cohen W B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environment, 114(12): 2897-2910. [DOI: 10.1016/j.rse.2010.07.008http://dx.doi.org/10.1016/j.rse.2010.07.008]
Kennedy R E, Yang Z, Cohen W B, Pfaff E, Braaten J and Nelson P. 2012. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sensing of Environment, 122: 117-133 [DOI: 10.1016/j.rse.2011.09.024http://dx.doi.org/10.1016/j.rse.2011.09.024]
Kennedy R E, Yang Z Q, Gorelick N, Braaten J, Cavalcante L, Cohen W and Healey S. 2018. Implementation of the LandTrendr algorithm on google earth engine. Remote Sensing, 10(5): 691 [DOI: 10.3390/rs10050691http://dx.doi.org/10.3390/rs10050691]
Kuenzer C, Bluemel A, Gebhardt S, Quoc T V and Dech S. 2011. Remote sensing of mangrove ecosystems: a review. Remote Sensing, 3(5): 878-928 [DOI: 10.3390/rs3050878http://dx.doi.org/10.3390/rs3050878]
Latawiec A E, Strassburg B B.N, Rodriguez A M, Matt E, Nijbroek R and Silos M. 2014. Suriname: Reconciling agricultural development and conservation of unique natural wealth. Land Use Policy, 38: 627-636 [DOI: 10.1016/j.landusepol.2014.01.007http://dx.doi.org/10.1016/j.landusepol.2014.01.007]
Li C G. 2002. Review on mangrove mapping base on remote sensing. Central South Forest Inventory and Planning, 21(4): 52-55, 58
李春干. 2002. 红树林遥感成图研究综述. 中南林业调查规划, 21(4): 52-55, 58 [DOI: 10.3969/j.issn.1003-6075.2002.04.017http://dx.doi.org/10.3969/j.issn.1003-6075.2002.04.017]
Li C G and Tan B Z. 2003. Studies on the methods of mangrove inventory based on RS, GPS and GIS. Journal of Natural Resources, 18(2): 215-221
李春干, 谭必增. 2003. 基于“3S”的红树林资源调查方法研究. 自然资源学报, 18(2): 215-221 [DOI: 10.3321/j.issn:1000-3037.2003.02.014http://dx.doi.org/10.3321/j.issn:1000-3037.2003.02.014]
Lin P. 1997. Research on Mangrove Ecosystem in China. Beijing: Science Press
林鹏. 1997. 中国红树林生态系. 北京: 科学出版社
Lin P, Zhang Y H and Yang Z W. 2005. Protection and restoration of mangroves along the coast of Xiamen. Journal of Xiamen University (Natural Science), 44(S1): 1-6
林鹏, 张宜辉, 杨志伟. 2005. 厦门海岸红树林的保护与生态恢复. 厦门大学学报(自然科学版), 44(S1): 1-6 [DOI: 10.3321/j.issn:0438-0479.2005.z1.001http://dx.doi.org/10.3321/j.issn:0438-0479.2005.z1.001]
Liu S S, Huang X Y, Zhao S and Chen Y L. 2020. Analysis of forest disturbance and recovery dynamic characteristics based on LandTrendr time segmental algorithm. Journal of Subtropical Resources and Environment, 15(4): 15-22
刘姗姗, 黄鑫毅, 赵帅, 陈耀亮. 2020. 基于LandTrendr模型的亚热带森林干扰与恢复动态变化分析. 亚热带资源与环境学报, 15(4): 15-22 [DOI: 10.19687/j.cnki.1673-7105.2020.04.002http://dx.doi.org/10.19687/j.cnki.1673-7105.2020.04.002]
Mao L J. 2011. Assessment of changes in mangrove forest patterns from multitemporal remotely sensed imagery over Zhanjiang city, Guangdong Province. Nanjing: Nanjing Forestry University. (毛丽君. 2011. 基于遥感的广东湛江红树林湿地动态变化研究. 南京: 南京林业大学)
Pham T D and Yoshino K. 2016. Impacts of mangrove management systems on mangrove changes in the Northern Coast of Vietnam. Tropics, 24(4): 141-151 [DOI: 10.3759/tropics.24.141http://dx.doi.org/10.3759/tropics.24.141]
Roy D P, Kovalskyy V, Zhang H K, Vermote E F, Yan L, Kumara S S and Egorova A. 2016. Characterization of landsat-7 to landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185: 57-70 [DOI: 10.1016/j.rse.2015.12.024http://dx.doi.org/10.1016/j.rse.2015.12.024]
Sengupta D, Chen R S, Meadows M E, Choi Y R, Banerjee A and Xia Z L. 2019. Mapping trajectories of coastal land reclamation in nine deltaic megacities using google earth engine. Remote Sensing, 11(22): 2621 [DOI: 10.3390/rs11222621http://dx.doi.org/10.3390/rs11222621]
Spalding M, Kainuma M and Collins L. 2010. World Atlas of Mangroves. London: Earthscan [doi: 10.4324/9781849776608http://dx.doi.org/10.4324/9781849776608]
Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A and Simard M. 2017. Distribution and drivers of global mangrove forest change, 1996-2010. PLoS One, 12(6): e0179302 [DOI: 10.1371/journal.pone.0179302http://dx.doi.org/10.1371/journal.pone.0179302]
UN-DESA. 2019. The Community of ocean action for mangroves-towards the implementation of SDG14. UN-DESA
Valiela I, Bowen J L and York J K. 2001. Mangrove forests: one of the world’s threatened major tropical environments: at least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. BioScience, 51(10): 807-815 [DOI: 10.1641/0006-3568(2001)051http://dx.doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2]
Verbesselt J, Hyndman R, Newnham G and Culvenora D. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1): 106-115 [DOI: 10.1016/j.rse.2009.08.014http://dx.doi.org/10.1016/j.rse.2009.08.014]
Wang W Q and Wang M. 2007. the Mangroves of China. Beijing: Science Press
王文卿, 王瑁. 2007. 中国红树林. 北京: 科学出版社
Wang Y, Zuo P, Huang Z Q and Zou X Q. 2006. Study of the change of mangrove wetland ecosystem and driving forces in Dongzhaigang. Sichuan Environment, 25(3): 44-49
王胤, 左平, 黄仲琪, 邹欣庆. 2006. 海南东寨港红树林湿地面积变化及其驱动力分析. 四川环境, 25(3): 44-49 [DOI: 10.3969/j.issn.1001-3644.2006.03.011http://dx.doi.org/10.3969/j.issn.1001-3644.2006.03.011]
Xu H P, Liu T and Zhang J B. 2020. Response of Carbon sequestration in mangroves to sea level rise, climate change and human activities. Guangxi Sciences, 27(1): 84-90
徐慧鹏, 刘涛, 张建兵. 2020. 红树林碳埋藏过程对海平面上升、气候变化和人类活动的响应. 广西科学, 27(1): 84-90 [DOI: 10.13656/j.cnki.gxkx.20200311.010http://dx.doi.org/10.13656/j.cnki.gxkx.20200311.010]
Zhang K Q, Thapa B, Ross M and Gann D. 2016. Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere, 7(6): e01366 [DOI: 10.1002/ecs2.1366http://dx.doi.org/10.1002/ecs2.1366]
Zhang L E and Lao B W. 2011. Research progress of mangrove wetlands on Qi’ao Island, Zhuhai. Ecological Science, 30(1): 81-87
张留恩, 廖宝文. 2011. 珠海市淇澳岛红树林湿地的研究进展与展望. 生态科学, 30(1): 81-87 [DOI: 10.3969/j.issn.1008-8873.2011.01.015http://dx.doi.org/10.3969/j.issn.1008-8873.2011.01.015]
Zhang Q M, Yu H B, Chen X S and Zheng D Z. 1997. The relationship between mangrove zone on tidal flats and tidal levels. Acta Ecologica Sinica, 17(3): 258-265
张乔民, 于红兵, 陈欣树, 郑德璋. 1997. 红树林生长带与潮汐水位关系的研究. 生态学报, 17(3): 258-265
Zhu Z and Woodcock C E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144: 152-171 [DOI: 10.1016/j.rse.2014.01.011http://dx.doi.org/10.1016/j.rse.2014.01.011]
Zhu Z, Wulder M A, Roy D P, Woodcock C E, Hansen M C, Radeloff V C, Healey S P, Schaaf C, Hostert P, Strobl P, Pekel J F, Lymburner L, Pahlevan N and Scambos T A. 2019. Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 224: 382-385 [DOI: 10.1016/j.rse.2019.02.016http://dx.doi.org/10.1016/j.rse.2019.02.016]
相关作者
相关机构