沙漠稳定目标方向反射率参考模型构建
Construction of directional reflectance reference model for desert stable earth targets
- 2023年27卷第10期 页码:2270-2282
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20221587
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
王玲,胡秀清,徐娜,陈林,张鹏,徐寒列.2023.沙漠稳定目标方向反射率参考模型构建.遥感学报,27(10): 2270-2282
Wang L, Hu X Q, Xu N, Chen L, Zhang P and Xu H L. 2023. Construction of directional reflectance reference model for desert stable earth targets. National Remote Sensing Bulletin, 27(10):2270-2282
陆地稳定目标的地表反射率是利用反射率基法对卫星传感器进行辐射定标的关键参量。但对于国产历史遥感卫星的光学载荷,同步观测的稳定目标地表反射率数据的缺乏,是对其进行历史再定标工作的主要难点。本文基于长时间序列的MODIS BRDF模型参数产品,采用统计分析的方法,建立了全球典型沙漠稳定目标的逐月方向反射率参考模型,并基于独立的样本数据进行了模型精度验证及辐射定标应用示范研究。验证结果显示,国外目标的方向反射率参考模型不确定度优于国内目标。国外的13个沙漠目标中,有12个目标的模型误差在±3%以内,其中Libya 4可低于±1%;在国内,有6个目标与国外这12个目标的模型精度相当。辐射定标应用示范结果显示,本文构建的稳定目标方向反射率参考模型可以代替实时的MODIS BRDF模型参数产品用于遥感仪器的辐射定标中。一方面,可以解决国产卫星光学载荷历史数据再定标中缺乏地面反射率同步观测的问题;另一方面,对于在轨遥感仪器的辐射定标,可避免频繁下载MODIS BRDF模型参数产品的问题。
Accurate and consistent calibration for long-term satellite remote sensing data is critical to accurately estimate multi-decadal climate variability. However
for the historical optical satellite sensors
the lack of or limited number of synchronous in situ observation of surface Bidirectional Reflectance Distribution Function (BRDF) model data is the main difficulty to recalibrate their radiance products. This study aims to build a surface directional reflectance reference model for some typical stable earth targets worldwide
providing a uniform surface reflectance reference for the historical remote sensing satellites to perform a consistent recalibration of their long-term TOA radiance products.
The long-term data products from MODIS satellite instrument
well known for its high calibration accuracy and stability
are used to establish the surface directional reflectance reference model for the selected stable earth targets. Specifically
for the desert sites
the MODIS surface BRDF products (MCD43A1) from 2008 to 2012 are used to build a monthly climatology of the BRDF parameters as the surface directional reflectance reference. Then
independent MODIS products
i.e.
the data time is different from that used in the model construction
are applied to verify the accuracy of the established directional reflectance reference model. Finally
to check the applicability of this model in the radiometric calibration of satellite instruments
it was used to carry out calibration experiments on the Visible Infrared Radiometer (VIRR) on the FY-3C
and compared with the calibration results obtained based on real-time MODIS BRDF products.
The uncertainty estimation of the surface directional reflectance reference model over desert sites shows that the model uncertainty of foreign desert targets is lower than that of domestic desert targets. The reference model uncertainty of foreign targets is below 3%
and the domestic desert sites are below 4% (except TKLM_3). The model accuracy verification of the radiometric reference model shows that among the 13 foreign desert targets
except Tinga_Tingana in Australia
the relative errors are basically within ±3%
and that in Libya 4 can be less then ±1%. Six domestic desert sites
i.e.
BDJL_1
BDJL_2
TNGR_1
TNGR_2
WULBHE
and LBPO_W
can achieve a sound accuracy of within ±3%
which is comparable to the stable earth targets frequently used by the international research. The radiometric calibration test on FY-3C VIRR shows that using the directional reflectance reference model of the stable target is in good agreement with the radiometric calibration results based on the real-time MODIS BRDF product
and the difference between the two calibration results is very small
i.e.
the average relative bias is basically within ±0.6%.
The results indicate that established directional reflectance reference model over the stable earth targets can be used in the application of radiometric calibration of the optical satellite instruments and can solve the problem of consistent recalibration of historical data from domestic optical satellite instruments.
遥感仪器辐射定标反射率BRDF稳定目标MODIS
remote sensing instrumentradiometric calibrationreflectanceBRDFstable targetsMODIS
Cosnefroy H, Leroy M and Briottet X. 1996. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sensing of Environment, 58(1): 101-114 [DOI: 10.1016/0034-4257(95)00211-1http://dx.doi.org/10.1016/0034-4257(95)00211-1]
Govaerts Y M, Clerici M and Clerbaux N. 2004. Operational calibration of the Meteosat radiometer VIS band. IEEE Transactions on Geoscience and Remote Sensing, 42(9): 1900-1914 [DOI: 10.1109/TGRS.2004.831882http://dx.doi.org/10.1109/TGRS.2004.831882]
Helder D, Thome K J, Mishra N, Chander G, Xiong X X, Angal A and Choi T. 2013. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1360-1369 [DOI: 10.1109/TGRS.2013.2243738http://dx.doi.org/10.1109/TGRS.2013.2243738]
Hu X Q, Wang L, Wang J W, He L L, Chen L, Xu N, Tao B C, Zhang L, Zhang P and Lu N M. 2020. Preliminary selection and characterization of pseudo-invariant calibration sites in Northwest China. Remote Sensing, 12(16): 2517 [DOI: 10.3390/rs12162517http://dx.doi.org/10.3390/rs12162517]
Liang S L, Fang H L, Chen M Z, Shuey C J, Walthall C, Daughtry C, Morisette J, Schaaf C and Strahler A. 2002. Validating MODIS land surface reflectance and albedo products: methods and preliminary results. Remote Sensing of Environment, 83(1/2): 149-162 [DOI: 10.1016/S0034-4257(02)00092-5http://dx.doi.org/10.1016/S0034-4257(02)00092-5]
Liu J C, Schaaf C, Strahler A, Jiao Z T, Shuai Y M, Zhang Q L, Roman M, Augustine J A and Dutton E G. 2009. Validation of moderate resolution imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on solar zenith angle. Journal of Geophysical Research: Atmospheres, 114(D1): D01106 [DOI: 10.1029/2008JD009969http://dx.doi.org/10.1029/2008JD009969]
Mishra N, Helder D, Angal A, Choi J and Xiong X X. 2014. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site. Remote Sensing, 6(2): 1327-1346 [DOI: 10.3390/rs6021327http://dx.doi.org/10.3390/rs6021327]
Román M O, Gatebe C K, Shuai Y M, Wang Z S, Gao F, Masek J G, He T, Liang S L and Schaaf C B. 2013. Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and albedo. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1393-1404 [DOI: 10.1109/TGRS.2013.2243457http://dx.doi.org/10.1109/TGRS.2013.2243457]
Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. Journal of Geophysical Research: Atmospheres, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411http://dx.doi.org/10.1029/92JD01411]
Teillet P M, Barsi J A, Chander G and Thome K J. 2007. Prime candidate Earth targets for the post-launch radiometric calibration of space-based optical imaging instruments//Proceedings Volume 6677, Earth Observing Systems XII. San Diego: SPIE: 304-315 [DOI: 10.1117/12.733156http://dx.doi.org/10.1117/12.733156]
Teillet P M and Chander G. 2010. Terrestrial reference standard sites for postlaunch sensor calibration. Canadian Journal of Remote Sensing, 36(5): 437-450 [DOI: 10.5589/m10-079http://dx.doi.org/10.5589/m10-079]
Wang L, Hu X Q and Chen L. 2017. Wide dynamic nonlinear radiometric calibration of optical satellite sensors using multiple stable earth targets. Journal of Remote Sensing, 21(6): 892-906
王玲, 胡秀清, 陈林. 2017. 多目标的卫星仪器宽动态非线性定标. 遥感学报, 21(6): 892-906 [DOI: 10.11834/jrs.20176351http://dx.doi.org/10.11834/jrs.20176351]
Wang L, Hu X Q, Chen L and He L L. 2018. Consistent calibration of VIRR reflective solar channels onboard FY-3A, FY-3B, and FY-3C using a multisite calibration method. Remote Sensing, 10(9): 1336 [DOI: 10.3390/rs10091336http://dx.doi.org/10.3390/rs10091336]
Wang L, Hu X Q, Luo Y P, Liu Z Z and Min M. 2019. Selection and characterization of glaciers on the Tibetan Plateau as potential pseudoinvariant calibration sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(2): 424-436 [DOI: 10.1109/JSTARS.2018.2890672http://dx.doi.org/10.1109/JSTARS.2018.2890672]
Wanner W, Li X and Strahler A H. 1995. On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of Geophysical Research: Atmospheres, 100(D10): 21077-21089 [DOI: 10.1029/95JD02371http://dx.doi.org/10.1029/95JD02371]
Wu A S, Xiong X X, Cao C Y and Angal A. 2008. Monitoring MODIS calibration stability of visible and near-IR bands from observed top-of-atmosphere BRDF-normalized reflectances over Libyan Desert and Antarctic surfaces//Proceedings Volume 7081, Earth Observing Systems XIII. San Diego: SPIE: 307-315 [DOI: 10.1117/12.795296http://dx.doi.org/10.1117/12.795296]
Zhu G L, Ju W M, Chen J M, Liu Y B, Zhu J F and Xing B L. 2011. Validation of MODIS BRDF model parameters product and the Ross-Li model with POLDER data. Journal of Remote Sensing, 15(5): 875-894
朱高龙, 居为民, 陈镜明, 柳艺博, 朱敬芳, 邢白灵. 2011. 利用POLDER数据验证MODIS BRDF模型参数产品及Ross-Li模型. 遥感学报, 15(5): 875-894 [DOI: 10.11834/jrs.20110247http://dx.doi.org/10.11834/jrs.20110247]
相关作者
相关机构