臭氧卫星遥感六十年进展
Advances of ozone satellite remote sensing in 60 years
- 2022年26卷第5期 页码:817-833
纸质出版日期: 2022-05-07
DOI: 10.11834/jrs.20221632
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-05-07 ,
扫 描 看 全 文
赵少华,杨晓钰,李正强,王中挺,张玉环,王玉,周春艳,马鹏飞.2022.臭氧卫星遥感六十年进展.遥感学报,26(5): 817-833
Zhao S H,Yang X Y,Li Z Q,Wang Z T,Zhang Y H,Wang Y,Zhou C Y and Ma P F. 2022. Advances of ozone satellite remote sensing in 60 years. National Remote Sensing Bulletin, 26(5):817-833
臭氧已成为中国继PM
2.5
之后多地的首要污染物,臭氧污染防治是中国“十四五”及未来大气污染防治的重点。本文回顾了近60年来国内外臭氧卫星观测方面的主要进展,包括卫星探测载荷和臭氧相关的反演应用技术等,分为3个阶段总结了卫星载荷天底、临边和掩星3种探测方式的发展历程。臭氧卫星遥感反演算法和监测应用也随着载荷的发展在不断更新,本文重点介绍了臭氧柱总量和垂直廓线卫星遥感反演算法、近地面臭氧及其前体物观测、平流层臭氧入侵观测和区域传输、臭氧卫星观测数据的精度验证等方面的重要进展。对比国际臭氧卫星遥感监测,中国臭氧监测卫星发展滞后,虽然国家民用空间基础设施规划中陆续发射的高光谱观测卫星、大气环境监测卫星具有初步的臭氧监测能力,但在卫星载荷在功能、性能等方面还有不小差距,比如空间分辨率、信噪比等方面。在算法反演和监测应用方面,目前臭氧柱总量反演精度较高,还存在对流层中低层和近地面臭氧浓度反演精度不够,臭氧污染评估及成因分析不足,如近地面臭氧污染迁移转化过程、平流层臭氧侵入识别分析等问题,是下一步要重点关注的方向。
Ozone is an important trace gas which absorbs UV radiation and protects life on earth from its potentially harmful effects. It is an important greenhouse gas in the troposphere. On average
approximately 90% of the atmospheric ozone is found in the stratosphere
and 10% is found in the troposphere. After the PM
2.5
reduction
the increasing surface ozone concentration has become the primary concern in China
which is a significant pollution control task in the Chinese “14th Five-Year Plan.” This study reviews the substantial development of international ozone satellite observations in the past 60 years
including the satellite payloads
ozone retrieval
and monitoring application. The development of satellite can be divided into three stages with three viewing geometries (limb
occultation
and nadir)
the limb and occultation observations are mainly focused on the middle and upper atmospheres
while the nadir observation can provide effective information on the troposphere
with a better horizontal resolution and the capability to derive the ozone in low middle layer of troposphere by retrieval method. The ozone retrieval methods and monitoring applications are constantly updated with the development of the satellite. This study focuses on the important progress in the satellite remote sensing retrieval algorithm for total ozone column and vertical ozone profiles
the observation of surface ozone concentration and its precursors
the observation and regional transmission of stratospheric ozone intrusion
and the validation of ozone satellite observation data. The algorithm of the total ozone column retrieval has high accuracy (up to about 90%—95%) while the ozone profile retrieval algorithm limited by satellite payloads
clouds and method
its accuracy is relatively low (up to about 70%—75%). There are some problems in the retrieval of the near surface ozone concentration by machine learning method
which has poor robustness and easy to overfitting. Satellite remote sensing combined with other data can monitor stratospheric ozone intrusion
but it is still difficult to quantify the impact of surface ozone concentration. Compared with that of the international ozone satellite remote sensing monitoring
the development of China’s ozone monitoring satellites lags behind. Although the hyperspectral observation satellites and atmospheric environment monitoring satellites to be launched in succession in the national civil space infrastructure planning have preliminary ozone monitoring capabilities
a large gap exists in the function and performance of satellite payloads
such as spatial resolution and signal-to-noise ratio. In terms of retrieval algorithm and monitoring application
the retrieval accuracy of the total amount of ozone column at present is relatively high. Retrieval accuracy of ozone concentration in the middle and lower troposphere and near surface is insufficient. Evaluation and cause analysis of ozone pollution
such as the migration and transformation process of near surface ozone pollution and the stratospheric ozone intrusion identification
are also inadequate. These are the key problems that need to be solved in the next step.
臭氧遥感柱总量和廓线反演平流层卫星载荷反演监测应用
Ozoneremote sensingtotal colum and profile retrievalstratospheresatellite payloadsretrievalmonitoring application
Ackerman A A, Platnick S, Bhartia P K, Duncan B, L’Ecuyer T, Heidinger A, Skofronick-Jackson G, Loeb N, Schmit T and Smith N. 2019. Satellites see the world’s atmosphere. Hou M T, Li J H, trans. Advances in Meteorological Science and Technology, 9S1: 52-72
AckermanS A, PlatnickS, BhartiaP K, DuncanB, L’EcuyerT, HeidingerA, Skofronick-JacksonG, LoebN, SchmitT, SmithN. 2019. 第4章 地球大气的卫星观测. 侯美亭, 李婧华, 译. 气象科技进展, 9(S1): 52-72 [DOI: 10.3969/j.issn.2095-1973.2019.z1.005http://dx.doi.org/10.3969/j.issn.2095-1973.2019.z1.005]
Bian J C, Chen H B, Zhao Y L and Lü D R. 2002. Variation features of total atmospheric ozone in Beijing and Kunming based on Dobson and TOMS data. Advances in Atmospheric Sciences, 19(2): 279-286 [DOI: 10.1007/s00376-002-0022-zhttp://dx.doi.org/10.1007/s00376-002-0022-z]
Boynard A, Clerbaux C, Coheur P F, Hurtmans D, Turquety S, George M, Hadji-Lazaro J, Keim C and Meyer-Arnek J. 2009. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations. Atmospheric Chemistry and Physics, 9(16): 6255-6271 [DOI: 10.5194/acp-9-6255-2009http://dx.doi.org/10.5194/acp-9-6255-2009]
Cai Z N, Wang Y, Liu X, Zheng X D, Chance K and Liu Y. 2009. Validation of GOME ozone profiles and tropospheric column ozone with ozone Sonde over China. Journal of Applied Meteorological Science, 20(3): 337-345
蔡兆男, 王永, Liu X, 郑向东, Chance K, 刘毅. 2009. 利用探空资料验证GOME卫星臭氧数据. 应用气象学报, 20(3): 337-345 [DOI: 10.3969/j.issn.1001-7313.2009.03.010http://dx.doi.org/10.3969/j.issn.1001-7313.2009.03.010]
Chen D, Zhou B and Chen L M. 2008. The retrieval of atmospheric ozone column densities using zenith-sky scattered light observations. Journal of Fudan University (Natural Science), 47(4): 478-486
陈丹, 周斌, 陈立民. 2008. 利用天顶散射光观测反演大气臭氧柱浓度. 复旦学报(自然科学版), 47(4): 478-486 [DOI: 10.15943/j.cnki.fdxb-jns.2008.04.015http://dx.doi.org/10.15943/j.cnki.fdxb-jns.2008.04.015]
Chen L F, Wang Y P, Zhang X X, Wang Z F, Tao J H, Wang L L and Zhang Y. 2019. Satellite remote sensing monitoring of ozone and its precursors for regional secondary pollution risk control. Environmental Monitoring and Forewarning, 11(5): 13-21
陈良富, 王雅鹏, 张欣欣, 王子峰, 陶金花, 王莉莉, 张莹. 2019. 面向区域二次污染风险控制的臭氧及其前体物卫星遥感监测. 环境监控与预警, 11(5): 13-21 [DOI: 10.3969/j.issn.1674-6732.2019.05.003http://dx.doi.org/10.3969/j.issn.1674-6732.2019.05.003]
Chen Y, Liu H L, Duan M Z, Lü D R and Zhang J Q. 2020. Validation of ozone product by satellite OMPS with sounding measurements over Beijing. Remote Sensing Technology and Application, 35(3): 723-730
陈源, 刘海磊, 段民征, 吕达仁, 张金强. 2020. 利用探空资料验证北京地区OMPS卫星臭氧产品. 遥感技术与应用, 35(3): 723-730 [DOI: 10.11873/j.issn.1004-0323.2020.3.0723http://dx.doi.org/10.11873/j.issn.1004-0323.2020.3.0723]
Clerbaux C, Boynard A, Clarisse L, George M, Hadji-Lazaro J, Herbin H, Hurtmans D, Pommier M, Razavi A, Turquety S, Wespes C and Coheur P F. 2009. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmospheric Chemistry and Physics, 9(16): 6041-6054 [DOI: 10.5194/acp-9-6041-2009http://dx.doi.org/10.5194/acp-9-6041-2009]
Coheur P F, Barret B, Turquety S, Hurtmans D, Hadji-Lazaro J and Clerbaux C. 2005. Retrieval and characterization of ozone vertical profiles from a thermal infrared nadir sounder. Journal of Geophysical Research: Atmospheres, 110(D24): D24303 [DOI: 10.1029/2005JD005845http://dx.doi.org/10.1029/2005JD005845]
Coldewey-Egbers M, Weber M, Buchwitz M and Burrows J P. 2004. Application of a modified DOAS method for total ozone retrieval from GOME data at high polar latitudes. Advances in Space Research, 34(4): 749-753 [DOI: 10.1016/j.asr.2003.05.051http://dx.doi.org/10.1016/j.asr.2003.05.051]
Cooper O R, Parrish D D, Ziemke J, Balashov N V, Cupeiro M, Galbally I E, Gilge S, Horowitz L, Jensen N R, Lamarque J F, Naik V, Oltmans S J, Schwab J, Shindell D T, Thompson A M, Thouret V, Wang Y and Zbinden R M. 2014. Global distribution and trends of tropospheric ozone: an observation-based review. Elementa: Science of the Anthropocene, 2: 000029 [DOI: 10.12952/journal.elementa.000029http://dx.doi.org/10.12952/journal.elementa.000029]
Cracknell A P and Varotsos C A. 2012. Remote Sensing and Atmospheric Ozone: Human Activities versus Natural Variability. Berlin, Heidelberg: Springer [DOI: 10.1007/978-3-642-10334-6http://dx.doi.org/10.1007/978-3-642-10334-6]
Cracknell A P and Varotsos C A. 2014. Satellite systems for atmospheric ozone observations. International Journal of Remote Sensing, 35(15): 5566-5597
Divakarla M, Barnet C, Goldberg M, Maddy E, Irion F, Newchurch M, Liu X P, Wolf W, Flynn L, Labow G, Xiong X Z, Wei J and Zhou L H. 2008. Evaluation of Atmospheric Infrared Sounder ozone profiles and total ozone retrievals with matched ozonesonde measurements, ECMWF ozone data, and Ozone Monitoring Instrument retrievals. Journal of Geophysical Research: Atmospheres, 113(D15): D15308 [DOI: 10.1029/2007JD009317http://dx.doi.org/10.1029/2007JD009317]
Duncan B N, Yoshida Y, Olson J R, Sillman S, Martin R V, Lamsal L, Hu Y T, Pickering K E, Retscher C, Allen D J and Crawford J H. 2010. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmospheric Environment, 44(18): 2213-2223 [DOI: 10.1016/j.atmosenv.2010.03.010http://dx.doi.org/10.1016/j.atmosenv.2010.03.010]
Fan C, Li Y, Guang J, Li Z Q, Elnashar A, Allam M and de Leeuw G. 2020. The impact of the control measures during the COVID-19 outbreak on air pollution in China. Remote Sensing, 12(10): 1613 [DOI: 10.3390/rs12101613http://dx.doi.org/10.3390/rs12101613]
Felder M, Sehnke F and Kaifel A. 2013. Combined ozone retrieval from METOP sensors using META-training of deep neural networks//ESA Living Planet Symposium. Edinburgh: ESA
Gao M, Li Q B, Mao Y H and Randerson J. 2011. Biomass burning impact on surface ozone in the western U.S.//5th International GEOS-Chem (IGC) Meeting. Cambridge, MA: Harvard University
Gaudel A, Cooper O R, Ancellet G, Barret B, Boynard A, Burrows J P, Clerbaux C, Coheur P F, Cuesta J, Cuevas E, Doniki S, Dufour G, Ebojie F, Foret G, Garcia O, Granados-Muñoz M J, Hannigan J W, Hase F, Hassler B, Huang G, Hurtmans D, Jaffe D, Jones N, Kalabokas P, Kerridge B, Kulawik S, Latter B, Leblanc T, Le Flochmoën E, Lin W, Liu J, Liu X, Mahieu E, Mcclure-Begley A, Neu J L, Osman M, Palm M, Petetin H, Petropavlovskikh I, Querel R, Rahpoe N, Rozanov A, Schultz M G, Schwab J, Siddans R, Smale D, Steinbacher M, Tanimoto H, Tarasick D W, Thouret V, Thompson A M, Trickl T, Weatherhead E, Wespes C, Worden H M, Vigouroux C, Xu X, Zeng G and Ziemke J. 2018. Tropospheric Ozone Assessment Report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa: Science of the Anthropocene, 6: 39 [DOI: 10.1525/elementa.291http://dx.doi.org/10.1525/elementa.291]
Glumb R J, Jordan D C and Mantica P. 2002. Development of the Crosstrack Infrared Sounder (CrIS) sensor design//Proceedings Volume 4486, Infrared Spaceborne Remote Sensing IX. San Diego, CA: SPIE: 411-424 [DOI: 10.1117/12.455124http://dx.doi.org/10.1117/12.455124]
Hong H, Lee H, Kim J and Lee Y G. 2014. First comparison of OMI-DOAS total ozone using ground-based observations at a megacity site in East Asia: causes of discrepancy and improvement in OMI-DOAS total ozone during summer. Journal of Geophysical Research: Atmospheres, 119(16): 10058-10067 [DOI: 10.1002/2014JD021829http://dx.doi.org/10.1002/2014JD021829]
Huang F X, Huang Y, Flynn L E, Wang W H, Cao D J and Wang S R. 2013. Radiometric calibration of the solar backscatter ultraviolet sounder and validation of ozone profile retrievals. Advances in Met S&T, 3(4): 108-115
黄富祥, 黄煜, Flynn L E, 王维和, 曹冬杰, 王淑荣. 2013. 紫外臭氧垂直探测仪(SBUS)辐射定标和反演臭氧垂直廓线验证. 气象科技进展, 3(4): 108-115 [DOI: 10.3969/j.issn.2095-1973.2013.04.011http://dx.doi.org/10.3969/j.issn.2095-1973.2013.04.011]
Huang F X, Zhao M X, Yang C J and Dong C H. 2008. Ozone profile retrievals from FY-3 and validation. Progress in Natural Science, 18(10): 1136-1142
黄富祥, 赵明现, 杨昌军, 董超华. 2008. 风云三号卫星紫外臭氧垂直廓线反演算法及对比反演试验. 自然科学进展, 18(10): 1136-1142 [DOI: 10.3321/j.issn:1002-008X.2008.10.007http://dx.doi.org/10.3321/j.issn:1002-008X.2008.10.007]
Jiang F, Wang W H, Wang Y M and Wang Y J. 2012. Calibration in-orbit and retrieval result study of FY-3 Total Ozone Unit (TOU). Chinese Journal of Geophysics, 55(3): 760-767
江芳, 王维和, 王咏梅, 王英鉴. 2012. FY-3气象卫星紫外臭氧总量探测仪辐亮度在轨定标与反演结果分析. 地球物理学报, 55(3): 760-767 [DOI: 10.6038/j.issn.0001-5733.2012.03.005http://dx.doi.org/10.6038/j.issn.0001-5733.2012.03.005]
Jin X M, Fiore A M, Murray L T, Valin L C, Lamsal L N, Duncan B, Boersma K F, De Smedt I, Abad G G, Chance K and Tonnesen G S. 2017. Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends. Journal of Geophysical Research: Atmospheres, 122(19): 10439-10461 [DOI: 10.1002/2017JD026720http://dx.doi.org/10.1002/2017JD026720]
Jin X M and Holloway T. 2015. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 120(14): 7229-7246 [DOI: 10.1002/2015JD023250http://dx.doi.org/10.1002/2015JD023250]
Jing W Q, Wang Y G, Cui Y Y, Cai Q F and Lan W R. 2019. Assimilation of near space ozone data from SABER and MLS observations into the whole atmosphere community climate model and data assimilation research test-bed. Chinese Journal of Atmospheric Sciences, 43(2): 233-250 [DOI: 10.3878/j.issn.1006-9895.1803.17184http://dx.doi.org/10.3878/j.issn.1006-9895.1803.17184]
Kim S. 2015. Particulate Matter and Ozone: Remote Sensing and Source Attribution. Cambridge, MA: Harvard University
Knowland K E, Ott L E, Duncan B N and Wargan K. 2017. Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis. Geophysical Research Letters, 44(20): 10691-10701 [DOI: 10.1002/2017GL074532http://dx.doi.org/10.1002/2017GL074532]
Langford A O, Pierce R B and Schultz P J. 2015a. Stratospheric intrusions, the Santa Ana winds, and wildland fires in southern California. Geophysical Research Letters, 42(14): 6091-6097 [DOI: 10.1002/2015GL064964http://dx.doi.org/10.1002/2015GL064964]
Langford A O, Senff C J, Alvarez R J II, Brioude J, Cooper O R, Holloway J S, Lin M Y, Marchbanks R D, Pierce R B, Sandberg S P, Weickmann A M and Williams E J. 2015b. An overview of the 2013 Las Vegas Ozone Study (LVOS): impact of stratospheric intrusions and long-range transport on surface air quality. Atmospheric Environment, 109: 305-322 [DOI: 10.1016/j.atmosenv.2014.08.040http://dx.doi.org/10.1016/j.atmosenv.2014.08.040]
Li R, Cui L L, Fu H B, Li J L, Zhao Y L and Chen J M. 2020. Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island. Journal of Cleaner Production, 244: 118773 [DOI: 10.1016/j.jclepro.2019.118773http://dx.doi.org/10.1016/j.jclepro.2019.118773]
Li Y F. 2020. Remote Sensing-Based Estimating Ground-Level O3 Concentrations in China Using Gradient Boosting Regressor Tree. Xuzhou: China University of Mining and Technology
李一蜚. 2020. 基于梯度提升回归树的中国近地面O3浓度遥感估算. 徐州: 中国矿业大学
Lin M Y, Fiore A M, Cooper O R, Horowitz L W, Langford A O, Levy H II, Johnson B J, Naik V, Oltmans S J and Senff C J. 2012a. Springtime high surface ozone events over the western United States: quantifying the role of stratospheric intrusions. Journal of Geophysical Research: Atmospheres, 117(D21): D00V22 [DOI: 10.1029/2012JD018151http://dx.doi.org/10.1029/2012JD018151]
Lin M Y, Fiore A M, Horowitz L W, Cooper O R, Naik V, Holloway J, Johnson B J, Middlebrook A M, Oltmans S J, Pollack I B, Ryerson T B, Warner J X, Wiedinmyer C, Wilson J and Wyman B. 2012b. Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research: Atmospheres, 117(D21): D00V07 [DOI: 10.1029/2011JD016961http://dx.doi.org/10.1029/2011JD016961]
Liu C. 2018. An algorithm for the retrieval of ozone profiles from satellite measurements. China, CN201810259400.2
刘诚. 2018. 一种卫星遥感大气臭氧廓线反演算法. 中国, CN201810259400.2
Liu H R, Liu C, Xie Z Q, Li Y, Huang X, Wang S S, Xu J and Xie P H. 2016. A paradox for air pollution controlling in China revealed by “APEC Blue” and “Parade Blue”. Scientific Reports, 6(1): 34408 [DOI: 10.1038/srep34408http://dx.doi.org/10.1038/srep34408]
Liu J G, Liu W Q and Lu Y H. 2003. Ozone profile retrieval algorithm from satellite data//The first International Symposium on Environmental Remote Sensing Application Technology. Lijiang: [s.n.]: 170-175
刘建国, 刘文清, 陆亦怀. 2003. 大气臭氧廓线的卫星数据反演方法//第一届环境遥感应用技术国际研讨会论文集. 丽江: [s.n.]: 170-175
Liu N W. 2019. Seasonal-Spatial Variations of Surface Ozone over China and the Influence of Long Range Transport. Beijing: Chinese Academy of Meteorological Sciences
刘宁微. 2019. 中国区域近地面臭氧时空分布变化及远距离输送影响研究. 北京: 中国气象科学研究院
Ma M L. 2020. Temporal and spatial analysis of tropospheric ozone, simulation of influencing factors and surface ozone estimation. Acta Geodaetica et Cartographica Sinica, 49(11): 1507
马明亮. 2020. 对流层臭氧时空分析影响因素研究及近地面臭氧估算. 测绘学报, 49(11): 1507 [DOI: 10.11947/j.AGCS.2020.20190438http://dx.doi.org/10.11947/j.AGCS.2020.20190438]
Ma P F, Chen L F, Wang Z T, Zhao S H, Li Q, Tao M H and Wang Z F. 2016. Ozone profile retrievals from the cross-track infrared sounder. IEEE Transactions on Geoscience and Remote Sensing, 54(7): 3985-3994 [DOI: 10.1109/TGRS.2016.2532353http://dx.doi.org/10.1109/TGRS.2016.2532353]
Martin R V, Fiore A M and Van Donkelaar A. 2004. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophysical Research Letters, 31(6): L06120 [DOI: 10. 1029/2004GL019416http://dx.doi.org/10.1029/2004GL019416]
McPeters R, Frith S, Kramarova N, Ziemke J and Labow G. 2019. Trend quality ozone from NPP OMPS: the version 2 processing. Atmospheric Measurement Techniques, 12(2): 977-985 [DOI: 10.5194/amt-12-977-2019http://dx.doi.org/10.5194/amt-12-977-2019]
Mo Y Q, Li Q, Karimian H, Zhang S T, Kong X Y, Fang S W and Tang B Y. 2021. Daily spatiotemporal prediction of surface ozone at the national level in China: a improvement of CAMS ozone product. Atmospheric Pollution Research, 12(1): 391-402 [DOI: 10.1016/j.apr.2020.09.020http://dx.doi.org/10.1016/j.apr.2020.09.020]
Müller M D, Kaifel A K, Weber M, Tellmann S, Burrows J P and Loyola D. 2003. Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)). Journal of Geophysical Research: Atmospheres, 108(D16): 4497 [DOI: 10.1029/2002JD002784http://dx.doi.org/10.1029/2002JD002784]
Nassar R, Logan J A, Worden H M, Megretskaia I A, Bowman K W, Osterman G B, Thompson A M, Tarasick D W, Austin S, Claude H, Dubey M K, Hocking W K, Johnson B J, Joseph E, Merrill J, Morris G A, Newchurch M, Oltmans S J, Posny F, Schmidlin F J, Vömel H, Whiteman D N and Witte J C. 2008. Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements. Journal of Geophysical Research: Atmospheres, 113(D15): D15S17 [DOI: 10.1029/2007JD008819http://dx.doi.org/10.1029/2007JD008819]
Natraj V, Liu X, Kulawik S, Chance K, Chatfield R, Edwards D P, Eldering A, Francis G, Kurosu T, Pickering K, Spurr R and Worden H. 2011. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements. Atmospheric Environment, 45(39): 7151-7165 [DOI: 10.1016/j.atmosenv.2011.09.014http://dx.doi.org/10.1016/j.atmosenv.2011.09.014]
Newchurch M J, Kuang S, Leblanc T, Alvarez R J II, Langford A O, Senff C J, Burris J F, McGee T J, Sullivan J T, DeYoung R J, Al-Saadi J, Johnson M and Pszenny A. 2016. TOLNet – a tropospheric ozone lidar profiling network for satellite continuity and process studies. EPJ Web of Conferences, 119: 20001 [DOI: 10.1051/epjconf/201611920001http://dx.doi.org/10.1051/epjconf/201611920001]
Peng X L. 2017. Spatio-temporal Reconstruction for Globally Remotely Sensed Total Ozone Production. Wuhan: Wuhan University
彭晓琳. 2017. 全球卫星臭氧产品的时空重建研究. 武汉: 武汉大学
Peralta O, Ortínez-Alvarez A, Torres-Jardón R, Suárez-Lastra M, Castro T and Ruíz-Suárez L G. 2021. Ozone over Mexico City during the COVID-19 pandemic. Science of the Total Environment, 761: 143183 [DOI: 10.1016/j.scitotenv.2020.143183http://dx.doi.org/10.1016/j.scitotenv.2020.143183]
Petropavlovskikh I, Bhartia P K and DeLuisi J. 2005. New Umkehr ozone profile retrieval algorithm optimized for climatological studies. Geophysical Research Letters, 32(16): L16808 [DOI: 10.1029/2005GL023323http://dx.doi.org/10.1029/2005GL023323]
Quesada-Ruiz S, Attié J L, Lahoz W A, Abida R, Ricaud P, El Amraoui L, Zbinden R, Piacentini A, Joly M, Eskes H, Segers A, Curier L, de Haan J, Kujanpää J, Oude Nijhuis A C P, Tamminen J, Timmermans R and Veefkind P. 2020. Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition. Atmospheric Measurement Techniques, 13(1): 131-152 [DOI: 10.5194/amt-13-131-2020http://dx.doi.org/10.5194/amt-13-131-2020]
Sillman S and Samson P J. 1995. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. Journal of Geophysical Research: Atmospheres, 100(D6): 11497-11508 [DOI: 10.1029/94JD02146http://dx.doi.org/10.1029/94JD02146]
Su W J, Liu C, Chan K L, Hu Q H, Liu H R, Ji X G, Zhu Y Z, Liu T, Zhang C X, Chen Y J and Liu J G. 2020. An improved TROPOMI tropospheric HCHO retrieval over China. Atmospheric Measurement Techniques, 13(11): 6271-6292 [DOI: 10.5194/amt-13-6271-2020http://dx.doi.org/10.5194/amt-13-6271-2020]
Su W J, Liu C, Hu Q H, Fan G Q, Xie Z Q, Huang X, Zhang T S, Chen Z Y, Dong Y S, Ji X G, Liu H R, Wang Z and Liu J G. 2017. Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou. Scientific Reports, 7(1): 17368 [DOI: 10.1038/s41598-017-17646-xhttp://dx.doi.org/10.1038/s41598-017-17646-x]
van Peet J C A, van der A R J, Tuinder O N E, Wolfram E, Salvador J, Levelt P F and Kelder H M. 2014. Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV-VIS. Atmospheric Measurement Techniques, 7(3): 859-876 [DOI: 10.5194/amt-7-859-2014http://dx.doi.org/10.5194/amt-7-859-2014]
Wallington T J, Seinfeld J H and Barker J R. 2019. 100 years of progress in gas-phase atmospheric chemistry research. Zhang D Y, Tian X Y, trans. Advances in Meteorological Science and Technology, 9(S1): 144-158
提摩太·约翰·沃林顿, Seinfeld J H, Barker J R, 张定媛, 田晓阳. 2019. 第10章 气相大气化学研究的百年进展. 张定媛, 田晓阳, 译. 气象科技进展, 9(S1): 144-158 [DOI: 10.3969/j.issn.2095-1973.2019.z1.011http://dx.doi.org/10.3969/j.issn.2095-1973.2019.z1.011]
Wang P, Wang M, Feng X Z, Zhao M X and Du X L. 2020. The implementation of stratospheric ozone intrusion exceptional event in the United States and its implication for ozone control in China. Environment and Sustainable Development, 45(3): 149-154
王鹏, 王敏, 冯相昭, 赵梦雪, 杜晓林. 2020. “平流层臭氧侵入例外事件” 美国做法及其对中国臭氧污染防控的启示. 环境与可持续发展, 45(3): 149-154 [DOI: 10.19758/j.cnki.issn1673-288x.202003149http://dx.doi.org/10.19758/j.cnki.issn1673-288x.202003149]
Wang Q, Huang F X and Xia X Q. 2019. Reversal trends of atmospheric temperature in spring over the Tibetan Plateau after 2008 and possible links with total ozone trends. Climate Change Research, 15(4): 385-394
王晴, 黄富祥, 夏学齐. 2019. 2008年以来青藏高原春季大气温度逆转趋势及其与臭氧总量变化之间的可能联系. 气候变化研究进展, 15(4): 385-394 [DOI: 10.12006/j.issn.1673-1719.2019.061http://dx.doi.org/10.12006/j.issn.1673-1719.2019.061]
Wang Y N. 2018. Remote Sensing Estimation Model of Tropospheric Ozone over China. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences)
王宛楠. 2018. 中国区域对流层臭氧卫星遥感估算模型研究. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所)
Wang Y P, Li X Y, Chen L F, Zhang Y, Zou M M, Zhang H and Zhu S Y. 2016. Overview of infrared limb sounding. Journal of Remote Sensing, 20(4): 513-527
王雅鹏, 李小英, 陈良富, 张莹, 邹铭敏, 张晗, 朱松岩. 2016. 红外临边探测发展现状. 遥感学报, 20(4): 513-527 [DOI: 10.11834/jrs.20165302http://dx.doi.org/10.11834/jrs.20165302]
Wang Y P, Tao J H, Yu C, Cheng L X, Gu J B, Fan M, Zhang Y, Husi L T and Chen L F. 2020. Overview of formaldehyde and glyoxal monitoring and application based on satellite remote sensing. Ecology and Environmental Monitoring of Three Gorges, 5(3): 43-52
王雅鹏, 陶金花, 余超, 程良晓, 顾坚斌, 范萌, 张莹, 胡斯勒图, 陈良富. 2020. 基于卫星遥感的甲醛和乙二醛监测与应用综述. 三峡生态环境监测, 5(3): 43-52 [DOI: 10.19478/j.cnki.2096-2347.2020.03.05http://dx.doi.org/10.19478/j.cnki.2096-2347.2020.03.05]
Wang Z J, Chen S B, Yang C Y and Jin L H. 2011. A method for retrieving vertical ozone profiles from limb scattered measurements. Acta Meteorologica Sinica, 25(5): 659-668 [DOI: 10.1007/s13351-011-0509-6http://dx.doi.org/10.1007/s13351-011-0509-6]
Wargan K, Pawson S, Coy L and Conaty A. 2020. Ozone data from ultraviolet satellite measurements in GEOS products. GMAO Research Brief
Worden H M, Logan J A, Worden J R, et al. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: Methods and initial results. Journal of Geophysical Research, J. Geophys. Res, 112, D03309, 2007, [DOI: 10.1029/2006JD007258http://dx.doi.org/10.1029/2006JD007258]
Xia C Z, Liu C, Cai Z N, Duan X N, Hu Q H, Zhao F, Liu H R, Ji X H, Zhang C X and Liu Y. 2021b. Improved anthropogenic SO2 retrieval from high-spatial-resolution satellite and its application during the COVID-19 pandemic. Environmental Science and Technology, 55(17): 11538-11548 [DOI: 10.1021/acs.est.1c01970http://dx.doi.org/10.1021/acs.est.1c01970]
Xia C Z, Liu C, Cai Z N, Duan X N, Zhao F, Liu H R, Ji X G and Liu J G. 2020. Evaluation of the accuracy of the Sentinel-5 Precursor operational SO2 products over China. Chinese Science Bulletin, 65(20): 2106-2111
夏丛紫, 刘诚, 蔡兆男, 段晓男, 赵飞, 刘浩然, 季祥光, 刘建国. 2020. 哨兵5号欧洲业务二氧化硫产品在中国的准确性评估. 科学通报, 65(20): 2106-2111 [DOI: 10.1360/TB-2019-0772http://dx.doi.org/10.1360/TB-2019-0772]
Xia C Z, Liu C, Cai Z N, Zhao F, Su W J, Zhang C X and Liu Y. 2021a. First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GeoFen-5 satellite. Science Bulletin, 66(10): 969-973
Yang J M. 2009. Vertical distribution of stratospheric ozone over China. Atmospheric and Oceanic Science Letters, 2(1): 51-56 [DOI: 10.1080/16742834.2009.11446777http://dx.doi.org/10.1080/16742834.2009.11446777]
Zawada D J, Rieger L A, Bourassa A E and Degenstein D A. 2018. Tomographic retrievals of ozone with the OMPS Limb Profiler: algorithm description and preliminary results. Atmospheric Measurement Techniques, 11(4): 2375-2393 [DOI: 10.5194/amt-11-2375-2018http://dx.doi.org/10.5194/amt-11-2375-2018]
Zhang C X, Liu C, Chan K L, Hu Q H, Liu H R, Li B, Xing C Z, Tan W, Zhou H J, Si F Q and Liu J G. 2020. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light: Science and Applications, 9(1): 66 [DOI: 10.1038/s41377-020-0306-zhttp://dx.doi.org/10.1038/s41377-020-0306-z]
Zhang C X, Liu C, Hu Q H, Cai Z N, Su W J, Xia C Z, Zhu Y Z, Wang S W and Liu J G. 2019. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017. Light: Science and Applications, 8(1): 100 [DOI: 10.1038/s41377-019-0210-6http://dx.doi.org/10.1038/s41377-019-0210-6]
Zhang C X, Liu C, Wang Y, Si F Q, Zhou H J, Zhao M J, Su W J, Zhang W Q, Chan K L, Liu X, Xie P H, Liu J G and Wagner T. 2018. Preflight Evaluation of the performance of the Chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3323-3332 [DOI: 10.1109/TGRS.2018.2798038http://dx.doi.org/10.1109/TGRS.2018.2798038]
Zhang L, Ding M H, Bian L G and Li J. 2020. Validation of AIRS temperature and ozone profiles over Antarctica. Chinese Journal of Geophysics, 63(4): 1318-1331
张雷, 丁明虎, 卞林根, 李建. 2020. AIRS卫星温度和臭氧廓线在南极的验证分析. 地球物理学报, 63(4): 1318-1331 [DOI: 10.6038/cjg2020M0698http://dx.doi.org/10.6038/cjg2020M0698]
Zhang Y, Gao Y, Zhu S Y and Zhang G X. 2014. Variation of total ozone over China for 30 years analyzed by multi-source satellite remote sensing data. Journal of Geo-Information Science, 16(6): 971-978
张莹, 高玚, 祝善友, 张桂欣. 2014. 近30a中国上空臭氧总量时空变化遥感监测分析. 地球信息科学学报, 16(6): 971-978 [DOI: 10.3724/SP.J.1047.2014.00971http://dx.doi.org/10.3724/SP.J.1047.2014.00971]
Zhang Y, Wang W H and Zhang X Y. 2015. Distribution and variation of atmospheric total column ozone based on satellite remote sensing data. Science and Technology Review, 33(17): 23-29
张艳, 王维和, 张兴赢. 2015. 卫星遥感监测大气臭氧总量分布和变化. 科技导报, 33(17): 23-29 [DOI: 10.3981/j.issn.1000-7857.2015.17.002http://dx.doi.org/10.3981/j.issn.1000-7857.2015.17.002]
Zhao F, Liu C, Cai Z N, Liu X, Bak J, Kim J, Hu Q H, Xia C Z, Zhang C X, Sun Y W, Wang W and Liu J G. 2021. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Science of the Total Environment, 764: 142886 [DOI: 10.1016/j.scitotenv.2020.142886http://dx.doi.org/10.1016/j.scitotenv.2020.142886]
Zhao F Q, Wang W H, Deng X B, Yang Y and Peng Y J. 2017. Relationship between absorbing aerosol index and total column ozone. Journal of Remote Sensing, 21(4): 500-508
赵富强, 王维和, 邓小波, 杨阳, 彭永杰. 2017. 大气臭氧总量与吸收性气溶胶指数的关系. 遥感学报, 21(4): 500-508 [DOI: 10.11834/jrs.20176324http://dx.doi.org/10.11834/jrs.20176324]
Zheng X D, Tian H M and Liu M Q. 2017. Residual ozone and ozonesonde correction factor over different sites of China. Chinese Journal of Space Science, 37(5): 564-573
郑向东, 田宏民, 刘梦琪. 2017. 中国不同地区剩余臭氧及臭氧探空订正因子. 空间科学学报, 37(5): 564-573 [DOI: 10.11728/cjss2017.05.564http://dx.doi.org/10.11728/cjss2017.05.564]
Zoogman P, Jacob D J, Chance K, Worden H M, Edwards D P and Zhang L. 2014. Improved monitoring of surface ozone by joint assimilation of geostationary satellite observations of ozone and CO. Atmospheric Environment, 84: 254-261 [DOI: 10.1016/j.atmosenv.2013.11.048http://dx.doi.org/10.1016/j.atmosenv.2013.11.048]
Zoogman P, Jacob D J, Chance K, Zhang L, Le Sager P, Fiore A M, Eldering A, Liu X, Natraj V and Kulawik S S. 2011. Ozone air quality measurement requirements for a geostationary satellite mission. Atmospheric Environment, 45(39): 7143-7150 [DOI: 10.1016/j.atmosenv.2011.05.058http://dx.doi.org/10.1016/j.atmosenv.2011.05.058]
相关作者
相关机构