COVID-19疫情初期美国城市夜间灯光时空变化分析
Spatio-temporal variations of night-time lights at early stages of the COVID-19 epidemic in the United States
- 2022年26卷第9期 页码:1777-1788
纸质出版日期: 2022-09-07
DOI: 10.11834/jrs.20221645
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-09-07 ,
扫 描 看 全 文
许刚,王传立,孟庆祥,修田雨,李熙.2022.COVID-19疫情初期美国城市夜间灯光时空变化分析.遥感学报,26(9): 1777-1788
Xu G,Wang C L,Meng Q X,Xiu T Y and Li X. 2022. Spatio-temporal variations of night-time lights at early stages of the COVID-19 epidemic in the United States. National Remote Sensing Bulletin, 26(9):1777-1788
为应对COVID-19疫情而采取的非药物干预措施显著改变了城市社会经济活动,但其变化特征和时空模式仍不明确。本研究以美国20个大城市为例,获取NPP-VIIRS月度合成数据分析2020年2—4月COVID-19疫情初期城市夜光亮度变化的空间格局、衰减特征和用地类型差异。结果表明,疫情防控措施导致美国城市夜光亮度普遍变暗,平均降低5%—8%。夜光变化呈现明显“中心—边缘”空间结构特征,夜光降低幅度随到城市中心距离增加而减小。不同用地类型夜光变化幅度存在差异,纽约居住用地和航空设施用地夜光亮度降低幅度最明显,分别下降12%和11%。芝加哥各类用地夜光亮度普遍下降20%左右,除体育设施用地外,其他各类用地夜光亮度一个月后有所恢复。夜光遥感有效反映了城市社会经济活动变化,在监测评估突发事件社会影响方面具有重要应用。
The COVID-19 epidemic swept the world and continues to spread. Without effective medical treatments and vaccine during the early stage of the pandemic
local governments in various countries had to lock down cities and adopt non-pharmaceutical interventions (NPIs)
such as the stay-at-home order and social distancing. The NPIs against the COVID-19 epidemic have significantly changed the socio-economic activities in cities. However
the characteristics and patterns of urban socio-economic activities under this influence are still unclear. Given the development of earth observation technologies
large-scale changes in socioeconomic activities can be captured by satellites through remotely sensed Night-Time Lights (NTLs). In this study
we selected 20 major cities in the United States
including Atlanta
Chicago
Dallas
Denver
Detroit
Houston
Kansas City
Los Angeles
Miami
Minneapolis
New York
Orlando
Philadelphia
Phoenix
Pittsburgh
Salt Lake City
San Francisco
Seattle
Saint Louis
Washington D.C.
to analyze the spatio-temporal variations of NTLs caused by the lockdown of cities. The first round of the COVID-19 epidemic occurred in the United States in mid-March 2020. Since March 2020
American cities have successively issued stay-at-home orders
but differences in the time and strictness of policy implementation were noted. Large cities have higher population density and intensity of social activities
so they are more susceptible to infectious diseases. The diversity of lockdown dates and the strictness of lockdowns in the cities in the United States are conducive to investigating the spatio-temporal variations of NTL. We acquired monthly averaged NTLS products of February
March
and April 2020
which were from Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform NPP. We further analyzed the spatial pattern
distance decay
and disparities in land use types of changes in the NTLs. Results show that the NTLs generally dimmed by 5%—8% in U.S. cities because of the lockdown of cities. In six cities
the luminous brightness dropped by more than 10%: Chicago
Dallas
Denver
Detroit
Minneapolis
and St. Louis. Among them
Minneapolis showed the largest decrease in luminous brightness
with a decrease of approximately 40% in March. The spatial change of the NTLs shows an obvious “core-periphery” pattern
indicating that the reduction of the NTLs declined with the distance from the city center
mainly because the central area of the city is a concentrated commercial area. After the closure of the city
commercial activities dropped significantly
resulting in an obvious reduction in NTLs around the city centers. The reduction of the NTLs varied among the diverse urban land use types. In New York
the NTL decreased the most on land for residence and aviation facilities by 12% and 11%
respectively. In Chicago
the NTL generally decreased by 20% in all types of urban land
and NTL recovered after one month of the lockdown of the cities in other urban lands
except the sports facilities land. This study only analyzed the spatio-temporal changes of NTLs. In the future
the results of this study can be combined with multi-source data to explain the driving force of NTL changes. Night-time light remote sensing effectively reflects the urban socio-economic dynamics with an important application in monitoring and assessing the socio-economic impacts of emergencies.
夜光遥感新冠疫情NPP-VIIRS时空变化美国
night-time light remote sensingCOVID-19NPP-VIIRSspatio-temporal variationthe United States
Anand A and Kim D H. 2021. Pandemic induced changes in economic activity around African protected areas captured through night-time light data. Remote Sensing, 13(2): 314 [DOI: 10.3390/rs13020314http://dx.doi.org/10.3390/rs13020314]
Bennett M M and Smith L C. 2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sensing of Environment, 192: 176-197 [DOI: 10.1016/j.rse.2017.01.005http://dx.doi.org/10.1016/j.rse.2017.01.005]
Beyer R C M, Franco-Bedoya S and Galdo V. 2021. Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity. World Development, 140: 105287 [DOI: 10.1016/j.worlddev.2020.105287http://dx.doi.org/10.1016/j.worlddev.2020.105287]
Bustamante-Calabria M, Sánchez De Miguel A, Martín-Ruiz S, Ortiz J L, Vílchez J M, Pelegrina A, García A, Zamorano J, Bennie J and Gaston K J. 2021. Effects of the COVID-19 lockdown on urban light emissions: ground and satellite comparison. Remote Sensing, 13(2): 258 [DOI: 10.3390/rs13020258http://dx.doi.org/10.3390/rs13020258]
Chen Z Q. 2017. A Multiscale Analysis on Urban Area and Spatial Structure based on Nighttime Light Data. Shanghai: East China Normal University
陈佐旗. 2017. 基于多源夜间灯光遥感影像的多尺度城市空间形态结构分析. 上海: 华东师范大学
Chen Z Q, Yu B L, Yang C S, Zhou Y Y, Yao S J, Qian X J, Wang C X, Wu B and Wu J P. 2021. An extended time series (2000—2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth System Science Data, 13(3): 889-906 [DOI: 10.5194/essd-13-889-2021http://dx.doi.org/10.5194/essd-13-889-2021]
Diffenbaugh N S, Field C B, Appel E A, Azevedo I L, Baldocchi D D, Burke M, Burney J A, Ciais P, Davis S J, Fiore A M, Fletcher S M, Hertel T W, Horton D E, Hsiang S M, Jackson R B, Jin X M, Levi M, Lobell D B, Mckinley G A, Moore F C, Montgomery A, Nadeau K C, Pataki D E, Randerson J T, Reichstein M, Schnell J L, Seneviratne S I, Singh D, Steiner A L and Wong-Parodi G. 2020. The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 1(9): 470-481 [DOI: 10.1038/s43017-020-0079-1http://dx.doi.org/10.1038/s43017-020-0079-1]
Elvidge C D, Baugh K E, Kihn E A, Kroehl H W, Davis E R and Davis C W. 1997. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. International Journal of Remote Sensing, 18(6): 1373-1379 [DOI: 10.1080/014311697218485http://dx.doi.org/10.1080/014311697218485]
Elvidge C D, Ghosh T, Hsu F C, Zhizhin M and Bazilian M. 2020. The dimming of lights in China during the COVID-19 pandemic. Remote Sensing, 12(17): 2851 [DOI: 10.3390/rs12172851http://dx.doi.org/10.3390/rs12172851]
Ghosh T, Elvidge C D, Hsu F C, Zhizhin M and Bazilian M. 2020. The dimming of lights in India during the COVID-19 pandemic. Remote Sensing, 12(20): 3289 [DOI: 10.3390/rs12203289http://dx.doi.org/10.3390/rs12203289]
Jechow A and Hölker F. 2020. Evidence that reduced air and road traffic decreased artificial night-time skyglow during COVID-19 lockdown in Berlin, Germany. Remote Sensing, 12(20): 3412 [DOI: 10.3390/rs12203412http://dx.doi.org/10.3390/rs12203412]
Jia J S, Lu X, Yuan Y, Xu G, Jia J M and Christakis N A. 2020. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature, 582(7812): 389-394 [DOI: 10.1038/s41586-020-2284-yhttp://dx.doi.org/10.1038/s41586-020-2284-y]
Jiang W, He G J, Peng Y, Wang G Z and Wang M M. 2017. Application potentiality and prospects of nighttime light remote sensing in “the Belt and Road” initiative. Journal of University of Chinese Academy of Sciences, 34(3): 296-303
江威, 何国金, 彭燕, 王桂周, 王猛猛. 2017. 夜光遥感在“一带一路”战略中的应用潜力展望. 中国科学院大学学报, 34(3): 296-303 [DOI: 10.7523/j.issn.2095-6134.2017.03.004http://dx.doi.org/10.7523/j.issn.2095-6134.2017.03.004]
Jiang Y Q, Huang X and Li Z L. 2021. Spatiotemporal patterns of human mobility and its association with land use types during COVID-19 in New York City. ISPRS International Journal of Geo-Information, 10(5): 344 [DOI: 10.3390/ijgi10050344http://dx.doi.org/10.3390/ijgi10050344]
Lan T, Shao G F, Tang L N, Xu Z B, Zhu W and Liu L Y. 2021. Quantifying spatiotemporal changes in human activities induced by COVID-19 pandemic using daily nighttime light data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 2740-2753 [DOI: 10.1109/JSTARS.2021.3060038http://dx.doi.org/10.1109/JSTARS.2021.3060038]
Levin N, Kyba C C M, Zhang Q L, De miguel A S, Román M O, Li X, Portnov B A, Molthan A L, Jechow A, Miller S D, Wang Z S, Shrestha R M and Elvidge C D. 2020. Remote sensing of night lights: a review and an outlook for the future. Remote Sensing of Environment, 237: 111443 [DOI: 10.1016/j.rse.2019.111443http://dx.doi.org/10.1016/j.rse.2019.111443]
Li D R and Li X. 2015. An overview on data mining of nighttime light remote sensing. Acta Geodaetica et Cartographica Sinica, 44(6): 591-601
李德仁, 李熙. 2015. 论夜光遥感数据挖掘. 测绘学报, 44(6): 591-601 [DOI: 10.11947/j.AGCS.2015.20150149http://dx.doi.org/10.11947/j.AGCS.2015.20150149]
Li X, Xu H N, Chen X L and Li C. 2013. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sensing, 5(6): 3057-3081 [DOI: 10.3390/rs5063057http://dx.doi.org/10.3390/rs5063057]
Li X Y, Li X, Fan Z Y, Mi L, Kandakji T, Song Z, Li D R and Song X P. 2022. Civil war hinders crop production and threatens food security in Syria. Nature Food, 3(1): 38-46 [DOI: 10.1038/s43016-021-00432-4http://dx.doi.org/10.1038/s43016-021-00432-4]
Liu B J, Chen Z Q, Yu B L, Yang C S, Qiu B W and Tu Y. 2021. Kinetic energy assessment and similarity analysis of urban development based on NPP-VIIRS nighttime light remote sensing. National Remote Sensing Bulletin, 25(5): 1187-1200
刘冰洁, 陈佐旗, 余柏蒗, 杨成术, 邱炳文, 涂越. 2021. 夜间灯光遥感对城市发展类动能与相似性评估. 遥感学报, 25(5): 1187-1200 [DOI: 10.11834/jrs.20210228http://dx.doi.org/10.11834/jrs.20210228]
Meng Y D, Zhu V and Zhu Y. 2021. Co-distribution of light at night (LAN) and COVID-19 incidence in the United States. BMC Public Health, 21(1): 1509 [DOI: 10.1186/s12889-021-11500-6http://dx.doi.org/10.1186/s12889-021-11500-6]
Pei T, Wang X, Song C, Liu Y X, Huang Q, Shu H, Chen X, Guo S H and Zhou C H. 2021. Review on spatiotemporal analysis and modeling of COVID-19 pandemic. Journal of Geo-information Science, 23(2): 188-210
裴韬, 王席, 宋辞, 刘亚溪, 黄强, 舒华, 陈晓, 郭思慧, 周成虎. 2021. COVID-19疫情时空分析与建模研究进展. 地球信息科学学报, 23(2): 188-210 [DOI: 10.12082/dqxxkx.2021.200434http://dx.doi.org/10.12082/dqxxkx.2021.200434]
Rocha L E C, Thorson A E and Lambiotte R. 2015. The non-linear health consequences of living in larger cities. Journal of Urban Health, 92(5): 785-799 [DOI: 10.1007/s11524-015-9976-xhttp://dx.doi.org/10.1007/s11524-015-9976-x]
Rowe F, Robinson C and Patias N. 2022. Sensing global changes in the local patterns of energy consumption in cities during the early stages of the COVID-19 pandemic. Cities, 129: 103808 [DOI: 10.1016/j.cities.2022.103808http://dx.doi.org/10.1016/j.cities.2022.103808]
Shao Z F, Tang Y, Huang X and Li D R. 2021. Monitoring work resumption of Wuhan in the COVID-19 epidemic using daily nighttime light. Photogrammetric Engineering and Remote Sensing, 87(3): 197-206 [DOI: 10.14358/PERS.87.3.197http://dx.doi.org/10.14358/PERS.87.3.197]
Shi K F, Huang C, Yu B L, Yin B, Huang Y X and Wu J P. 2014. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sensing Letters, 5(4): 358-366 [DOI: 10.1080/2150704X.2014.905728http://dx.doi.org/10.1080/2150704X.2014.905728]
Shu S, Yu B L, Wu J P and Liu H X. 2011. Methods for deriving urban built-up area using night-light data: assessment and application. Remote Sensing Technology and Application, 26(2): 169-176
舒松, 余柏蒗, 吴健平, 刘红星. 2011. 基于夜间灯光数据的城市建成区提取方法评价与应用. 遥感技术与应用, 26(2): 169-176 [DOI: 10.11873/j.issn.1004-0323.2011.2.169http://dx.doi.org/10.11873/j.issn.1004-0323.2011.2.169]
Small C and Sousa D. 2021. Spatiotemporal evolution of COVID-19 infection and detection within night light networks: comparative analysis of USA and China. Applied Network Science, 6: 10 [DOI: 10.1007/s41109-020-00345-4http://dx.doi.org/10.1007/s41109-020-00345-4]
Straka W, Kondragunta S, Wei Z G, Zhang H, Miller S D and Watts A. 2020. Examining the economic and environmental impacts of COVID-19 using earth observation data. Remote Sensing, 13(1): 5 [DOI: 10.3390/rs13010005http://dx.doi.org/10.3390/rs13010005]
Tao J H, Fan M, Gu J B and Chen L F. 2020. Satellite observations of the return-to-work over China during the period of COVID-19. Journal of Remote Sensing, 24(7): 824-836
陶金花, 范萌, 顾坚斌, 陈良富. 2020. 新冠病毒疫情期间复工复产卫星遥感监测. 遥感学报, 24(7): 824-836 [DOI: 10.11834/jrs.20200098http://dx.doi.org/10.11834/jrs.20200098]
Tian H Y, Liu Y H, Li Y D, Wu C H, Chen B, Kraemer M U G, Li B Y, Cai J, Xu B, Yang Q Q, Wang B, Yang P, Cui Y J, Song Y M, Zheng P, Wang Q Y, Bjornstad O N, Yang R F, Grenfell B T, Pybus O G and Dye C. 2020. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 368(6491): 638-642 [DOI: 10.1126/science.abb6105http://dx.doi.org/10.1126/science.abb6105]
Wang T Y, Zhang G, Li P R, Li F T and Guo X Y. 2018. Analysis on the driving factors of urban expansion policy based on DMSP/OLS remote sensing image. Acta Geodaetica et Cartographica Sinica, 47(11): 1466-1473
汪韬阳, 张过, 李沛然, 厉芳婷, 郭雪瑶. 2018. 基于DMSP/OLS夜光遥感影像的城市扩张政策驱动因素分析. 测绘学报, 47(11): 1466-1473 [DOI: 10.11947/j.AGCS.2018.20170353http://dx.doi.org/10.11947/j.AGCS.2018.20170353]
Xie Y H, Weng Q H and Fu P. 2019. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013—2017. Remote Sensing of Environment, 225: 160-174 [DOI: 10.1016/j.rse.2019.03.008http://dx.doi.org/10.1016/j.rse.2019.03.008]
Xu G, Wang W W, Lu D D, Lu B B, Qin K and Jiao L M. 2022. Geographically varying relationships between population flows from Wuhan and COVID-19 cases in Chinese cities. Geo-Spatial Information Science, 25(2): 121-131. [DOI: 10.1080/10095020.2021.1977093http://dx.doi.org/10.1080/10095020.2021.1977093]
Xu G, Xiu T Y, Li X, Liang X L and Jiao L M. 2021. Lockdown induced night-time light dynamics during the COVID-19 epidemic in global megacities. International Journal of Applied Earth Observation and Geoinformation, 102: 102421 [DOI: 10.1016/j.jag.2021.102421http://dx.doi.org/10.1016/j.jag.2021.102421]
Yin R Y, He G J, Jiang W, Peng Y, Zhang Z M, Li M X and Gong C J. 2021. Night-time light imagery reveals China's city activity during the COVID-19 pandemic period in early 2020. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 5111-5122 [DOI: 10.1109/JSTARS.2021.3078237http://dx.doi.org/10.1109/JSTARS.2021.3078237]
Yu B L, Wang C X, Gong W K, Chen Z Q, Shi K F, Wu B, Hong Y C, Li Q X and Wu J P. 2021. Nighttime light remote sensing and urban studies: data, methods, applications, and prospects. National Remote Sensing Bulletin, 25(1): 342-364
余柏蒗, 王丛笑, 宫文康, 陈佐旗, 施开放, 吴宾, 洪宇辰, 李乔玄, 吴健平. 2021. 夜间灯光遥感与城市问题研究: 数据、方法、应用和展望. 遥感学报, 25(1): 342-364 [DOI: 10.11834/jrs.20211018http://dx.doi.org/10.11834/jrs.20211018]
Zhao N Z, Cao G F, Zhang W, Samson E L and Chen Y. 2020. Remote sensing and social sensing for socioeconomic systems: a comparison study between nighttime lights and location-based social media at the 500 m spatial resolution. International Journal of Applied Earth Observation and Geoinformation, 87: 102058 [DOI: 10.1016/j.jag.2020.102058http://dx.doi.org/10.1016/j.jag.2020.102058]
Zheng S, Fu Y Y, Sun Y, Zhang C J, Wang Y S and Lichtfouse E. 2021. High resolution mapping of nighttime light and air pollutants during the COVID-19 lockdown in Wuhan. Environmental Chemistry Letters, 19(4): 3477-3485 [DOI: 10.1007/s10311-021-01222-xhttp://dx.doi.org/10.1007/s10311-021-01222-x]
Zhou C H, Pei T, Du Y Y, Chen J, Xu J, Wang J E, Zhang G Y, Su F Z, Song C, Yi J W, Ma T, Ge Y, Zhang A and Jiang L L. 2020. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy. Bulletin of the Chinese Academy of Sciences, 35(2): 200-203
周成虎, 裴韬, 杜云艳, 陈洁, 许珺, 王姣娥, 张国义, 苏奋振, 宋辞, 易嘉伟, 马廷, 葛咏, 张岸, 姜莉莉. 2020. 新冠肺炎疫情大数据分析与区域防控政策建议. 中国科学院院刊, 35(2): 200-203 [DOI: 10.16418/j.issn.1000-3045.20200209001http://dx.doi.org/10.16418/j.issn.1000-3045.20200209001]
相关作者
相关机构