HY-1C卫星CZI影像卤虫条带提取研究——以艾比湖为例
Extraction of
Artemia slicks from HY-1C CZI images: Taking Ebinur Lake as an example- 2023年27卷第1期 页码:104-115
纸质出版日期: 2023-01-07
DOI: 10.11834/jrs.20221659
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-01-07 ,
扫 描 看 全 文
王欣,刘建强,丁静,田婧怡,孙相晗,田礼乔.2023.HY-1C卫星CZI影像卤虫条带提取研究——以艾比湖为例.遥感学报,27(1): 104-115
Wang X,Liu J Q,Ding J,Tian J Y,Sun X H and Tian L Q. 2023. Extraction of Artemia slicks from HY-1C CZI images: Taking Ebinur Lake as an example. National Remote Sensing Bulletin, 27(1):104-115
基于HY-1C卫星海岸带成像仪CZI(Coastal Zone Imager)影像提取卤虫条带,对利用自主遥感数据开展生物资源监测与指导捕捞利用具有重要意义。本文以艾比湖为例,分析了HY-1C卫星CZI影像与Landsat-8卫星OLI数据的卤虫—水体端元光谱特征及差异;结合滑动窗口裁剪和光谱匹配因子SBAF(Spectral Band Adjustment Factors)模拟构建了有效样本量为837的卤虫—水体数据集;使用深度为5层的U型全卷积神经网络U-Net(U-Shaped Fully Convolutional Neural Network)算法提取卤虫条带并进行了评估与应用。与支持向量机法、最大似然分类法、归一化水体指数法相比,U-Net算法效率高、鲁棒性更好,卤虫条带的提取精确率和F1分数分别为92.02%和90.55%,比其他方法高出约11%—23%,即使面对复杂水体背景干扰,提取错误率也仅有3.3%;由2019年—2021年10景CZI影像的提取结果可知,研究期间卤虫条带的最大最小面积之比约为5.8,变化剧烈且与水体面积存在一定关联,但决定卤虫条带分布与面积的更多影响要素仍需进一步研究。未来,将建立多源、多分类、大样本量的遥感数据集,发展泛化能力更强的提取算法,实现长时序、大范围的盐湖卤虫条带时空规律分析。
Artemia
is a kind of small crustacean that lives in high salinity water
which can be used as an excellent fishery feed and an important component of carbon flux and biological chain in salt lakes. Because of its nonnegligible ecological and economic value
it is of great significance to develop a high-precision extraction method of
Artemia
based on remote sensing data for biological resource monitoring and reasonable fishing. Taking Ebinur Lake as an example
this paper proposed an automatic method to extract
Artemia
based on the HY-1C Coastal Zone Imager (CZI) images and deep learning technology. Firstly
the spectral characteristics of HY-1C CZI and Landsat-8 OLI sensors in the
Artemia
endmember were analyzed and the Spectral Band Adjustment Factors (SBAF) were used to eliminate the response differences between the two sensors to construct the
Artemia
-water dataset containing 837 effective samples of 64×64 size. Secondly
70% of the dataset was used to train the U-Shaped Fully Convolutional Neural Network (U-Net) with a depth of 5
and the remaining 20% and 10% of the data were used to verify and test the algorithm
respectively. The model iterated 6700 times in the training process
which took 35 minutes. During this period
we used the adaptive moment estimation (Adam) optimizer with an initial learning rate of 1×10
-4
and the binary cross entropy as the loss function. The training batch size was set to 4 since the equipment limitation. Whenever the loss value of the verification dataset did not decline within the last 3 epochs
the learning rate was halved. The training would be terminated automatically if it did not decline within the last 10 epochs. Finally
the impact factors and application potential of this method were further analyzed and discussed. The experimental results demonstrated that
compared with the Support Vector Machine (SVM)
the Maximum likelihood Classification (MLC)
and the Normalized Difference Water index (NDWI) algorithms
the extraction Precision and F1 score of U-Net were 92.02% and 90.55%
respectively
which were about 11%—23% higher than other methods. Even in the face of complex water background interference
the proposed method showed better robustness since the extraction error of the U-Net was only 3.3%. In addition
the maximum extraction area of
Artemia
slicks in 10 CZI images from 2019 to 2021 was 9.27 km
2
5.8 times larger than the minimum. So was the water area of Ebinur Lake
which varied sharply between 497.34 km
2
and 330.93 km
2
. The violent difference in
Artemia
extraction may be due to the variations of water area and other natural or human factors such as temperature
wind speed
precipitation
pollution
and overfishing. It is necessary to conduct a profound study on their correlation relationship. Therefore
the future effort still needs to establish further a more representative and inclusive remote sensing dataset of
Artemia
and develop more reliable and practical algorithms to carry out more long time series and large-scale studies in
Artemia
extraction.
HY-1C卫星海岸带成像仪CZI卤虫条带艾比湖U-Net
HY-1C SatelliteCoastal Zone ImagerArtemia slicksEbinur LakeU-Net
Bruce L C and Imberger J. 2009. The role of zooplankton in the ecological succession of plankton and benthic algae across a salinity gradient in the Shark Bay solar salt ponds. Hydrobiologia, 626(1): 111-128 [DOI: 10.1007/s10750-009-9740-xhttp://dx.doi.org/10.1007/s10750-009-9740-x]
Chen Y S, Lin Z H, Zhao X, Wang G and Gu Y F. 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2094-2107 [DOI: 10.1109/JSTARS.2014.2329330http://dx.doi.org/10.1109/JSTARS.2014.2329330]
Garcia-Pineda O, Staples G, Jones C E, Hu C M, Holt B, Kourafalou V, Graettinger G, DiPinto L, Ramirez E, Streett D, Cho J, Swayze G A, Sun S J, Garcia D and Haces-Garcia F. 2020. Classification of oil spill by thicknesses using multiple remote sensors. Remote Sensing of Environment, 236: 111421-111435 [DOI: 10.1016/j.rse.2019.111421http://dx.doi.org/10.1016/j.rse.2019.111421]
Gilchrist B M and Green J. 1960. The pigments of Artemia. Proceedings of the Royal Society B: Biological Sciences, 152(946): 118-136 [DOI: 10.1098/rspb.1960.0028http://dx.doi.org/10.1098/rspb.1960.0028]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE: 770-778 [DOI: 10.48550/arXiv.1512.03385http://dx.doi.org/10.48550/arXiv.1512.03385]
Hill P R, Kumar A, Temimi M and Bull D R. 2020. HABNet: machine learning, remote sensing-based detection of harmful algal blooms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 3229-3239 [DOI: 10.1109/JSTARS.2020.3001445http://dx.doi.org/10.1109/JSTARS.2020.3001445]
Hu C M. 2009. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment, 113(10): 2118-2129 [DOI: 10.1016/j.rse.2009.05.012http://dx.doi.org/10.1016/j.rse.2009.05.012]
Ioffe S and Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift//Proceedings of the 32nd International Conference on Machine Learning. Lille, ACM, 37: 448-456 [DOI: 10.5555/3045118.3045167http://dx.doi.org/10.5555/3045118.3045167]
Kanniah K D, Sheikhi A, Cracknell A P, Goh H C, Tan K P, Ho C S and Rasli F N. 2015. Satellite images for monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia. Remote Sensing, 7(11): 14360-14385 [DOI: 10.3390/rs71114360http://dx.doi.org/10.3390/rs71114360]
Li W, Liu W N, Jia Y P, Liu H Y and Tang Y. 2018. Information extraction of the Ebinur Lake Artemia based on object-oriented method. Remote Sensing for Land and Resources, 30(4): 176-181
李微, 刘伟男, 贾越平, 刘洪洋, 汤勇. 2018. 基于面向对象法艾比湖卤虫信息提取. 国土资源遥感, 30(4): 176-181 [DOI: 10.6046/gtzyyg.2018.04.26http://dx.doi.org/10.6046/gtzyyg.2018.04.26]
Liang C, Liu L, Liu J Q, Zou B, Zou Y R and Cui S X. 2020. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data. Haiyangxuebao, 42(4): 104-112
梁超, 刘利, 刘建强, 邹斌, 邹亚荣, 崔松雪. 2020. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取. 海洋学报, 42(4): 104-112 [DOI: 10.3969/j.issn.0253-4193.2020.04.012http://dx.doi.org/10.3969/j.issn.0253-4193.2020.04.012]
Litvinenko L I, Litvinenko A I, Boiko E G and Kutsanov K. 2015. Artemia cyst production in Russia. Chinese Journal of Oceanology and Limnology, 33(6): 1436-1450 [DOI: 10.1007/s00343-015-4381-6http://dx.doi.org/10.1007/s00343-015-4381-6]
Liu C J, Duan P, Zhang F, Jim C Y, Tan M L and Chan N W. 2021. Feasibility of the spatiotemporal fusion model in monitoring Ebinur lake’s suspended particulate matter under the missing-data scenario. Remote Sensing, 13(19): 3952-3974 [DOI: 10.3390/rs13193952http://dx.doi.org/10.3390/rs13193952]
Liu H T, Jiang Z Y, An M, Bao L B, Zhang J H, Yuan M C, Zhang L, Zhu Y G, Liu P B and Liang K Q. 2004. Study on the resource quantity of Artemia sp lived in both Wenzi and Naoerte lakes. Chinese Journal of Fisheries, 17(1): 1-4
刘海涛, 江振莹, 安明, 宝丽波, 张建华, 袁满川, 张利, 朱玉根, 刘鹏斌, 梁克勤. 2004. 蚊子湖及淖尔特湖卤虫资源量的研究. 水产学杂志, 17(1): 1-4 [DOI: 10.3969/j.issn.1005-3832.2004.01.001http://dx.doi.org/10.3969/j.issn.1005-3832.2004.01.001]
Liu S S, Liu X F, Jia Q X, Kong F J, Zheng M P and Lv G J. 2014. Assessment of spatial distribution and cysts resources of Artemia in late autumn in Dangxiong Co salt lake. Acta Ecologica Sinica, 34(1): 26-33 [DOI: 10.1016/j.chnaes.2013.11.004http://dx.doi.org/10.1016/j.chnaes.2013.11.004]
Ma T, Han C J, Chai Y H, Jia X Y, Gao J W, Shao P, Dou Y and Zhou W L. 2020. Effects of environmental factors on growth, body fatty acids and antioxidant capacity of Artemia parthenogenetic. Southwest China Journal of Agricultural Sciences, 33(10): 2370-2377
马婷, 韩朝婕, 柴英辉, 贾旭颖, 高金伟, 邵蓬, 窦勇, 周文礼. 2020. 环境因子对卤虫生长、体脂肪酸及抗氧化能力的影响. 西南农业学报, 33(10): 2370-2377 [DOI: 10.16213/j.cnki.scjas.2020.10.036http://dx.doi.org/10.16213/j.cnki.scjas.2020.10.036]
Marden B, Brown P and Bosteels T. 2020. Great Salt Lake Artemia: ecosystem functions and services with a global reach//Baxter B K and Butler J K eds. Great Salt Lake Biology. Cham: Springer: 175-237 [DOI: 10.1007/978-3-030-40352-2_7http://dx.doi.org/10.1007/978-3-030-40352-2_7]
McFeeters S K. 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Niu G C, Li J, Guo S, Pun M, Hou L and Yang L J. 2019. SuperDock: a deep learning-based automated floating trash monitoring system//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali: IEEE: 1035-1040 [DOI: 10.1109/ROBIO49542.2019.8961509http://dx.doi.org/10.1109/ROBIO49542.2019.8961509]
Pan Z K, Xu J S, Guo Y B, Hu Y M and Wang G X. 2020. Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net. Remote Sensing, 12 (10):1574-1590 [DOI: 10.3390/rs12101574http://dx.doi.org/10.3390/rs12101574]
Pekel J F, Cottam A, Gorelick N and Belward A S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633): 418-422 [DOI: 10.1038/nature20584http://dx.doi.org/10.1038/nature20584]
Qi L, Hu C M, Mikelsons K, Wang M H, Lance V, Sun S J, Barnes B B, Zhao J and Van Der Zande D. 2020. In search of floating algae and other organisms in global oceans and lakes. Remote Sensing of Environment, 239: 111659-111678 [DOI: 10.1016/j.rse.2020.111659http://dx.doi.org/10.1016/j.rse.2020.111659]
Qi L, Yao Y, English D E, Ma R H, Luft J and Hu C M. 2021. Remote sensing of brine shrimp cysts in salt lakes. Remote Sensing of Environment, 266: 112695-112708 [DOI: 10.1016/j.rse.2021.112695http://dx.doi.org/10.1016/j.rse.2021.112695]
Rawat A, Kumar A, Upadhyay P and Kumar S. 2022. A comparative study of 1D-convolutional neural networks with modified possibilistic c-mean algorithm for mapping transplanted paddy fields using temporal data. Journal of the Indian Society of Remote Sensing, 50(2): 227-238 [DOI: 10.1007/s12524-020-01303-4http://dx.doi.org/10.1007/s12524-020-01303-4]
Ren M L, Yang W R, Jiang Z F, Guo Y, Ren B, Gao H, Zheng R X, Zhang B P and Xiong J Y. 1992. Artemia in Xinjiang Ebinur Lake. Urumchi: Xinjiang Science, Technology and Health Publishing House: 1-2
任慕莲, 杨文荣, 姜作发, 郭焱, 任波, 高宏, 郑仁侠, 张北平, 熊江远. 1992. 新疆艾比湖卤虫. 乌鲁木齐: 新疆科技卫生出版社: 1-2
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Shen Y F, Liu J Q, Ding J, Jiao J N, Sun S J and Lu Y C. 2020. HY-1C COCTS and CZI observation of marine oil spills in the South China Sea. Journal of Remote Sensing(Chinese), 24(8): 933-944
沈亚峰, 刘建强, 丁静, 焦俊男, 孙绍杰, 陆应诚. 2020. 海洋一号C星光学载荷对海面溢油的识别能力分析. 遥感学报, 24(8): 933-944 [DOI: 10.11834/jrs.20209475http://dx.doi.org/10.11834/jrs.20209475]
Shi J, Jiao J N, Lu Y C, Zhang M W, Mao Z H and Liu Y X. 2018. Determining spectral groups to distinguish oil emulsions from Sargassum over the Gulf of Mexico using an airborne imaging spectrometer. ISPRS Journal of Photogrammetry and Remote Sensing, 146: 251-259 [DOI: 10.1016/j.isprsjprs.2018.09.017http://dx.doi.org/10.1016/j.isprsjprs.2018.09.017]
Sun X H, Liu J Q, Wang J R, Tian L Q, Zhou Q and Li J. 2021. Integrated monitoring of lakes’ turbidity in Wuhan, China during the COVID-19 epidemic using multi-sensor satellite observations. International Journal of Digital Earth, 14(4): 443-463 [DOI: 10.1080/17538947.2020.1868584http://dx.doi.org/10.1080/17538947.2020.1868584]
Stappen G V, Fayazi G and Sorgeloos P. 2001. International study on Artemia LXIII. Field study of the Artemia urmiana (Günther, 1890) population in Lake Urmiah, Iran//Melack J M, Jellison R, Herbst D B eds. Saline Lakes. Dordrecht: Springer: 133-143 [DOI: 10.1007/978-94-017-2934-5_12http://dx.doi.org/10.1007/978-94-017-2934-5_12]
Visitacion M R, Alnin C A, Ferrer M R and Suñiga L. 2019. Detection of algal bloom in the coastal waters of Boracay, Philippines using normalized difference vegetation index (NDVI) and Floating Algae Index (FAI). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W19: 479-486 [DOI: 10.5194/isprs-archives-XLII-4-W19-479-2019http://dx.doi.org/10.5194/isprs-archives-XLII-4-W19-479-2019]
Wang M Q and Hu C M. 2021. Satellite remote sensing of pelagic Sargassum macroalgae: The power of high resolution and deep learning. Remote Sensing of Environment, 264:112631-112644. [DOI: 10.1016/j.rse.2021.112631http://dx.doi.org/10.1016/j.rse.2021.112631]
Wang J Z, Ding J L, Li G N, Liang J, Yu D L, Aishan T, Zhang F, Yang J M, Abulimiti A and Liu J. 2019. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena, 177: 189-201 [DOI: 10.1016/j.catena.2019.02.020http://dx.doi.org/10.1016/j.catena.2019.02.020]
Wang Q, Zhang X D, Chen G Z, Dai F, Gong Y F and Zhu K. 2018. Change detection based on Faster R-CNN for high-resolution remote sensing images. Remote Sensing Letters, 9(10): 923-932 [DOI: 10.1080/2150704X.2018.1492172http://dx.doi.org/10.1080/2150704X.2018.1492172]
Wu F, Li J J, Zhang B, Wang C, Zhang H, Chen F L, Li L and Xu L. 2021. Inundation monitoring of immovable cultural relics with time-series SAR images. National Remote Sensing Bulletin, 25(12): 2431-2440
吴樊, 李娟娟, 张波, 王超, 张红, 陈富龙, 李璐, 许璐. 2021. 时间序列SAR图像不可移动文物水域淹没监测. 遥感学报, 25(12): 2431-2440 [DOI: 10.11834/jrs.20211146http://dx.doi.org/10.11834/jrs.20211146]
Xing Q G and Hu C M. 2016. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: application of a virtual baseline reflectance height technique. Remote Sensing of Environment, 178: 113-126 [DOI: 10.1016/j.rse.2016.02.065http://dx.doi.org/10.1016/j.rse.2016.02.065]
Xu J C and Yi C. 2012. Artemia in Ebinur Lake and its application in fishery. Animals Breeding and Feed, (9): 83-85
徐金传, 易翀. 2012. 艾比湖卤虫及其在渔业中的应用. 养殖与饲料, (9): 83-85 [DOI: 10.3969/j.issn.1671-427X.2012.09.043http://dx.doi.org/10.3969/j.issn.1671-427X.2012.09.043]
Yamano H, Sakuma A and Harii S. 2020. Coral-spawn slicks: reflectance spectra and detection using optical satellite data. Remote Sensing of Environment, 251: 112058-112065 [DOI: 10.1016/j.rse.2020.112058http://dx.doi.org/10.1016/j.rse.2020.112058]
Yang J T, Wang X L, Li B Q and Xin N H. 2019. The investigation and research on the biological resources of salina in Xinjiang Aibi Lake. Journal of Salt Science and Chemical Industry, 48(2): 35-38
杨俊涛, 王新磊, 李炳乾, 辛乃宏. 2019. 新疆艾比湖盐田生物资源的调查和研究. 盐科学与化工, 48(2): 35-38 [DOI: 10.3969/j.issn.2096-3408.2019.02.009http://dx.doi.org/10.3969/j.issn.2096-3408.2019.02.009]
Yao H G, Wang C, Yu J, Bai X J and Li W. 2020. Recognition of small-target ships in complex satellite images. National Remote Sensing Bulletin, 24(2): 116-125
姚红革, 王诚, 喻钧, 白小军, 李蔚. 2020. 复杂卫星图像中的小目标船舶识别. 遥感学报, 24(2): 116-125 [DOI: 10.11834/jrs.20208238http://dx.doi.org/10.11834/jrs.20208238]
Zhang F, Tiyip T, Johnson V C, Kung H T, Ding J L, Sun Q, Zhou M, Kelimu A, Nurmuhammat I and Chan N W. 2015. The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972—2013 period. Environmental Monitoring and Assessment, 187(1): 4128-4141 [DOI: 10.1007/s10661-014-4128-4http://dx.doi.org/10.1007/s10661-014-4128-4]
Zhang J, Chen L Q and Chen X L. 2016. Monitoring the cyanobacterial blooms based on remote sensing in Lake Erhai by FAI. Journal of Lake Sciences, 28(4): 718-725
张娇, 陈莉琼, 陈晓玲. 2016. 基于FAI方法的洱海蓝藻水华遥感监测. 湖泊科学, 28(4): 718-725 [DOI: 10.18307/2016.0404http://dx.doi.org/10.18307/2016.0404]
Zhang L P, Zhang L F and Du B. 2016. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2): 22-40 [DOI: 10.1109/MGRS.2016.2540798http://dx.doi.org/10.1109/MGRS.2016.2540798]
Zhang Q, Yuan Q Q, Li J, Li Z W, Shen H F and Zhang L P. 2020a. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 162: 148-160 [DOI: 10.1016/j.isprsjprs.2020.02.008http://dx.doi.org/10.1016/j.isprsjprs.2020.02.008]
Zhang X, Han LX, Han L H and Zhu L. 2020b. How Well Do Deep Learning-Based Methods for Land Cover Classification and Object Detection Perform on High Resolution Remote Sensing Imagery? Remote Sensing, 12 (3):417-445. [DOI: 10.3390/ rs12030417http://dx.doi.org/10.3390/rs12030417]
Zhang T T, Hu H, Ma X S and Zhang Y B. 2020c. Long-term spatiotemporal variation and environmental driving forces analyses of algal blooms in Taihu Lake based on multi-source satellite and land observations. Water, 12(4): 1035-1051 [DOI: 10.3390/ w12041035http://dx.doi.org/10.3390/w12041035]
Zheng Y Q, Yang X F and Li Z W. 2020. Detection of severe convective cloud over sea surface from geostationary meteorological satellite images based on deep learning. Journal of Remote Sensing(Chinese) , 24(1): 97-106
郑益勤, 杨晓峰, 李紫薇. 2020. 深度学习模型识别静止卫星图像海上强对流云团. 遥感学报, 24(1): 97-106 [DOI: 10.11834/jrs.20208209http://dx.doi.org/10.11834/jrs.20208209]
Zhou Q, Liu J Q, Wang J R, Deng S Q and Tian L Q. 2020. Water turbidity monitoring of Zhiyin and Huangjia lakes in Wuhan for COVID-19 epidemic using HY-1C CZI data. Geomatics and Information Science of Wuhan University, 45(5): 676-681
周屈, 刘建强, 王剑茹, 邓实权, 田礼乔. 2020. 利用HY-1C卫星CZI数据在COVID-19疫情期间武汉知音湖和黄家湖的浊度监测研究. 武汉大学学报(信息科学版), 45(5): 676-681 [DOI: 10.13203/j.whugis20200101http://dx.doi.org/10.13203/j.whugis20200101]
Zhou Q, Tian L Q, Li J, Song Q J and Li W K. 2018. Radiometric cross-calibration of Tiangong-2 MWI visible/NIR channels over aquatic environments using MODIS. Remote Sensing, 10(11): 1803-1824 [DOI: 10.3390/rs10111803http://dx.doi.org/10.3390/rs10111803]
Zhao X, Liu R J, Ma Y, Xiao Y F, Ding J, Liu J Q and Wang Q B. 2022. Red Tide Detection Method for HY-1D Coastal Zone Imager Based on U-Net Convolutional Neural Network. Remote Sensing, 14 (1):88-107 [DOI 10.3390/rs14010088http://dx.doi.org/10.3390/rs14010088]
相关作者
相关机构