中国海洋水色卫星传感器COCTS HY-1D产品初步评价
Preliminary performance of the COCTS onboard HY-1D satellite in the global ocean
- 2023年27卷第4期 页码:943-952
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20221666
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
史鑫皓,陈树果,林明森,刘建强,马超飞,宋庆君,薛程,胡连波.2023.中国海洋水色卫星传感器COCTS HY-1D产品初步评价.遥感学报,27(4): 943-952
Shi X H,Chen S G,Lin M S,Liu J Q,Ma C F,Song Q J,Xue C and Hu L B. 2023. Preliminary performance of the COCTS onboard HY-1D satellite in the global ocean. National Remote Sensing Bulletin, 27(4):943-952
卫星遥感产品的真实性评价对利用遥感产品开展应用研究具有重要的意义。本文利用全球典型的长期固定平台现场测量数据对中国自主海洋水色卫星HY-1D所搭载的水色水温扫描仪COCTS(COCTS HY-1D)遥感反射率(
R
rs
)和叶绿素a(Chl-a)产品进行了评价,并在全球尺度上通过与国际主流海洋水色卫星传感器的产品进行了进一步的对比分析。结果表明,COCTS HY-1D
R
rs
产品与现场测量
R
rs
数据吻合较好,可见光波段相关系数在0.91—0.98,各波段平均绝对百分比误差平均值约为22.9%。相较于国际主流海洋水色卫星传感器MODIS Aqua与现场数据各波段平均绝对百分比误差平均值约为20.5%的比较结果,产品精度相当;在全球尺度上,与MODIS Aqua相比,
R
rs
产品分布趋势一致,数值大小一致,相关系数在蓝光波段较高,可达0.94,各波段相关系数平均值为0.84。Chl-a产品相关系数为0.85,高于MODIS Aqua与VIIRS-SNPP的Chl-a产品的相关系数0.76。整体上,COCTS HY-1D可以提供与国际主流海洋水色卫星传感器质量相当的水色产品,能够进行准确的海洋水色遥感观测。
The Chinese Ocean Color and Temperature Scanner (COCTS) onboard HY-1D satellite (COCTS HY-1D) was launched on June 11
2020. However
the performance of COCTS HY-1D has not yet been completely evaluated. In this study
the performance of COCTS HY-1D was first evaluated by comparing satellite derived remote sensing reflectance (
R
rs
) with in situ measurements collected at four AERONET-OC sites and two Chinese long-term platforms.
Initially
the in situ data at four AERONET-OC sites were acquired to evaluate the performance of COCTS HY-1D in the global coastal waters. AERONET-OC is an ocean color component of the AERONET and provides long-term high-quality in situ normalized water leaving radiance (
L
wn
) measured by an autonomous radiometer system on an offshore fixed platform to support the calibration and validation of satellite ocean color sensors in coastal waters. Muping and Dong’ou sites were constructed by the China National Satellite Ocean Administration Service (NSOAS)
and the data were processed following the same procedure as that of the AERONET-OC data processing scheme. The COCTS HY-1D Level 1B data covering AERONET-OC sites and two long-term platforms between 1 August 1 2020 and 31 January 31 2021 in cloud-free days were acquired from NSOAS and processed to Level 2
R
rs
and Chl-a concentration products. Furthermore
R
rs
and Chl-a concentration comparison with two well-calibrated ocean color sensors (i.e.
MODIS Aqua and VIIRS-SNPP) were made to evaluate the performance of COCTS HY-1D on the global scale. Additionally
the COCTS HY-1D Level 1B daily global dataset between December 7 and 14
2020 were also required from NSOAS
processed to Level 2
and binned to Level 3 daily and 8-day 9-km data products by using the spatial-temporal binning algorithms developed by NASA. MODIS Aqua and VIIRS-SNPP Level 3 global binned daily and 8-day 9-km
R
rs
and Chl-a concentration data collected between December 7 and 14
2020 were acquired from NASA GSFC. The statistics used in this study included correlation coefficient (
r
)
Root Mean Square Error (RMSE)
Mean Absolute Percentage Error (MAPE)
and mean bias (mBias).
Results demonstrated that COCTS HY-1D-derived
R
rs
agreed well with the in situ data at all wavelengths with the correlation coefficient
r
of visible bands between 0.91 and 0.98 and up to 0.98 and Mean Absolute Percentage Error (MAPE) of 22.9%. The product’s accuracy is comparable to the average MAPE of 20.5% between MODIS Aqua and in situ data. At the global scale
the COCTS HY-1D-derived
R
rs
and chlorophyll concentration were consistent with MODIS Aqua products with a mean correlation coefficient ranging from 0.84 and to 0.95. The correlation coefficient of Chl-a is 0.85
which is higher than 0.76 between MODIS Aqua and VIIRS-SNPP. Nevertheless
the satisfactory
R
rs
was derived from COCTS HY-1D at the global scale compared with the in situ measurements or well-calibrated MODIS Aqua and VIIRS-SNPP products.
COCTS HY-1D can provide high quality ocean color products comparable with the international mainstream ocean color satellite sensors
and therefore can carry out stable and accurate ocean color remote sensing observation.
现场测量海洋水色HY-1DCOCTS遥感反射率
in situ observationocean colorHY-1DCOCTSremote sensing refcectance
Bailey S W, Franz B A and Werdell P J. 2010. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express, 18(7): 7521-7527 [DOI: 10.1364/OE.18.007521http://dx.doi.org/10.1364/OE.18.007521]
Bailey S W and Werdell P J. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1/2): 12-23 [DOI: 10.1016/j.rse.2006.01.015http://dx.doi.org/10.1016/j.rse.2006.01.015]
Barnes B B, Cannizzaro J P, English D C and Hu C M. 2019. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: an assessment of methods. Remote Sensing of Environment, 220: 110-123 [DOI: 10.1016/j.rse.2018.10.034http://dx.doi.org/10.1016/j.rse.2018.10.034]
Barnes B B, Hu C M, Bailey S W and Franz B A. 2021. Sensitivity of satellite ocean color data to system vicarious calibration of the long near infrared band. IEEE Transactions on Geoscience and Remote Sensing, 59(3): 2562-2578 [DOI: 10.1109/TGRS.2020.3000475http://dx.doi.org/10.1109/TGRS.2020.3000475]
Behrenfeld M J, Gaube P, Della Penna A, O'Malley R T, Burt W J, Hu Y X, Bontempi P S, Steinberg D K, Boss E S, Siegel D A, Hostetler C A, Tortell P D and Doney S C. 2019. Global satellite-observed daily vertical migrations of ocean animals. Nature, 576(7786): 257-261 [DOI: 10.1038/s41586-019-1796-9http://dx.doi.org/10.1038/s41586-019-1796-9]
Bojinski S, Verstraete M, Peterson T C, Richter C, Simmons A and Zemp M. 2014. The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95(9): 1431-1443 [DOI: 10.1175/BAMS-D-13-00047.1http://dx.doi.org/10.1175/BAMS-D-13-00047.1]
Cao C Y, Xiong J, Blonski S, Liu Q H, Uprety S, Shao X, Bai Y and Weng F Z. 2013. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. Journal of Geophysical Research: Atmospheres, 118(20): 11664-11678 [DOI: 10.1002/2013JD020418http://dx.doi.org/10.1002/2013JD020418]
Chami M, Lafrance B, Fougnie B, Chowdhary J, Harmel T and Waquet F. 2015. OSOAA: a vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean. Optics Express, 23(21): 27829-27852 [DOI: 10.1364/OE.23.027829http://dx.doi.org/10.1364/OE.23.027829]
Chen S G, Du K P, Lee Z P, Liu J Q, Song Q J, Xue C, Wang D S, Lin M S, Tang J W and Ma C F. 2021. Performance of COCTS in global ocean color remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1634-1644 [DOI: 10.1109/TGRS.2020.3002460http://dx.doi.org/10.1109/TGRS.2020.3002460]
Clark D K. 1981. Phytoplankton pigment algorithms for the nimbus-7 CZCS//Gower J F R, ed. Oceanography from Space. New York: Springer: 227-237 [DOI: 10.1007/978-1-4613-3315-9_28http://dx.doi.org/10.1007/978-1-4613-3315-9_28]
Dutkiewicz S, Hickman A E, Jahn O, Henson S, Beaulieu C and Monier E. 2019. Ocean colour signature of climate change. Nature Communications, 10: 578 [DOI: 10.1038/s41467-019-08457-xhttp://dx.doi.org/10.1038/s41467-019-08457-x]
Giles D M, Sinyuk A, Sorokin M G, Schafer J S, Smirnov A, Slutsker I, Eck T F, Holben B N, Lewis J R, Campbell J R, Welton E J, Korkin S V and Lyapustin A I. 2019. Advancements in the aerosol robotic network (AERONET) version 3 database-automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmospheric Measurement Techniques, 12: 169-209 [DOI: 10.5194/amt-12-169-2019http://dx.doi.org/10.5194/amt-12-169-2019]
Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S and Zak E J. 2017. The HITRAN2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 203: 3-69 [DOI: 10.1016/j.jqsrt.2017.06.038http://dx.doi.org/10.1016/j.jqsrt.2017.06.038]
Goyens C, Jamet C and Schroeder T. 2013. Evaluation of four atmospheric correction algorithms for MODIS Aqua images over contrasted coastal waters. Remote Sensing of Environment, 131: 63-75 [DOI 10.1016/j.rse.2012.12.006http://dx.doi.org/10.1016/j.rse.2012.12.006]
Hu C M, Lee Z P and Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1): C01011 [DOI: 10.1029/2011JC007395http://dx.doi.org/10.1029/2011JC007395]
Jamet C, Loisel H, Kuchinke C P, Ruddick K, Zibordi G and Feng H. 2011. Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sensing of Environment, 115(8): 1955-1965 [DOI: 10.1016/j.rse.2011.03.018http://dx.doi.org/10.1016/j.rse.2011.03.018]
Jiang X W, Lin M S and Zhang Y G. 2016. Progress and prospect of Chinese ocean satellites. Journal of Remote Sensing, 20(5): 1185-1198
蒋兴伟, 林明森, 张有广. 2016. 中国海洋卫星及应用进展. 遥感学报, 20(5): 1185-1198 [DOI: 10.11834/jrs.20166153http://dx.doi.org/10.11834/jrs.20166153]
Laber C P, Hunter J E, Carvalho F, Collins J R, Hunter E J, Schieler B M, Boss E, More K, Frada M, Thamatrakoln K, Brown C M, Haramaty L, Ossolinski J, Fredricks H, Nissimov J I, Vandzura R, Sheyn U, Yoav L, Chant R J, Martins A M, Coolen M J L, Vardi A, Ditullio G R, Van Mooy B A S and Bidle K D. 2018. Coccolithovirus facilitation of carbon export in the North Atlantic. Nature Microbiology, 3(5): 537-547 [DOI: 10.1038/s41564-018-0128-4http://dx.doi.org/10.1038/s41564-018-0128-4]
Mason P J, Manton M, Harrison D E, Belward A, Thomas A R, Dawson A, Allali A, Church J, Clarke R A, Eyre J, Folland C K, Gould W J, Haeberli W, Harrison S, Karl T R, Maurer T, Parker D, Proffitt M, Quegan S, Simmons A, Trenberth K and Verstraete M M. 2003. The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. World Meteorological Organization
O'Reilly J E and Werdell P J. 2019. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote Sensing of Environment, 229: 32-47 [DOI: 10.1016/j.rse.2019.04.021http://dx.doi.org/10.1016/j.rse.2019.04.021]
Qi L, Hu C M, Barnes B B and Lee Z P. 2017. VIIRS captures phytoplankton vertical migration in the Ne Gulf of Mexico. Harmful Algae, 66: 40-46 [DOI: 10.1016/j.hal.2017.04.012http://dx.doi.org/10.1016/j.hal.2017.04.012]
Signorini S R, Franz B A and Mcclain C R. 2015. Chlorophyll variability in the oligotrophic gyres: mechanisms, seasonality and trends. Frontiers in Marine Science, 2: 1 [DOI: 10.3389/fmars.2015.00001http://dx.doi.org/10.3389/fmars.2015.00001]
Song Q J, Chen S G, Xue C, Lin M S, Du K P, Li S C, Ma C F, Tang J W, Liu J Q, Zhang T L and Huang X X. 2019. Vicarious calibration of COCTS-HY1C at visible and near-infrared bands for ocean color application. Optics Express, 27(20): A1615-A1626 [DOI: 10.1364/OE.27.0A1615http://dx.doi.org/10.1364/OE.27.0A1615]
Wang M H and Jiang L D. 2018. Atmospheric correction using the information from the short blue band. IEEE Transactions on Geoscience and Remote Sensing, 56(10): 6224-6237 [DOI: 10.1109/TGRS.2018.2833839http://dx.doi.org/10.1109/TGRS.2018.2833839]
Wang M Q, Hu C M, Barnes B B, Mitchum G, Lapointe B and Montoya J P. 2019. The great Atlantic Sargassum belt. Science, 365(6448): 83-87 [DOI: 10.1126/science.aaw7912http://dx.doi.org/10.1126/science.aaw7912]
Xu Y Z, He X Q, Bai Y, Wang D F, Zhu Q K and Ding X S. 2021. Evaluation of remote-sensing reflectance products from multiple ocean color missions in highly turbid water (Hangzhou bay). Remote Sensing, 13(21): 4267 [DOI: 10.3390/rs13214267http://dx.doi.org/10.3390/rs13214267]
Zhang Y J, Hu C M, Liu Y G, Weisberg R H and Kourafalou V H. 2019. Submesoscale and mesoscale eddies in the florida straits: observations from satellite ocean color measurements. Geophysical Research Letters, 46(22): 13262-13270 [DOI: 10.1029/2019GL083999http://dx.doi.org/10.1029/2019GL083999]
Zibordi G, Mélin F, Berthon J F, Holben B, Slutsker I, Giles D, D’Alimonte D, Vandemark D, Feng H, Schuster G, Fabbri B E, Kaitala S and Seppälä J. 2009. AERONET-OC: a network for the validation of ocean color primary products. Journal of Atmospheric and Oceanic Technology, 26(8): 1634-1651 [DOI: 10.1175/2009JTECHO654.1http://dx.doi.org/10.1175/2009JTECHO654.1]
相关作者
相关机构