全球海洋偶极子涡旋特征提取与动力调制的遥感研究
Dipole eddy detection from satellite and its dynamic modulation in the global ocean
- 2023年27卷第4期 页码:932-942
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20221690
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
禹乐乐,曹川川,王璇,陈戈.2023.全球海洋偶极子涡旋特征提取与动力调制的遥感研究.遥感学报,27(4): 932-942
Yu L L,Cao C C,Wang X and Chen G. 2023. Dipole eddy detection from satellite and its dynamic modulation in the global ocean. National Remote Sensing Bulletin, 27(4):932-942
中尺度涡旋具有封闭的环流结构,在海洋物质输运与能量平衡方面发挥了重要作用。观测表明海洋中涡旋并非是孤立的:气旋涡与反气旋涡倾向于相互伴随而形成稳定传播的偶极子结构。本文以1993年—2020年卫星高度计识别与追踪的中尺度涡旋数据为基础,结合涡旋的时空特征提出了偶极子涡旋的判据,建立偶极子涡旋数据集。结果表明偶极子涡旋主要分布于南北纬10°—70°纬度范围内,且平均占比约为29.53%。偶极子结构的形成对涡旋有明显的调制作用,相对于非偶极子状态,偶极子状态的涡旋振幅的增强幅度为11.09%、半径的增强幅度为7.33%、动能的增强幅度为8.58%,涡旋涡度的减小幅度为1.34%。同时,调制作用与涡旋所处的纬度和生命状态有关。在运动特征方面,偶极子状态下涡旋的传播稍有增速,变化在10%以内,而平均地转流速的最大增幅超过30%,其高值对应海洋的强流区。全球偶极子涡旋的定量分析将有助于深化对涡旋动力学的理解,为进一步剖析涡—涡相互作用机理与精细化海洋数值模拟奠定基础。
Eddies play an important role in water transport and energy balance in the ocean. Ocean observations show that eddies are not isolated
and cyclonic eddies and anti-cyclonic eddies always form more stable structures: dipole eddies. Dipole eddies have a more evident dynamic modulation compared with monopole eddies. Moreover
dipole eddies enhance the vertical movement of water to ensure that they promote the propagation and distribution of heat
energy
and organic matter in the ocean
which affects the global biochemical process. The parameters’ variations of dipole eddies during propagation must be examined to extensively understand the coupling state of eddies. The quantitative analysis of the modulation effect can provide a reference for exploring the dynamic mechanism of dipole eddies.
In this work
the Archiving
Validation
and Interpretation of Satellite Oceanographic (AVISO) merged data from a combination of T/P
Jason-1
Jason-2
Jason-3
and Envisat missions are used to identify and track eddies in the global ocean during 1993—2020. These data have a daily temporal resolution and a 1/4°×1/4° spatial resolution. We established criteria for extracting dipole eddies based on eddy identification and track data: the distance of eddy cores is less than twice the sum of their radii
and their concomitant time is more than 60 days. We analyze the variations of eddies’ parameters to reveal the role of the dipole in modulating eddies based on over 67
500 dipole eddies that we found.
The results show that dipoles are distributed in 10°N—60°N and 11°S—66°S. The dipole eddies are composed of eddies at a probability of over 15% and in the strong currents region
the frequency of dipole eddies formation is higher
even more than 35%. Given that the dipole structure influences the movement and propagation of eddies
we demonstrate it by using four dominating parameters of eddies
including amplitude
radius
EKE
and vorticity. Result showed that the dipole structures increase the amplitude by 5%—14%
radius by 2%—9%
and EKE by 4%—13% but suppress the vorticity of eddies by less than 3%. Furthermore
the various ratios of the parameters reach the peak at the middle of eddy normalized life. The dipole structures also promote the geostrophic and propagation velocities. The geostrophic velocity of eddies is significantly enhanced in strong current areas. In addition
the enhancement of geostrophic velocity of eddy is zonally distributed and gradually decreases from the equator to the poles.
We conclude that dipole structures change the initial state of the eddies
causing some parameter variations: amplitude
radius
and EKE of eddies are increased by less than 13%
while vorticity is reduced. The dipole structures also have a certain acceleration effect on eddies at propagation and geostrophic velocities. Futhermore
the coupling of eddies with opposite polarity enhances their fluctuation and causes them to interact. The dynamic mechanism and ecological effect of eddies coupling based on better data sets are also the focus of future work.
遥感卫星高度计中尺度涡旋偶极子涡旋参数统计调制作用
remote sensingsatellite altimetermesoscale eddydipole eddyparametric statisticsmodulation effect
Ahlnäs K, Royer T C and George T H. 1987. Multiple dipole eddies in the Alaska coastal current detected with Landsat thematic mapper data. Journal of Geophysical Research: Oceans, 92(C12): 13041-13047 [DOI: 10.1029/JC092iC12p13041http://dx.doi.org/10.1029/JC092iC12p13041]
Amores A, Jordà G, Arsouze T and Le Sommer J. 2018. Up to what extent can we characterize ocean eddies using present-day gridded altimetric products? Journal of Geophysical Research: Oceans, 123(10): 7220-7236 [DOI: 10.1029/2018JC014140http://dx.doi.org/10.1029/2018JC014140]
Bryden H L and Brady E C. 1989. Eddy momentum and heat fluxes and their effects on the circulation of the equatorial pacific ocean. Journal of Marine Research, 47(1): 55-79 [DOI: 10.1357/002224089785076389http://dx.doi.org/10.1357/002224089785076389]
Chaigneau A, Le Texier M, Eldin G, Grados C and Pizarro O. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025 [DOI: 10.1029/2011JC007134http://dx.doi.org/10.1029/2011JC007134]
Chelton D B, Gaube P, Schlax M G, Early J J and Samelson R M. 2011b. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328-332 [DOI: 10.1126/science.1208897http://dx.doi.org/10.1126/science.1208897]
Chelton D B, Schlax M G and Samelson R M. 2011a. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167-216 [DOI: 10.1016/j.pocean.2011.01.002http://dx.doi.org/10.1016/j.pocean.2011.01.002]
Chen G, Han G Y and Yang X Q. 2019. On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sensing of Environment, 228: 75-89 [DOI: 10.1016/j.rse.2019.04.011http://dx.doi.org/10.1016/j.rse.2019.04.011]
Chen G, Yang J and Han G Y. 2021a. Eddy morphology: egg-like shape, overall spinning, and oceanographic implications. Remote Sensing of Environment, 257: 112348 [DOI: 10.1016/j.rse.2021.112348http://dx.doi.org/10.1016/j.rse.2021.112348]
Chen G X, Hou Y J and Chu X Q. 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C): C06018 [DOI: 10.1029/2010JC006716http://dx.doi.org/10.1029/2010JC006716]
Chen G X, Hou Y J, Zhang Q L and Chu X Q. 2010. The eddy pair off eastern Vietnam: interannual variability and impact on thermohaline structure. Continental Shelf Research, 30(7): 715-723 [DOI: 10.1016/j.csr.2009.11.013http://dx.doi.org/10.1016/j.csr.2009.11.013]
Chen X Y, Li H T, Cao C C and Chen G. 2021b. Eddy-induced pycnocline depth displacement over the global ocean. Journal of Marine Systems, 221: 103577 [DOI: 10.1016/j.jmarsys.2021.103577http://dx.doi.org/10.1016/j.jmarsys.2021.103577]
Durán-Campos E, Monreal-Gómez M A, De León D A S and Coria-Monter E. 2019. Impact of a dipole on the phytoplankton community in a semi-enclosed basin of the southern gulf of California, Mexico. Oceanologia, 61(3): 331-340 [DOI: 10.1016/j.oceano.2019.01.004http://dx.doi.org/10.1016/j.oceano.2019.01.004]
Fu L L. 2009. Pattern and velocity of propagation of the global ocean eddy variability. Journal of Geophysical Research: Oceans, 114(C11): C11017 [DOI: 10.1029/2009JC005349http://dx.doi.org/10.1029/2009JC005349]
Fu L L, Chelton D B, Le Traon P V and Morrow R. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14-25 [DOI: 10.5670/oceanog.2010.02http://dx.doi.org/10.5670/oceanog.2010.02]
Han G Y, Tian F L, Ma C Y and Chen G. 2021. The geometry of mesoscale eddies in the South China Sea: characteristics and implications. International Journal of Digital Earth, 14(4): 464-479 [DOI: 10.1080/17538947.2020.1842523http://dx.doi.org/10.1080/17538947.2020.1842523]
Hughes C W and Miller P I. 2017. Rapid water transport by long-lasting modon eddy pairs in the southern midlatitude oceans. Geophysical Research Letters, 44(24): 12375-12384 [DOI: 10.1002/2017GL075198http://dx.doi.org/10.1002/2017GL075198]
L’Hégaret P, Carton X, Ambar I, Ménesguen C, Hua B L, Chérubin L, Aguiar A, Le Cann B, Daniault N and Serra N. 2014. Evidence of Mediterranean Water dipole collision in the Gulf of Cadiz. Journal of Geophysical Research: Oceans, 119(8): 5337-5359 [DOI: 10.1002/ 2014JC009972http://dx.doi.org/10.1002/2014JC009972]
Li R H, Xu J, Cen X R, Zhong W X, Liao J Z, Shi Z, Zhou S Q. 2021. Nitrate fluxes induced by turbulent mixing in dipole eddies in an oligotrophic ocean. Limnology and Oceanography, 66(7): 2842-2854 [DOI: 10.1002/lno.11794http://dx.doi.org/10.1002/lno.11794]
McGillicuddy D J. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8: 125-159 [DOI: 10.1146/annurev-marine-010814-015606http://dx.doi.org/10.1146/annurev-marine-010814-015606]
Ni Q B, Zhai X M, Wang G H and Hughes C W. 2020. Widespread mesoscale dipoles in the global ocean. Journal of Geophysical Research: Oceans, 125(10): e2020JC016479 [DOI: 10.1029/2020JC016479http://dx.doi.org/10.1029/2020JC016479]
Pallàs-Sanz E and Viúdez Á. 2007. Three-dimensional ageostrophic motion in mesoscale vortex dipoles. Journal of Physical Oceanography, 37(1): 84-105 [DOI: 10.1175/JPO2978.1http://dx.doi.org/10.1175/JPO2978.1]
Qiu S, Chen X E and Tang S Q. 2020. Life cycle of mesoscale dipole structure near the coast of indo-chian peninsula. Oceanologia et Limnologia Sinica, 51(6): 1332-1343
裘是, 陈学恩, 唐声全. 2020. 中南半岛近海偶极子演变过程研究. 海洋与湖沼, 51(6): 1332-1343 [DOI: 10.11693/hyhz20200100003http://dx.doi.org/10.11693/hyhz20200100003]
Ridderinkhof W, Le Bars D, Von der Heydt A S and De Ruijter W P M. 2013. Dipoles of the South east Madagascar current. Geophysical Research Letters, 40(3): 558-562 [DOI: 10.1002/grl.50157http://dx.doi.org/10.1002/grl.50157]
Rodríguez-Marroyo R and Viúdez A. 2009. Vortex Rossby waves in mesoscale dipoles. Journal of Geophysical Research: Oceans, 114(C10): C10009 [DOI: 10.1029/2009JC005339http://dx.doi.org/10.1029/2009JC005339]
Salas-de-León A D, Monreal-Gómez M A, Signoret M and Aldeco J. 2004. Anticyclonic-cyclonic eddies and their impact on near-surface chlorophyll stocks and oxygen supersaturation over the Campeche canyon, gulf of Mexico. Journal of Geophysical Research: Oceans, 109(C5): C05012 [DOI: 10.1029/2002JC001614http://dx.doi.org/10.1029/2002JC001614]
Simpson J J and Lynn R J. 1990. A mesoscale eddy dipole in the offshore California current. Journal of Geophysical Research: Oceans, 95(C8): 13009-13022 [DOI: 10.1029/JC095iC08p13009http://dx.doi.org/10.1029/JC095iC08p13009]
Sun M, Tian F L, Liu Y J and Chen G. 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sensing, 9(3): 206 [DOI: 10.3390/rs9030206http://dx.doi.org/10.3390/rs9030206]
Tian F L, Wu D, Yuan L M and Chen G. 2020. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data. International Journal of Remote Sensing, 41(8): 2835-2860 [DOI: 10.1080/01431161.2019.1694724http://dx.doi.org/10.1080/01431161.2019.1694724]
Tian F L, Yuan Z H, Liu W, Cheng L Q and Chen G. 2021. An automatic recognition algorithm of global mesoscale dipole based on eddy tracking data. Haiyang Xuebao, 43(1): 122-136
田丰林, 苑忠浩, 刘巍, 程领骑, 陈戈. 2021. 基于追踪数据的全球中尺度涡旋偶极子自动识别方法. 海洋学报, 43(1): 122-136 [DOI: 10.12284/hyxb2021015http://dx.doi.org/10.12284/hyxb2021015]
Toner M, Kirwan Jr A D, Poje A C, Kantha L H, Müller-Karger F E and Jones C K R T. 2003. Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 108(C4): 3105 [DOI: 10.1029/2002JC001499http://dx.doi.org/10.1029/2002JC001499]
Wang X, Zhang S Q, Lin X P, Qiu B and Yu L S. 2021. Characteristics of 3-dimensional structure and heat budget of mesoscale eddies in the South Atlantic Ocean. Journal of Geophysical Research: Oceans, 126(5): e2020JC016922 [DOI: 10.1029/2020JC016922http://dx.doi.org/10.1029/2020JC016922]
Wang Z F, Li Q Y, Sun L, Li S, Yang Y J and Liu S S. 2015. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Frontiers of Earth Science, 9(2): 202-208 [DOI: 10.1007/s11707-014-0478-zhttp://dx.doi.org/10.1007/s11707-014-0478-z]
Wei Y, Zhang R and Jiao N Z. 2018. A long-standing complex tropical dipole shapes marine microbial biogeography. Applied and Environmental Microbiology, 84(18): e00614-18 [DOI: 10.1128/AEM.00614-18http://dx.doi.org/10.1128/AEM.00614-18]
Yang G, Yu W D, Yuan Y L, Zhao X, Wang F, Chen G X, Liu L and Duan Y L. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733-6750 [DOI: 10.1002/2015jc011130http://dx.doi.org/10.1002/2015jc011130]
Zhan P, Krokos G, Guo D Q and Hoteit I. 2019. Three-dimensional signature of the red sea eddies and eddy-induced transport. Geophysical Research Letters, 46(4): 2167-2177 [DOI: 10.1029/2018gl081387http://dx.doi.org/10.1029/2018gl081387]
Zhang Z G, Zhang Y, Wang W and Huang R X. 2013. Universal structure of mesoscale eddies in the ocean. Geophysical Research Letters, 40(14): 3677-3681 [DOI: 10.1002/grl.50736http://dx.doi.org/10.1002/grl.50736]
相关作者
相关机构