时序InSAR对流层大气延迟改正的相位堆叠方法
Time-series InSAR tropospheric atmospheric delay correction based on common scene stacking
- 2023年27卷第10期 页码:2406-2417
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20221736
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
李思慧,董杰,张路,廖明生.2023.时序InSAR对流层大气延迟改正的相位堆叠方法.遥感学报,27(10): 2406-2417
Li S H,Dong J,Zhang L and Liao M S. 2023. Time-series InSAR tropospheric atmospheric delay correction based on common scene stacking. National Remote Sensing Bulletin, 27(10):2406-2417
对流层大气延迟一直是限制合成孔径雷达干涉测量InSAR(Synthetic Aperture Radar Interferometry)技术形变测量精度的主要因素之一。基于含有共同日期的干涉相位也包含相同的大气延迟相位分量这一事实,相位堆叠CSS(Common Scene Stacking)方法采用叠加求和的方式来估计共有日期的大气延迟相位,并通过迭代运算提高估计精度,具有实现简单、计算效率高的优势。本文对CSS方法估算出的大气延迟相位进行空间低通滤波,并将相位解缠与CSS大气延迟相位估计进行迭代运算,改善形变估计结果。首先,基于模拟数据分析了迭代次数和时间窗口尺寸对CSS方法对流层大气延迟改正效果的影响;然后,将本文方法应用于真实SAR数据,分析了不同大小的时间窗口对改正结果的影响,并与其他方法进行对比,结果表明该方法可以获得较好的大气延迟改正结果,改正后空间相位标准差平均降低了62%,稳定点的时间序列标准差平均降低了58%。在此基础上,对目前存在的问题进行了分析和讨论。
Synthetic Aperture Radar Interferometry (InSAR) technology has the advantages of high resolution
high precision
and wide coverage; it has been widely used in the field of ground deformation monitoring. However
the tropospheric atmospheric delay has always been one of the main factors limiting the accuracy of deformation measurement of InSAR. Given that the interferograms sharing a common scene contain the same contribution of atmospheric delay
the Common Scene Stacking (CSS) method uses simple summation to estimate the atmospheric delay phase of the common date and improves the estimation accuracy through iterations with the advantages of simple implementation and high computational efficiency. The CSS method estimates the atmospheric delay phase point by point
thereby introducing more noise. The estimated atmospheric delay phase by CSS is spatially low-pass filtered in this study given the characteristics of the atmospheric delay phase as a low-frequency component in the spatial dimension
and the phase unwrapping and CSS atmospheric delay phase estimation are iterated to improve the deformation estimation results. The influence of different parameters on the tropospheric atmospheric delay correction results of CSS is analyzed using simulated data. The results show that satisfactory results can be obtained after five iterations. Then
this method is applied to real SAR data. The comparison of the results of different time windows indicates that using a larger time window smoothens the time series of stable points. However
at the same time
it leads to distortion at both ends of the time series of deformation points. The proposed method is compared with spatio-temporal filtering
GACOS
and IPTA methods
and the correction result of the CSS method is found to be significantly better than that of spatio-temporal filtering and GACOS. After correction by the CSS method
the spatial phase standard deviation is reduced by 62% on the average
and the time-series standard deviation of the stable points is reduced by 58% on the average. Compared with IPTA
the CSS method can obtain similar results and improve the problem of underestimation of deformation. On this basis
the applicability of the CSS method for the vertically stratified tropospheric delay is discussed. The simulation results show that the CSS method can only correct the turbulent mixing delay
but cannot effectively remove the vertically stratified delay. Therefore
the CSS method is unsuitable for the steep mountainous areas
where the vertically stratified component is evident and the atmospheric delay presents a seasonal oscillation trend.
时间序列InSAR对流层大气延迟相位堆叠方法参数设置形变估计
time-series InSARtropospheric atmospheric delaycommon scene stackingparameters settingdeformation estimation
Bekaert D P S, Hooper A and Wright T J. 2015a. A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 120(2): 1345-1356 [DOI: 10.1002/2014JB011558http://dx.doi.org/10.1002/2014JB011558]
Bekaert D P S, Walters R J, Wright T J, Hooper A J and Parker D J. 2015b. Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170: 40-47 [DOI: 10.1016/j.rse.2015.08.035http://dx.doi.org/10.1016/j.rse.2015.08.035]
Dong J, Zhang L, Liao M S and Gong J Y. 2019. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sensing of Environment, 233: 111370 [DOI: 10.1016/j.rse.2019.111370http://dx.doi.org/10.1016/j.rse.2019.111370]
Fialko Y and Simons M. 2001. Evidence for on-going inflation of the Socorro Magma Body, New Mexico, from interferometric synthetic aperture radar imaging. Geophysical Research Letters, 28(18): 3549-3552 [DOI: 10.1029/2001GL013318http://dx.doi.org/10.1029/2001GL013318]
Hanssen R F. 2005. Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. International Journal of Applied Earth Observation and Geoinformation, 6(3/4): 253-260 [DOI: 10.1016/j.jag.2004.10.004http://dx.doi.org/10.1016/j.jag.2004.10.004]
Hooper A, Segall P and Zebker H. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7): B07407 [DOI: 10.1029/2006JB004763http://dx.doi.org/10.1029/2006JB004763]
Jiang H J. 2012. High-Resolution Spaceborne SAR Interferometry for DEM Generation and Updating. Wuhan: Wuhan University
蒋厚军. 2012. 高分辨率星载InSAR技术在DEM生成及更新中的应用研究. 武汉: 武汉大学
Li D W, Jiang L M, Jiang H J, Dong J L and Wang H S. 2019. InSAR phase simulation of solid earth tide and its influence on surface deformation monitoring at wide-area scale. Chinese Journal of Geophysics, 62(12): 4527-4539
李德伟, 江利明, 蒋厚军, 董景龙, 汪汉胜. 2019. 固体潮位移InSAR相位模拟及对广域地表形变监测的影响初探. 地球物理学报, 62(12): 4527-4539 [DOI: 10.6038/cjg2019M0595http://dx.doi.org/10.6038/cjg2019M0595]
Li Z W, Cao Y M, Wei J C, Duan M, Wu L X, Hou J X and Zhu J J. 2019. Time-series InSAR ground deformation monitoring: atmospheric delay modeling and estimating. Earth-Science Reviews, 192: 258-284 [DOI: 10.1016/j.earscirev.2019.03.008http://dx.doi.org/10.1016/j.earscirev.2019.03.008]
Li Z H, Muller J P, Cross P and Fielding E J. 2005. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research: Solid Earth, 110(B3): B03410 [DOI: 10.1029/2004JB003446http://dx.doi.org/10.1029/2004JB003446]
Li Z W, Xu W B, Feng G C, Hu J, Wang C C, Ding X L and Zhu J J. 2012. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophysical Journal International, 189(2): 898-910 [DOI: 10.1111/j.1365-246X.2012.05432.xhttp://dx.doi.org/10.1111/j.1365-246X.2012.05432.x]
Liao M S and Wang T. 2014. Time Series InSAR Technology and Application. Beijing: Science Press
廖明生, 王腾. 2014. 时间序列InSAR技术与应用. 北京: 科学出版社
Lin Y n N, Simons M, Hetland E A, Muse P and DiCaprio C. 2010. A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochemistry, Geophysics, Geosystems, 11(9): Q09002 [DOI: 10.1029/2010GC003228http://dx.doi.org/10.1029/2010GC003228]
Nico G, Tomé R, Catalão J and Miranda P M A. 2011. On the use of the WRF model to mitigate tropospheric phase delay effects in SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 49(12): 4970-4976 [DOI: 10.1109/TGRS.2011.2157511http://dx.doi.org/10.1109/TGRS.2011.2157511]
Peltzer G, Crampé F, Hensley S and Rosen P. 2001. Transient strain accumulation and fault interaction in the Eastern California shear zone. Geology, 29(11): 975-978 [DOI: 10.1130/0091-7613(2001)029<0975:TSAAFI>2.0.CO;2http://dx.doi.org/10.1130/0091-7613(2001)029<0975:TSAAFI>2.0.CO;2]
Rateb A and Abotalib A Z. 2020. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Science of the Total Environment, 729: 138868 [DOI: 10.1016/j.scitotenv.2020.138868http://dx.doi.org/10.1016/j.scitotenv.2020.138868]
Rouyet L, Lauknes T R, Christiansen H H, Strand S M and Larsen Y. 2019. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sensing of Environment, 231: 111236 [DOI: 10.1016/j.rse.2019.111236http://dx.doi.org/10.1016/j.rse.2019.111236]
Tang W, Liao M S, Zhang L, Li W and Yu W M. 2016. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis. Atmospheric Measurement Techniques, 9(9): 4487-4501 [DOI: 10.5194/amt-9-4487-2016http://dx.doi.org/10.5194/amt-9-4487-2016]
Tang W, Motagh M and Zhan W. 2020. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. International Journal of Applied Earth Observation and Geoinformation, 93: 102217 [DOI: 10.1016/j.jag.2020.102217http://dx.doi.org/10.1016/j.jag.2020.102217]
Tymofyeyeva E and Fialko Y. 2015. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone. Journal of Geophysical Research: Solid Earth, 120(8): 5952-5963 [DOI: 10.1002/2015JB011886http://dx.doi.org/10.1002/2015JB011886]
Tymofyeyeva E and Fialko Y. 2018. Geodetic evidence for a blind fault segment at the southern end of the San Jacinto Fault Zone. Journal of Geophysical Research: Solid Earth, 123(1): 878-891 [DOI: 10.1002/2017JB014477http://dx.doi.org/10.1002/2017JB014477]
Wang K and Fialko Y. 2018. Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. Journal of Geophysical Research: Solid Earth, 123(1): 761-779 [DOI: 10.1002/2017JB014620http://dx.doi.org/10.1002/2017JB014620]
Werner C, Wegmuller U, Strozzi T and Wiesmann A. 2003. Interferometric point target analysis for deformation mapping//2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse: IEEE: 4362-4364 [DOI: 10.1109/IGARSS.2003.1295516http://dx.doi.org/10.1109/IGARSS.2003.1295516]
Yu C, Li Z H and Penna N T. 2018a. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sensing of Environment, 204: 109-121 [DOI: 10.1016/j.rse.2017.10.038http://dx.doi.org/10.1016/j.rse.2017.10.038]
Yu C, Li Z H, Penna N T and Crippa P. 2018b. Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 123(10): 9202-9222 [DOI: 10.1029/2017JB015305http://dx.doi.org/10.1029/2017JB015305]
相关文章
相关作者
相关机构