面向浮游植物类群遥感的HY-1C/D卫星数据应用初探
Remote sensing estimation of phytoplankton groups using Chinese ocean Color satellite data
- 2023年27卷第1期 页码:128-145
纸质出版日期: 2023-01-07
DOI: 10.11834/jrs.20221749
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-01-07 ,
扫 描 看 全 文
孙德勇,陈宇航,刘建强,王胜强,何宜军.2023.面向浮游植物类群遥感的HY-1C/D卫星数据应用初探.遥感学报,27(1): 128-145
Sun D Y,Chen Y H,Liu J Q,Wang S Q and He Y J. 2023. Remote sensing estimation of phytoplankton groups using Chinese ocean Color satellite data. National Remote Sensing Bulletin, 27(1):128-145
浮游植物是全球初级生产力的重要贡献者,浮游植物群落结构的变化影响着初级生产力,进而影响着海洋的物质循环与能量转换,因此具体量化分析浮游植物各群落结构的生物量对了解浮游植物群落结构变化,进而了解全球初级生产力极其重要。本文基于2016年与2018年4个渤海航次的实测遥感反射率数据和实测HPLC(High Performance Liquid Chromatography)浮游植物色素数据,通过CHEMTAX(CHEMical TAXonomy)方法将HPLC色素数据转化为相应藻种浓度数据,其中硅藻、隐藻、蓝藻与绿藻对总叶绿素
a
的占比较大。结合奇异值分解和多元线性回归方法,构建适用于中国近海硅藻、隐藻、蓝藻和绿藻浓度的反演模型;利用留一交叉验证法对模型进行验证,结果表明:隐藻、蓝藻和绿藻模型精度较高,决定系数
R
2
均在0.70及以上,硅藻
R
2
为0.44(
p
均小于0.001),硅藻、隐藻、蓝藻和绿藻浓度反演模型的中值误差ME各为44.81%、45.34%、51.20%和62.80%。随后,将模型应用于国产HY-1C/D卫星海洋水色扫描仪COCTS(China Ocean Color
&
Temperature Scanner)的遥感反射率日产品数据,获得渤海4个藻种浓度的空间分布特征,发现与实测浓度的空间分布特征分布一致。进一步分析COCTS与MODIS-Aqua、GOCI-Ⅱ的藻种浓度反演模型精度,发现基于COCTS波段的隐藻浓度反演模型精度高于基于MODIS-Aqua、GOCI-Ⅱ波段模型,硅藻、蓝藻和绿藻浓度反演模型精度和MODIS-Aqua相近且均高于GOCI-Ⅱ。在藻种浓度监测的示范性应用上,COCTS效果更好。综上所述,国产卫星HY-1C/D数据在藻种浓度监测方面具有强大的应用潜力。
Phytoplankton is a significant producer of global primary productivity and influences the ocean’s biological cycle and energy conversion. Understanding and detecting the phytoplankton biomass is important to grasp the variations in the marine environment. However
observing the changes of phytoplankton taxa remains a great challenge on spatial and temporal scales. Recent developments in ocean color sensors have enabled large-scale and long time-series remote sensing retrieval of phytoplankton biomass. HaiYang-1C and HaiYang-1D (HY-1C/D) satellites
as the main members of the Chinese ocean color satellite series
can provide ocean color products with a larger observation range
higher accuracy
and resolution
with great application potential.
In this study
we collect
in situ
data
including the pigment concentration with the high-performance liquid chromatography method (HPLC) and remote sensing reflectance (
R
rs
)
from four cruises in the Bohai Sea and the Yellow Sea from 2016 to 2018. Then
we obtain eight typical phytoplankton taxa concentrations through CHEMTAX (CHEMical TAXonomy) software based on these pigment data. We found the sum of the relative contributions of diatoms
cryptophytes
cyanobacteria
and chlorophytes to total chlorophyll
a
(TChl
a
) accounted for a large proportion (79%). In addition
the spatial distribution of the CHEMTAX-calculated phytoplankton taxa showed a trend of higher nearshore concentration than offshore by spatial interpolation analysis.
We used the singular value decomposition (SVD) method to construct a link between
R
rs
and phytoplankton concentrations. The matrix
U
obtained from SVD was used to build four models by multiple linear regression methods
to estimate four phytoplankton taxa concentrations. We carried out validation independently based on the measured and estimated concentrations
and the result showed relatively high consistent between diatoms
cryptophytes
cyanobacteria
and chlorophytes and the measured values (determination coefficients (
R
2
): 0.44
0.70
0.70 and 0.71 (
p
<
0.001); median percent error (ME): 44.81%
45.34%
51.20% and 62.80%; Root Mean Squared Error (RMSE): 0.23 mg/m
3
0.24 mg/m
3
0.11 mg/m
3
and 0.06 mg/m
3
respectively). The established model was further applied to China Ocean Color
&
Temperature Scanner (COCTS)
R
rs
data on the HY-1C/D L1A to demonstrate the spatial distribution of four major phytoplankton taxa in the Bohai Sea. The satellite results are consistent with previous studies that showed decreasing concentrations from nearshore to offshore.
Finally
this study applies the same modeling approach (SVD) to MODIS and GOCI sensor bands. A comparison of model performance and satellite applications between the three sensors showed that the new model established by COCTS bands outperformed the GOCI-Ⅱ model and was similar to the MODIS-Aqua model. Also
the satellite application of COCTS is superior to the other two sensors. Generally
this study can provide a methodological foundation for understanding the spatial-temporal evolution of the phytoplankton community in the Bohai Sea. Meanwhile
this study shows the great potential of HY-1C/D in models establishing and phytoplankton community monitoring.
藻种浓度CHEMTAX奇异值分解HY-1C/D渤海
Phytoplankton taxa concentrationsCHEMTAXSVDHY-1C/Dthe Bohai Sea
Aiken J, Pradhan Y, Barlow R, Lavender S, Poulton A, Holligan P and Hardman-Mountford N. 2009. Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995—2005. Deep Sea Research PartⅡ: Topical Studies in Oceanography, 56(15): 899-917 [DOI: 10.1016/j.dsr2.2008.09.017http://dx.doi.org/10.1016/j.dsr2.2008.09.017]
Balfoort H W, Snoek J, Smiths J R M, Breedveld L W, Hofstraat J W and Ringelberg J. 1992. Automatic identification of algae: neural network analysis of flow cytometric data. Journal of Plankton Research, 14(4): 575-589 [DOI: 10.1093/plankt/14.4.575http://dx.doi.org/10.1093/plankt/14.4.575]
Behrenfeld M J, O’Malley R T, Siegel D A, McClain C R, Sarmiento J L, Feldman G C, Milligan A J, Falkowski P G, Letelier R M and Boss E S. 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444(7120): 752-755 [DOI: 10.1038/nature05317http://dx.doi.org/10.1038/nature05317]
Boyce D G, Lewis M R and Worm B. 2010. Global phytoplankton decline over the past century. Nature, 466(7306): 591-596 [DOI: 10.1038/nature09268http://dx.doi.org/10.1038/nature09268]
Bracher A, Taylor M H, Taylor B, Dinter T, Röttgers R and Steinmetz F. 2015. Using empirical orthogonal functions derived from remote-sensing reflectance for the prediction of phytoplankton pigment concentrations. Ocean Science, 11(1): 139-158 [DOI: 10.5194/os-11-139-2015http://dx.doi.org/10.5194/os-11-139-2015]
Cai L N, Zhou M R, Liu J Q, Tang D L and Zuo J C. 2020. HY-1C observations of the impacts of islands on suspended sediment distribution in Zhoushan coastal waters, China. Remote Sensing, 12(11): 1766 [DOI: 10.3390/rs12111766http://dx.doi.org/10.3390/rs12111766]
Chen G, Yang J, Zhang B T and Ma C Y. 2019. Thoughts and prospects on the new generation of marine science satellites. Periodical of Ocean University of China, 49(10): 110-117
陈戈, 杨杰, 张本涛, 马纯永. 2019. 新一代海洋科学卫星的思考与展望. 中国海洋大学学报, 49(10): 110-117 [DOI: 10.16441/j.cnki.hdxb.20190226http://dx.doi.org/10.16441/j.cnki.hdxb.20190226]
Chen M. 2005. Summarization of Algorithms of Ocean Color Remote Sensing. Qingdao: Ocean University of China
陈淼. 2005. 海洋水色卫星遥感算法综述. 青岛: 中国海洋大学 [DOI: 10.7666/d.y828457http://dx.doi.org/10.7666/d.y828457]
Del Castillo C E and Coble P G. 2000. Seasonal variability of the colored dissolved organic matter during the 1994—95 NE and SW Monsoons in the Arabian Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 47(7/8): 1563-1579 [DOI: 10.1016/S0967-0645(99)00154-Xhttp://dx.doi.org/10.1016/S0967-0645(99)00154-X]
Dupouy C, Benielli-Gary D, Neveux J, Dandonneau Y and Westberry T K. 2011. An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific. Biogeosciences, 8(12): 3631-3647 [DOI: 10.5194/bg-8-3631-2011http://dx.doi.org/10.5194/bg-8-3631-2011]
Furuya K, Hayashi M, Yabushita Y and Ishikawa I. 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 50(2): 367-387 [DOI: 10.1016/S0967-0645(02)00460-5http://dx.doi.org/10.1016/S0967-0645(02)00460-5]
Gong C L and Fan W. 2002. Algorithms for case 2 waters of remote sensing of ocean color. Marine Science Bulletin, 21(2): 77-83
巩彩兰, 樊伟. 2002. 海洋水色卫星遥感二类水体反演算法的国际研究进展. 海洋通报, 21(2):77-83 [DOI: 10.3969/j.issn.1001-6392.2002.02.012http://dx.doi.org/10.3969/j.issn.1001-6392.2002.02.012]
He M X, Liu J P, Yu J, Li D Q and Hu C M. 2011. Monitoring green tides in Chinese marginal seas//Morales J, Stuart V, Platt T and Sathyendranath S eds. Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management. Dartmouth: EU PRESPO and IOCCG: 111-124
Hooker S B, Firestone E R and Lazin G. 2000. Sea WiFS postlaunch technical report series. Volume 8; The SeaBOARR-99 field campaign. Ceamos Cl, 55(5): 2827-2832 [https://ntrs.nasa.gov/citations/20000024866https://ntrs.nasa.gov/citations/20000024866]
Hu C M. 2009. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment, 113(10): 2118-2129 [DOI: 10.1016/j.rse.2009.05.012http://dx.doi.org/10.1016/j.rse.2009.05.012]
Hu C M, Cannizzaro J, Carder K L, Muller-Karger F E and Hardy R. 2010a. Remote detection of Trichodesmium blooms in optically complex coastal waters: examples with MODIS full-spectral data. Remote Sensing of Environment, 114(9): 2048-2058 [DOI: 10.1016/j.rse.2010.04.011http://dx.doi.org/10.1016/j.rse.2010.04.011]
Hu C M, Li D Q, Chen C S, Ge J Z, Muller-Karger F E, Liu J P, Yu F and He M X. 2010b. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. Journal of Geophysical Research: Oceans, 115(C5): C05017 [DOI: 10.1029/2009JC005561http://dx.doi.org/10.1029/2009JC005561]
Hu L B, Hu C M and He M X. 2017. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sensing of Environment, 192: 217-227 [DOI: 10.1016/j.rse.2017.01.037http://dx.doi.org/10.1016/j.rse.2017.01.037]
Jeffrey S W and Hallegraeff G M. 1987. Phytoplankton pigments, species and light climate in a complex warm-core eddy of the East Australian Current. Deep Sea Research, 34(5): 649-673 [DOI:10.1016/0198-0149(87)90029-Xhttp://dx.doi.org/10.1016/0198-0149(87)90029-X]
Jiang D J and Zhang H. 2018. Analysis of spatial and temporal characteristics of chlorophyll-a concentration and red tide monitoring in Bohai Sea. Marine Sciences, 42(5): 23-31
姜德娟, 张华. 2018. 渤海叶绿素浓度时空特征分析及其对赤潮的监测. 海洋科学, 42(5): 23-31 [DOI: 10.11759/hykx20171215001http://dx.doi.org/10.11759/hykx20171215001]
Jiang X W, He X Q, Lin M S, Gong F, Ye X M and Pan D L. 2019. Progresses on ocean satellite remote sensing application in China. Haiyang Xuebao, 41(10): 113-124
蒋兴伟, 何贤强, 林明森, 龚芳, 叶小敏, 潘德炉. 2019. 中国海洋卫星遥感应用进展. 海洋学报, 41(10): 113-124 [DOI: 10.3969/j.issn.0253-4193.2019.10.008http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.008]
Jiang X W, Lin M S and Zhang Y G. 2016. Progress and prospect of Chinese ocean satellites. Journal of Remote Sensing, 20(5): 1185-1198
蒋兴伟, 林明森, 张有广. 2016. 中国海洋卫星及应用进展. 遥感学报, 20(5):1185-1198 [DOI: 10.11834/jrs.20166153http://dx.doi.org/10.11834/jrs.20166153]
Jiao N Z and Yang Y H. 1999. Simultaneous monitoring of autotrophic picoplankton and heterotrophic bacteria. Oceanologia et Limnologia Sinica, 30(5): 506-511
焦念志, 杨燕辉. 1999. 四类海洋超微型浮游生物的同步监测. 海洋与湖沼, 30(5): 506-511
Jin D X. 1991. Marine diatomology. Xiamen: Xiamen University Press
金德祥. 1991. 海洋硅藻学. 厦门: 厦门大学出版社
Lee Z, Ahn Y H, Mobley C and Arnone R. 2010. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform. Optics Express, 18(25): 26313-26324 [DOI: 10.1364/OE.18.026313http://dx.doi.org/10.1364/OE.18.026313]
Li W K and Dickie P M. 2001. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry, 44(3): 236-246 [DOI:10.1002/1097-0320(20010701)44:3<236::aid-cyto1116>3.0.co;2-5http://dx.doi.org/10.1002/1097-0320(20010701)44:3<236::aid-cyto1116>3.0.co;2-5]
Liang C, Liu L, Liu J Q, Zou B, Zou Y R and Cui S X. 2020. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data. Haiyang Xuebao, 42(4): 104-112
梁超, 刘利, 刘建强, 邹斌, 邹亚荣, 崔松雪. 2020. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取. 海洋学报, 42(4): 104-112 [DOI: 10.3969/j.issn.0253-4193.2020.04.012http://dx.doi.org/10.3969/j.issn.0253-4193.2020.04.012]
Lin J F, Cao W X, Wang G F and Hu S B. 2014. Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea. Marine Pollution Bulletin, 83(1): 190-197 [DOI: 10.1016/j.marpolbul.2014.03.052http://dx.doi.org/10.1016/j.marpolbul.2014.03.052]
Lin M S, He X Q, Jia Y J, Bai Y, Ye X M and Gong F. 2019. Advances in marine satellite remote sensing technology in China. Haiyang Xuebao, 41(10): 99-112
林明森, 何贤强, 贾永君, 白雁, 叶小敏, 龚芳. 2019. 中国海洋卫星遥感技术进展. 海洋学报, 41(10): 99-112 [DOI: 10.3969/j.issn.0253-4193.2019.10.007http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.007]
Lin M S, Zhang Y G and Yuan X Z. 2015. The Developmet course and trend of ocean remote sensing satellite. Haiyang Xuebao, 37(1): 1-10
林明森, 张有广, 袁欣哲. 2015. 海洋遥感卫星发展历程与趋势展望. 海洋学报, 37(1): 1-10 [DOI: 10.3969/j.issn.0253-4193.2015.01.001http://dx.doi.org/10.3969/j.issn.0253-4193.2015.01.001]
Liu H R, Liu X, Xiao W P, Laws E A and Huang B Q. 2021. Spatial and temporal variations of satellite-derived phytoplankton size classes using a three-component model bridged with temperature in Marginal Seas of the Western Pacific Ocean. Progress in Oceanography, 191: 102511-102529 [DOI: 10.1016/j.pocean.2021.102511http://dx.doi.org/10.1016/j.pocean.2021.102511]
Liu J Q, Jiang X W and Lin M S. 2012. Analysis of problems and countermeasures in the development of Chinese ocean satellite. Satellite Application, (2): 54-60
刘建强, 蒋兴伟, 林明森. 2012. 中国海洋卫星发展中的问题分析与对策建议. 卫星应用, (2): 54-60
Liu J Q, Zeng T, Liang C, Zou Y R, Ye X M, Ding J, Zou B, Shi L J and GUO M H. 2020. Application of HY-1C in natural disaster monitoring. Satellite Application, (6): 26-34
刘建强, 曾韬, 梁超, 邹亚荣, 叶小敏, 丁静, 邹斌, 石立坚, 郭茂华. 2020. 海洋一号C卫星在自然灾害监测中的应用. 卫星应用, (6): 26-34 [DOI: 10.3969/j.issn.1674-9030.2020.06.008http://dx.doi.org/10.3969/j.issn.1674-9030.2020.06.008]
Liu J Q, Zeng T, Ye X M, Liu J P and Ma X F. 2021. Monitoring of ice crack changes and fracture processes on the Antarctic Brent Ice Shelf by HY-1C/D. Haiyang Xuebao, 43(7): 205-206
刘建强, 曾韬, 叶小敏, 刘金普, 马小峰. 2021. HY-1C/D卫星对南极布伦特冰架冰裂缝变化与断裂过程的监测. 海洋学报, 43(7): 205-206
Liu S X, Fan J F and Wang Z L. 2013. The seasonal changes of phytoplankton community in North Yellow Sea, China. Ecology and Environmental Sciences, 22(7): 1173-1181
刘述锡, 樊景凤, 王真良. 2013. 北黄海浮游植物群落季节变化. 生态环境学报, 22(7): 1173-1181 [DOI: 10.3969/j.issn.1674-5906.2013.07.014http://dx.doi.org/10.3969/j.issn.1674-5906.2013.07.014]
Liu X, Huang B Q, Huang Q, Wang L, Ni X B, Tang Q S, Sun S, Wei H, Liu S M, Li C L and Sun J. 2015. Seasonal phytoplankton response to physical processes in the southern Yellow Sea. Journal of Sea Research, 95: 45-55 [DOI: 10.1016/j.seares.2014.10.017http://dx.doi.org/10.1016/j.seares.2014.10.017]
Luan Q S, Kang Y D and Wang J. 2018. Long-term changes in the phytoplankton community in the Bohai Sea (1959—2015). Progress in Fishery Sciences, 39(4): 9-18
栾青杉, 康元德, 王俊. 2018. 渤海浮游植物群落的长期变化(1959—2015). 渔业科学进展, 39(4): 9-18 [DOI: 10.19663/j.issn2095-9869.20180329001http://dx.doi.org/10.19663/j.issn2095-9869.20180329001]
Martinez E, Antoine D, D’Ortenzio F and Gentili B. 2009. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science, 326(5957): 1253-1256 [DOI: 10.1126/science.1177012http://dx.doi.org/10.1126/science.1177012]
McKinna L I W, Furnas M J and Ridd P V. 2011. A simple, binary classification algorithm for the detection of Trichodesmium spp. within the Great Barrier Reef using MODIS imagery. Limnology and Oceanography: Methods, 9(2): 50-66 [DOI: 10.4319/lom.2011.9.50http://dx.doi.org/10.4319/lom.2011.9.50]
Mobley C D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36): 7442-7455 [DOI: 10.1364/AO.38.007442http://dx.doi.org/10.1364/AO.38.007442]
Moore T S, Dowell M D and Franz B A. 2012. Detection of coccolithophore blooms in ocean color satellite imagery: a generalized approach for use with multiple sensors. Remote Sensing of Environment, 117: 249-263 [DOI: 10.1016/j.rse.2011.10.001http://dx.doi.org/10.1016/j.rse.2011.10.001]
Pan D L and Bai Y. 2008. Advances on the application of ocean color remote sensing engineering in China. Engineering Sciences, 10(9): 14-24, 46
潘德炉, 白雁. 2008. 我国海洋水色遥感应用工程技术的新进展. 中国工程科学, 10(9): 14-24, 46 [DOI: 10.3969/j.issn.1009-1742.2008.09.002http://dx.doi.org/10.3969/j.issn.1009-1742.2008.09.002]
Pan X J, Mannino A, Russ M E, Hooker S B and Harding L W. 2010. Remote sensing of phytoplankton pigment distribution in the United States northeast coast. Remote Sensing of Environment, 114(11): 2403-2416 [DOI: 10.1016/j.rse.2010.05.015http://dx.doi.org/10.1016/j.rse.2010.05.015]
Qi L, Hu C M, Wang M Q, Shang S L and Wilson C. 2017. Floating algae blooms in the East China Sea. Geophysical Research Letters, 44(22): 11501-11509 [DOI: 10.1002/2017gl075525http://dx.doi.org/10.1002/2017gl075525]
Qi L, Hu C M, Xing Q G and Shang S L. 2016. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae, 58: 35-44 [DOI: 10.1016/j.hal.2016.07.004http://dx.doi.org/10.1016/j.hal.2016.07.004]
Shen Y F, Liu J Q, Ding J, Jiao J N, Sun S J and Lu Y C. 2020. HY-1C COCTS and CZI observation of marine oil spills in the South China Sea. Journal of Remote Sensing, 24(8): 933-944
沈亚峰, 刘建强, 丁静, 焦俊男, 孙绍杰, 陆应诚. 2020. 海洋一号C星光学载荷对海面溢油的识别能力分析. 遥感学报, 24(8): 933-944 [DOI: 10.11834/jrs.20209475http://dx.doi.org/10.11834/jrs.20209475]
Shutler J D, Grant M G, Miller P I, Rushton E and Anderson K. 2010. Coccolithophore bloom detection in the north east Atlantic using SeaWiFS: algorithm description, application and sensitivity analysis. Remote Sensing of Environment, 114(5): 1008-1016 [DOI: 10.1016/j.rse.2009.12.024http://dx.doi.org/10.1016/j.rse.2009.12.024]
Sieburth J M, Smetacek V and Lenz J. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography, 23(6): 1256-1263 [DOI: 10.4319/lo.1978.23.6.1256http://dx.doi.org/10.4319/lo.1978.23.6.1256]
Song K S, Li L, Tedesco L P, Li S, Hall B E and Du J. 2014. Remote quantification of phycocyanin in potable water sources through an adaptive model. ISPRS Journal of Photogrammetry and Remote Sensing, 95: 68-80 [DOI: 10.1016/j.isprsjprs.2014.06.008http://dx.doi.org/10.1016/j.isprsjprs.2014.06.008]
Stevenson R J, Peterson C G, Kirschtel D B, King C C and Tuchman N C. 1991. Succession and ecological strategies of benthic diatoms (Bacillariophyceae): density-dependent growth and effects of nutrients and shading. Journal of Phycology, 27: 59-69 [DOI: 10.1111/j.0022-3646.1991.00059.xhttp://dx.doi.org/10.1111/j.0022-3646.1991.00059.x]
Su J L. 2005. China Offshore Hydrology. Beijing: China Ocean Press: 174-181
苏纪兰. 2005. 中国近海水文. 北京: 海洋出版社: 174-181
Suikkanen S, Laamanen M and Huttunen M. 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science, 71(3/4): 580-592 [DOI: 10.1016/j.ecss.2006.09.004http://dx.doi.org/10.1016/j.ecss.2006.09.004]
Sun D Y, Fan J, Wang S Q, Zhang H L, Shen X J, Yuan Y B and He Y J. 2021. Understanding optical absorption associated with phytoplanktonic groups in the marginal seas. Science of the Total Environment, 789: 147846-147859 [DOI:10.1016/j.scitotenv.2021.147846http://dx.doi.org/10.1016/j.scitotenv.2021.147846]
Sun D Y, Huan Y, Qiu Z F, Hu C M, Wang S Q and He Y J. 2017. Remote-sensing estimation of phytoplankton size classes from GOCI satellite measurements in Bohai Sea and Yellow Sea. Journal of Geophysical Research: Oceans, 122(10): 8309-8325 [DOI: 10.1002/2017JC013099http://dx.doi.org/10.1002/2017JC013099]
Sun D Y, Lai W D, Wang S Q, Huan Y, Bilal M, Qiu Z F and He Y J. 2019. Synoptic relationships to estimate phytoplankton communities specific to sizes and species from satellite observations in coastal waters. Optics Express, 27(16): A1156-A1172 [DOI: 10.1364/OE.27.0A1156http://dx.doi.org/10.1364/OE.27.0A1156]
Sun D Y, Li Y M, Wang Q, Lu H, Le C F, Huang C C and Gong S Q. 2011. A neural-network model to retrieve CDOM absorption from in situ measured hyperspectral data in an optically complex lake: Lake Taihu case study. International Journal of Remote Sensing, 32(14): 4005-4022 [DOI: 10.1080/01431161.2010.481297http://dx.doi.org/10.1080/01431161.2010.481297]
Suzuki K, Hinuma A, Saito H, Kiyosawa H, Liu H B, Saino T and Tsuda A. 2005. Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Progress in Oceanography, 64(2/4): 167-187 [DOI: 10.1016/j.pocean.2005.02.007http://dx.doi.org/10.1016/j.pocean.2005.02.007]
Tang J W, Tian G L, Wang X Y, Wang X M and Song Q J. 2004. The methods of water spectra measurement and analysis I: above-water method. Journal of Remote Sensing, 8(1): 37-44
唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 2004. 水体光谱测量与分析Ⅰ: 水面以上测量法. 遥感学报, 8(1): 37-44 [DOI: 10.11834/jrs.20040106http://dx.doi.org/10.11834/jrs.20040106]
Tao B Y, Mao Z H, Lei H, Pan D L, Bai Y, Zhu Q K and Zhang Z L. 2017. A semianalytical MERIS green‐red band algorithm for identifying phytoplankton bloom types in the East China Sea. Journal of Geophysical Research: Oceans, 122(3): 1772-1788 [DOI: 10.1002/2016JC012368http://dx.doi.org/10.1002/2016JC012368]
Tao B Y, Mao Z H, Lei H, Pan D L, Shen Y Z, Bai Y, Zhu Q K and Li Z E. 2015. A novel method for discriminating Prorocentrum donghaiense from diatom blooms in the East China Sea using MODIS measurements. Remote Sensing of Environment, 158: 267-280 [DOI: 10.1016/j.rse.2014.11.004http://dx.doi.org/10.1016/j.rse.2014.11.004]
Taylor B B, Taylor M H, Dinter T and Bracher A. 2013. Estimation of relative phycoerythrin concentrations from hyperspectral underwater radiance measurements—A statistical approach. Journal of Geophysical Research: Oceans, 118(6): 2948-2960 [DOI: 10.1002/jgrc.20201http://dx.doi.org/10.1002/jgrc.20201]
Tomas C R. 1997. Identifying Marine Phytoplankton. San Diego: Academic Press: 1-858
Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. SIL Communications, 1953—1996, 9(1): 1-38 [DOI: 10.1080/05384680.1958.11904091http://dx.doi.org/10.1080/05384680.1958.11904091]
Van Heukelem L and Thomas C S. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A, 910(1): 31-49 [DOI: 10.1016/S0378-4347(00)00603-4http://dx.doi.org/10.1016/S0378-4347(00)00603-4]
Wang H L, Hong H S and Xu L. 1999. Separation and determination of chlorophylls and carotenoids from marine phytoplankton by RP-HPLC. Marine Sciences, (4): 6-9
王海黎, 洪华生, 徐立. 1999. 反相高效液相色谱法分离、测定海洋浮游植物的叶绿素和类胡萝卜素. 海洋科学, (4): 6-9 [DOI: 10.3969/j.issn.1000-3096.1999.04.003http://dx.doi.org/10.3969/j.issn.1000-3096.1999.04.003]
Wen Z B, Wu Y T, Li C and Yin J P. 2021. The current situation and consideration of the application and development of marine satellite data in China. Journal of Tropical Oceanography, 40(6): 23-30
文质彬, 吴园涛, 李琛, 殷建平. 2021. 我国海洋卫星数据应用发展现状与思考. 热带海洋学报, 40(6): 23-30 [DOI: 10.11978/2020122http://dx.doi.org/10.11978/2020122]
Wen Z D, Song K S, Zhao Y, Du J and Ma J H. 2016. Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China. Hydrology and Earth System Sciences, 20(2): 787-801 [DOI: 10.5194/hess-20-787-2016http://dx.doi.org/10.5194/hess-20-787-2016]
Xi H Y, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, d’Andon O H F and Bracher A. 2021. Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multisensor ocean color and sea surface temperature satellite products. Journal of Geophysical Research: Oceans, 126(5): e2020JC017127 [DOI: 10.1029/2020JC017127http://dx.doi.org/10.1029/2020JC017127]
Xi H Y, Losa S N, Mangin A, Soppa M A, Garnesson P, Demaria J, Liu Y Y, d’Andon O H F and Bracher A. 2020. Global retrieval of phytoplankton functional types based on empirical orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI data. Remote Sensing of Environment, 240: 11704 [DOI: 10.1016/j.rse.2020.111704http://dx.doi.org/10.1016/j.rse.2020.111704]
Xiao C, Sun D Y, Wang S Q, Qiu Z F, Huan Y and Zhang J B. 2018. Long-term changes in colored dissolved organic matter from satellite observations in the Bohai Sea and North Yellow Sea. Remote Sensing, 10(5): 688 [DOI: 10.3390/rs10050688http://dx.doi.org/10.3390/rs10050688]
Xu S G, Fu Y Z and Kang P P. 2015. Seasonal and interannual variations of Chlorophyll a in Bohai Sea. Marine Environmental Science, 34(6): 898-903, 924
许士国, 富砚昭, 康萍萍. 2015. 渤海表层叶绿素a时空分布及演变特征. 海洋环境科学, 34(6): 898-903, 924 [DOI: 10.13634/j.cnki.mes.2015.06.016http://dx.doi.org/10.13634/j.cnki.mes.2015.06.016]
Xu X Y. 2019. Deviation Analysis on GOCI, VIIRS and MODIS Remote Sensing Reflectance Products in China Offshore Area. Hangzhou: Hangzhou Normal University
许潇尹. 2019. 中国近海GOCI、VIIRS与MODIS水色遥感反射率产品偏差分析研究. 杭州: 杭州师范大学
Yang B H. 2011. Constructing China’s Ocean Satellite System to Enhance the Capability of Ocean Environment and Disaster Monitoring. Chinese Space Science and Technology, 31(5): 1-8
杨保华. 2011. 构建中国海洋卫星体系提升海洋环境与灾害监测能力. 中国空间科学技术, 31(5): 1-8 [DOI: 10.3780/j.issn.1000-758X.2011.05.001http://dx.doi.org/10.3780/j.issn.1000-758X.2011.05.001]
Yang W, Zhou N and Cao J S. 2021. Double-camera geometric stitching of HY-1D coastal zone imager. Spacecraft Recovery and Remote Sensing, 42(4): 99-107
杨威, 周楠, 曹金山. 2021. “海洋一号”D卫星海岸带成像仪双相机几何拼接. 航天返回与遥感, 42(4): 99-107 [DOI: 10.3969/j.issn.1009-8518.2021.04.012http://dx.doi.org/10.3969/j.issn.1009-8518.2021.04.012]
Yao L J, Cao W X, Wang G F, Xu Z T, Hu S B, Zhou W and Li C. 2015. A support vector machine model to estimate phytoplankton size classes. Journal of Tropical Oceanography, 34(4): 37-47
姚林杰, 曹文熙, 王桂芬, 许占堂, 胡水波, 周雯, 李彩. 2015. 基于支持向量机模型反演浮游植物粒级结构. 热带海洋学报, 34(4): 37-47 [DOI: 10.3969/j.issn.1009-5470.2015.04.005http://dx.doi.org/10.3969/j.issn.1009-5470.2015.04.005]
Yao P, Yu Z G and Mi T Z. 2003. The chemotaxonomy of marine phytoplankton. Marine Environmental Science, 22(1): 75-80
姚鹏, 于志刚, 米铁柱. 2003. 海洋浮游藻类的化学分类法. 海洋环境科学, 22(1): 75-80 [DOI: 10.3969/j.issn.1007-6336.2003.01.016http://dx.doi.org/10.3969/j.issn.1007-6336.2003.01.016]
Zeidner G, Preston C M, Delong E F, Massana R, Post A F, Scanlan D J, Béjà O. 2003. Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environmental Microbiology, 5(3):212-6 [doi: 10.1046/j.1462-2920.2003.00403.x. PMID: 12588300http://dx.doi.org/10.1046/j.1462-2920.2003.00403.x.PMID:12588300]
Zhai H C, Ning X R, Tang X X and Zhou W L. 2010. Application of HPLC Pigment Analysis in the Study of Phytoplankton Community Structure. Periodical Of Ocean University Of China, 40(11): 71-78
翟红昌, 宁修仁, 唐学玺, 周文礼. HPLC色素分析技术在海洋浮游植物群落结构研究中的应用. 中国海洋大学学报(自然科学版), 40(11):71-78 [DOI:10.16441/j.cnki.hdxb.2010.11.012http://dx.doi.org/10.16441/j.cnki.hdxb.2010.11.012]
Zhang H L, Devred E, Fujiwara A, Qiu Z F and Liu X H. 2018. Estimation of phytoplankton taxonomic groups in the Arctic Ocean using phytoplankton absorption properties: implication for ocean-color remote sensing. Optics Express, 26(24): 32280-32301 [DOI: 10.1364/OE.26.032280http://dx.doi.org/10.1364/OE.26.032280]
Zhang K L, Ding Z Y and Gao J. 2019a. Design and application of AIS on HY-1C/D satellite. Spacecraft Engineering, 28(5): 26-31
张可立, 丁振宇, 高杰. 2019a. 海洋一号C/D卫星全球船舶自动识别系统设计与应用. 航天器工程, 28(5): 26-31 [DOI: 10.3969/j.issn.1673-8748.2019.05.005http://dx.doi.org/10.3969/j.issn.1673-8748.2019.05.005]
Zhang K L, Zhang Y C and Ma Y. 2019b. Design of on orbit cross calibration method for HY-1C/D satellite. Spacecraft Engineering, 28(2): 24-29
张可立, 张永超, 马越. 2019b. 海洋一号C/D卫星在轨交叉定标设计. 航天器工程, 28(2): 24-29 [DOI: 10.3969/j.issn.1673-8748.2019.02.004http://dx.doi.org/10.3969/j.issn.1673-8748.2019.02.004]
Zhang L H, Zhang J and Chao M. 2002. Identification of Microphytoplankton populations in seawater by flow cytometry. Marine Sciences, 26(3): 60-65
张利华, 张经, 晁敏. 2002. 流式细胞术对微微型浮游植物识别初探. 海洋科学, 26(3): 60-65 [DOI: 10.3969/j.issn.1000-3096.2002.03.018http://dx.doi.org/10.3969/j.issn.1000-3096.2002.03.018]
Zhao C Y, Zang J Y, Liu J, Sun T and Ran X B. 2016. Distribution and budget of nitrogen and phosphorus and their influence on the ecosystem in the Bohai Sea and Yellow Sea. China Environmental Science, 36(7): 2115-2127
赵晨英, 臧家业, 刘军, 孙涛, 冉祥滨. 2016. 黄渤海氮磷营养盐的分布、收支与生态环境效应. 中国环境科学, 36(7): 2115-2127 [DOI: 10.3969/j.issn.1000-6923.2016.07.032http://dx.doi.org/10.3969/j.issn.1000-6923.2016.07.032]
Zhou Y L, Zhang C S, Shi X Y and Su R G. 2017. Distribution characteristics of chlorophyll a and its influencing environmental factors in Bohai Sea and Yellow Sea. China Environmental Science, 37(11): 4259-4265
周艳蕾, 张传松, 石晓勇, 苏荣国. 2017. 黄渤海海水中叶绿素a的分布特征及其环境影响因素. 中国环境科学, 37(11): 4259-4265 [DOI: 10.3969/j.issn.1000-6923.2017.11.031http://dx.doi.org/10.3969/j.issn.1000-6923.2017.11.031]
Zhu Z Y, Ng W M, Liu S M, Zhang J, Chen J C and Wu Y. 2009. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science, 84(3): 393-401 [DOI: 10.1016/j.ecss.2009.07.005http://dx.doi.org/10.1016/j.ecss.2009.07.005]
Zou Y R, Liu J Q, Liang C and Zhu H T. 2020. Monitoring of mangrove growth using HY-1C Satellite CZI data based on remote sensing. Journal of Marine Sciences, 38(1): 68-76
邹亚荣, 刘建强, 梁超, 朱海天. 2020. 基于HY-1C卫星CZI数据的红树林长势遥感监测. 海洋学研究, 38(1): 68-76 [DOI: 10.3969/j.issn.1001-909X.2020.01.008http://dx.doi.org/10.3969/j.issn.1001-909X.2020.01.008]
Zou Y R. 2004. Analysis spatial distribution characteristics for chla in Bohai Sea. Remote Sensing Information, (3): 30-31
邹亚荣. 2004. 渤海叶绿素a时空分布特征分析. 遥感信息, (3): 30-31
相关作者
相关机构