基于MODIS的GF-4/PMS遥感器交叉定标—以巴丹吉林沙漠为参考目标
Cross calibration of GF-4/PMS based on MODIS over Badain Jaran Desert
- 2023年27卷第5期 页码:1205-1215
纸质出版日期: 2023-05-07
DOI: 10.11834/jrs.20221774
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-05-07 ,
扫 描 看 全 文
张浩,刘涛,闫东川,阎跃观,崔珍珍.2023.基于MODIS的GF-4/PMS遥感器交叉定标—以巴丹吉林沙漠为参考目标.遥感学报,27(5): 1205-1215
Zhang H,Liu T,Yan D C,Yan Y G and Cui Z Z. 2023. Cross calibration of GF-4/PMS based on MODIS over Badain Jaran Desert. National Remote Sensing Bulletin, 27(5):1205-1215
高分四号(GF-4)是中国首颗高分辨率静止轨道光学遥感卫星,搭载了一台可见/中波红外凝视相机,由于缺少星上定标系统导致无法提供高频次的星上辐射定标系数。为了更好的实现GF-4/PMS传感器辐射性能监测和数据定量化应用,本文选择了巴丹吉林沙漠南端均匀沙地,利用MODIS作为参考传感器对GF-4/PMS可见近红外波段进行交叉定标。为尽量减少地表不均匀性造成的交叉定标误差,使用较高分辨率的影像(Landsat 8/OLI)搜索巴丹吉林沙漠地区的均匀区域,确定为交叉定标试验区。为进一步减少遥感器成像角度和大气变化的影响,进行了MODIS成像角与GF-4成像角角度差约束(小于20°)、成像时刻约束(小于2 h)、云和成像质量问题,共选择2016年—2018年有效图像对13组,通过利用MODTRAN模拟计算二者光谱匹配因子进而实现交叉定标系数计算。结果表明:(1) 本文计算的辐射定标系数在朗伯体假定和Ross-Li模型假定情况下具有较高一致性,忽略BRDF效应情况造成的计算误差在0.8%—4%,定标结果的不确定度在7.4%以内;(2) 2016年至2018年GF-4/PMS遥感器辐射性能呈现缓慢下降特征,年衰减率小于1%。本文的方法可以有效地提高GF-4/PMS的辐射定标频率和定标精度,实现对GF-4/PMS传感器整个生命周期的辐射性能监测。
GF-4 is the first high-resolution geostationary orbit optical remote sensing satellite in China
and it is equipped with a staring camera that covers the visible-to-mid-infrared spectrum. Providing in-orbit radiometric calibration coefficients frequently is difficult due to the lack of on-board calibration devices. To effectively monitor the radiometric performance of GF-4/PMS and provide a solid basis for quantitative applications
the cross-calibration method was used in this study to derive the calibration coefficients over a selected calibration site located in the north of Badan Jaran Desert. The cross-calibration site was identified by searching the uniform area in a high-resolution image (i.e.
Landsat 8 /OLI) to minimize the uniform impact on the cross-calibration results. To reduce the effects of the imaging angles of the sensor and atmospheric changes
the restraint was set to the imaging angle difference between MODIS and GF-4 (less than 20°)
the imaging time difference (less than 2 h)
the cloud
and image quality. In total
13 image pairs were available from 2016 to 2018 and were used to calculate the cross-calibration coefficients after compensating for the spectral matching factors
which were simulated by MODTRAN. Results showed that (1) the cross-calibration coefficients calculated under the Lambertian assumption were highly consistent with those calculated under the Ross-Li BRDF assumption. The uncertainty was less than 7.4%
and the relative difference ranged between 0.8% and 4% when BRDF was neglected. (2) The radiometric performance of GF-4/PMS decreased slowly from 2016 to 2018
with 1% decrement per year. Thus
the proposed method can effectively improve the radiometric calibration frequency of GF-4/PMS with an acceptable accuracy and can be used for radiometric performance monitoring over the whole life cycle of the sensor.
遥感交叉定标GF-4/PMSMODIS不确定性分析
remote sensingcross calibrationGF-4/PMSMODISuncertainty analysis
Cao C Y, Xu H, Sullivan J, McMillin L, Ciren P and Hou Y T. 2005. Intersatellite radiance biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. Journal of Atmospheric and Oceanic Technology, 22(4): 381-395 [DOI: 10.1175/JTECH1713.1http://dx.doi.org/10.1175/JTECH1713.1]
Chang T J, Xiong X X, Angal A, Wu A S and Geng X. 2017. Aqua and terra MODIS RSB calibration comparison using BRDF modeled reflectance. IEEE Transactions on Geoscience and Remote Sensing, 55(4): 2288-2298 [DOI: 10.1109/TGRS.2016.2641258http://dx.doi.org/10.1109/TGRS.2016.2641258]
Chen Y P, Sun K M, Li D R, Bai T and Huang C Q. 2017. Radiometric cross-calibration of GF-4 PMS sensor based on assimilation of landsat-8 OLI images. Remote Sensing, 9(8): 811 [DOI: 10.3390/rs9080811http://dx.doi.org/10.3390/rs9080811]
Chen Z C, Liu X, Li J S, Luo W F, Zhang L, Zhang H, Zhang X and Zhang B. 2008. The cross calibration of Beijing-1 microsatellite multispectral sensors. Journal of Astronautics, 29(2): 637-643
陈正超, 刘翔, 李俊生, 罗文斐, 张靓, 张浩, 张霞, 张兵. 2008. 北京一号小卫星多光谱遥感器交叉定标. 宇航学报, 29(2): 637-643 [DOI: 10.3873/j.issn.1000-1328.2008.02.046http://dx.doi.org/10.3873/j.issn.1000-1328.2008.02.046]
Chen Z C, Zhang B, Zhang H and Zhang W J. 2014. Vicarious calibration of Beijing-1 multispectral imagers. Remote Sensing, 6(2): 1432-1450 [DOI: 10.3390/rs6021432http://dx.doi.org/10.3390/rs6021432]
Gao H L, Gu X F, Yu T, Li X Y, Gong H and Li J G. 2010. The research overview on visible and near-infrared channels radiometric calibration of space-borne optical remote sensors. Remote Sensing Information, (4): 117-128
高海亮, 顾行发, 余涛, 李小英, 巩慧, 李家国. 2010. 星载光学遥感器可见近红外通道辐射定标研究进展. 遥感信息, (4): 117-128 [DOI: 10.3969/j.issn.1000-3177.2010.04.022http://dx.doi.org/10.3969/j.issn.1000-3177.2010.04.022]
Gong H, Tian G L, Yu T, Zhang Y X, Gu X F and Gao H L. 2010. Irradiance-based calibration and validation of MODIS visible and near-infrared channels. Journal of Remote Sensing, 14(2): 207-218
巩慧, 田国良, 余涛, 张玉香, 顾行发, 高海亮. 2010. MODIS辐照度法定标试验研究. 遥感学报, 14(2): 207-218 [DOI: 10.11834/jrs.20100201http://dx.doi.org/10.11834/jrs.20100201]
Hu C M, Muller-Karger F E, Andrefouet S and Carder K L. 2001. Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS. Remote Sensing of Environment, 78(1/2): 99-107 [DOI: 10.1016/S0034-4257(01)00252-8http://dx.doi.org/10.1016/S0034-4257(01)00252-8]
Lacherade S, Fougnie B, Henry P and Gamet P. 2013. Cross calibration over desert sites: description, methodology, and operational implementation. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1098-1113 [DOI: 10.1109/TGRS.2012.2227061http://dx.doi.org/10.1109/TGRS.2012.2227061]
Li X and Strahler A H. 1992. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 276-292 [DOI: 10.1109/36.134078http://dx.doi.org/10.1109/36.134078]
Li X Y, Gu X F, Min X J, Yu T, Fu Q Y, Zhang Y and Li X W. 2005. Radiometric cross-calibration of the CBERS-02 CCD camera with the TERRA MODIS. Science in China Series E Engineering & Materials Science, 48(S2): 44-60
李小英, 顾行发, 闵祥军, 余涛, 傅俏燕, 张勇, 李小文. 2005. 利用MODIS对CBERS-02卫星CCD相机进行辐射交叉定标. 中国科学E辑: 信息科学, 35(S1): 41-58 [DOI: 10.3969/j.issn.1674-7259.2005.z1.004http://dx.doi.org/10.3969/j.issn.1674-7259.2005.z1.004]
Lv W B. 2014. Research on the Method and System of Cross-Calibration for Domestic Moderate and High-Resolution Remote Sensing Data in Reflection Bands. Chengdu: Southwest Jiaotong University
吕文博. 2014. 国产中—高分辨率遥感数据反射波段交叉辐射定标方法与体系研究. 成都: 西南交通大学
Lyapustin A, Wang Y, Go S, Choi M, Korkin S, Huang D, Knyazikhin Y, Blank K and Marshak A. 2021. Atmospheric correction of DSCOVR EPIC: version 2 MAIAC algorithm. Frontiers in Remote Sensing, 2: 748362 [DOI: 10.3389/frsen.2021.748362http://dx.doi.org/10.3389/frsen.2021.748362]
Ma X H. 2011. Study on the Cross Calibration and Validation of CCD Cameras on HJ-1Satellites. Jiaozuo: Henan Polytechnic University, 2011
马晓红. 2011. HJ-1星CCD相机交叉定标与真实性检验研究. 焦作: 河南理工大学
Nie J, Deng L, Hao X L, Liu M and He Y. 2018. Application of GF-4 satellite in drought remote sensing monitoring: a case study of Southeastern Inner Mongolia. Journal of Remote Sensing, 22(3): 400-407
聂娟, 邓磊, 郝向磊, 刘明, 贺英. 2018. 高分四号卫星在干旱遥感监测中的应用. 遥感学报, 22(3): 400-407 [DOI: 10.11834/jrs.20187067http://dx.doi.org/10.11834/jrs.20187067]
Rao C R N, Zhang N and Sullivan J T. 2001. Inter-calibration of meteorological satellite sensors in the visible and near-infrared. Advances in Space Research, 28(1): 3-10 [DOI: 10.1016/S0273-1177(01)00262-9http://dx.doi.org/10.1016/S0273-1177(01)00262-9]
Schaaf C L B, Liu J, Gao F and Strahler A H. 2011. MODIS Albedo and Reflectance Anisotropy Products from Aqua and Terra. In Land Remote Sensing and Global Environmental Change: NASA's Earth Observing System and the Science of ASTER and MODIS, Remote Sensing and Digital Image Processing Series, Vol. 11, B. Ramachandran, C. Justice, M. Abrams, Eds, Springer-Cerlag, 873 pp.
Scott K P, Thome K J and Brownlee M R. 1996. Evaluation of Railroad Valley playa for use in vicarious calibration//Proceedings of SPIE 2818, Multispectral Imaging for Terrestrial Applications. Denver: SPIE [DOI: 10.1117/12.256090http://dx.doi.org/10.1117/12.256090]
Teillet P M, Fedosejevs G, Thome K J and Barker J L. 2007. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sensing of Environment, 110(3): 393-409 [DOI: 10.1016/j.rse.2007.03.003http://dx.doi.org/10.1016/j.rse.2007.03.003]
Teillet P M, Slater P N, Ding Y, Santer R P, Jackson R D and Moran M S. 1990. Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote Sensing of Environment, 31(2): 105-120 [DOI: 10.1016/0034-4257(90)90060-Yhttp://dx.doi.org/10.1016/0034-4257(90)90060-Y]
Vermote E F and Saleous N Z. 2006. Calibration of NOAA16 AVHRR over a desert site using MODIS data. Remote Sensing of Environment, 105(3): 214-220 [DOI: 10.1016/j.rse.2006.06.015http://dx.doi.org/10.1016/j.rse.2006.06.015]
Wu W. 2019. Application of GF-4 satellite in outburst flood disaster monitoring and assessment. Spacecraft Engineering, 28(2): 134-140
吴玮. 2019. 高分四号卫星在溃决型洪水灾害监测评估中的应用. 航天器工程, 28(2): 134-140 [DOI: 10.3969/j.issn.1673-8748.2019.02.020http://dx.doi.org/10.3969/j.issn.1673-8748.2019.02.020]
Yang A X, Zhong B, Lv W B, Wu S L and Liu Q H. 2015. Cross-calibration of GF-1/WFV over a desert site using Landsat-8/OLI imagery and ZY-3/TLC data. Remote Sensing, 7(8): 10763-10787 [DOI: 10.3390/rs70810763http://dx.doi.org/10.3390/rs70810763]
Yang A X, Zhong B, Wu S L and Liu Q H. 2017. Radiometric cross-calibration of GF-4 in multispectral bands. Remote Sensing, 9(3): 232 [DOI: 10.3390/rs9030232http://dx.doi.org/10.3390/rs9030232]
Yang Z D, Gu S Y, Qiu H, Huang Q and Fan T X. 2004. CBERS-1's CCD image quality evaluating and cross calibrating study. Journal of Remote Sensing, 8(2): 113-120
杨忠东, 谷松岩, 邱红, 黄签, 范天锡. 2004. 中巴地球资源一号卫星CCD图像质量评价和交叉定标研究. 遥感学报, 8(2): 113-120 [DOI: 10.11834/jrs.20040204http://dx.doi.org/10.11834/jrs.20040204]
Zhang H, Zhang B, Chen Z C, Huang Z H. 2018. Vicarious radiometric calibration of the hyperspectral imaging microsatellites SPARK-01 and -02 over Dunhuang, China. Remote Sensing, 10(1): 120 [DOI: 10.3390/rs10010120http://dx.doi.org/10.3390/rs10010120]
Zhang L. 2018. Application of GF-4 satellite in changes monitoring for water body extent of Hongze Lake in flood season. Spacecraft Engineering, 27(2): 129-134
张磊. 2018. 高分四号卫星在洪泽湖汛期水体范围变化监测中的应用. 航天器工程, 27(2): 129-134 [DOI: 10.3969/j.issn.1673-8748.2018.02.020http://dx.doi.org/10.3969/j.issn.1673-8748.2018.02.020]
Zhang Y H, Mao H Q, Wang Z T, Guo W, Li Q, Li Z Q, Chen X F and Chen H. 2016. Cross calibration between GOCI and MODIS based on spectrum and geometry matching. Journal of Atmospheric and Environmental Optics, 11(6): 412-422
张玉环, 毛慧琴, 王中挺, 郭伟, 厉青, 李正强, 陈兴峰, 陈辉. 2016. 基于光谱与几何匹配的GOCI与MODIS交叉辐射定标. 大气与环境光学学报, 11(6): 412-422 [DOI: 10.3969/j.issn.1673-6141.2016.06.002http://dx.doi.org/10.3969/j.issn.1673-6141.2016.06.002]
Zhao W N, Hu X Q, Fang W, Wang Y P and Xu N. 2015. Development and applications of intercalibration for satellite optical instruments. Optics and Precision Engineering, 23(7): 1921-1931
赵维宁, 胡秀清, 方伟, 王玉鹏, 徐娜. 2015. 卫星光学仪器辐射交互定标方法的应用和发展. 光学 精密工程, 23(7): 1921-1931 [DOI: 10.3788/OPE.20152307.1921http://dx.doi.org/10.3788/OPE.20152307.1921]
Zhong B, Zhang Y H, Du T T, Yang A X, Lv W B and Liu Q H. 2014. Cross-calibration of HJ-1/CCD over a desert site using Landsat ETM + imagery and ASTER GDEM product. IEEE Transactions on Geoscience and Remote Sensing, 52(11): 7247-7263 [DOI: 10.1109/TGRS.2014.2310233http://dx.doi.org/10.1109/TGRS.2014.2310233]
相关作者
相关机构