2021年夏季中国大陆涝渍灾害时空分布分析
Spatial and temporal distributions of waterlogging disasters in the summer of 2021 in Mainland China and their possible impacts
- 2022年26卷第9期 页码:1886-1894
纸质出版日期: 2022-09-07
DOI: 10.11834/jrs.20221782
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-09-07 ,
扫 描 看 全 文
李梦倩,房世波,朱永超,武英洁,曹云,卓文,俄有浩.2022.2021年夏季中国大陆涝渍灾害时空分布分析.遥感学报,26(9): 1886-1894
Li M Q,Fang S B,Zhu Y C,Wu Y J,Cao Y,Zhuo W and E Y H. 2022. Spatial and temporal distributions of waterlogging disasters in the summer of 2021 in Mainland China and their possible impacts. National Remote Sensing Bulletin, 26(9):1886-1894
涝渍害是中国除干旱以外对农作物影响最严重的气象灾害,涝渍害的发生和发展对人民的生命和财产安全以及农作物的生长发育产生巨大的影响。2021年7月至8月间,中国北方多地降水达到历史观测极值,而相应时期地面的涝渍害发生和发展状况及其时空特征并未得到有效研究。因此,本研究首先利用中国大陆土壤水分站点日数据和被动微波遥感卫星SMAP反演土壤水分日产品获取中国高精度表层土壤湿度数据(0—10 cm);随后,结合田间持水量数据计算土壤表层相对含水量。在此基础上,以连续10 d土壤相对含水量大于等于90%为标准,分析中国大陆2021年7月1日—8月25日的涝渍害时空分布情况。结果表明:(1)融合后的土壤水分产品较原始的SMAP微波土壤水分产品精度具有明显的提高;(2)中国东北地区水稻田种植区的土壤相对含水量大于等于90%的最长持续天数均为56 d,土壤的水分长期处于饱和状态,说明了本文方法能够较为准确的反应出土壤涝渍害的情况;(3)中国东北及华北地区受灾较为严重,其中黑龙江的西部和河北、河南、山东发生的涝渍面积最大。中国大陆耕地部分受涝渍灾害区域占到总耕地面积的1/2左右,重灾区面积为1.940×10
5
km
2
;(4)黑龙江的西部及河北、河南、山东等地较往年降水偏多,这与涝渍害受灾区基本吻合。
Waterlogging is the most serious meteorological disaster affecting crops in China besides drought. The occurrence of waterlogging has a great impact on the safety of people’s life and properties and the growth and development of crops. From July to August 2021
the precipitation in many places in northern China reached the historical observation extreme value
while the occurrence and development of surface waterlogging in the corresponding period and its temporal and spatial characteristics have not been effectively studied. In this study
the high-precision soil water data (0—10 cm) obtained from the daily soil water data of the soil water stations in Mainland China and the soil water daily products retrieved from passive microwave remote sensing satellite SMAP were used to calculate the soil surface relative water content combined with the soil field capacity data. The soil’s relative water content of greater than or equal to 90% for 10 consecutive days was taken as the standard. The spatial-temporal distribution of the waterlogging damage in Mainland China from July 1 to August 25 in 2021 was analyzed
and the results were comprehensively analyzed on the basis of the cultivated land distribution and precipitation data in Northeast China. The results show the following. (1) Compared with the original SMAP microwave soil moisture product
the accuracy of the fused soil moisture product is significantly improved. (2) The longest duration of soil relative water content greater than or equal to 90% in paddy fields in Northeast China was 56 days
indicating that the proposed method could accurately reflect the situation of relative soil water content. (3) Northeast and Northern China were severely affected
with the most extensive waterlogging in the west part of Heilongjiang Province and the entire area of the Hebei
Henan
and Shandong provinces. The arable area affected by waterlogging accounted for approximately half of the total arable land area in China
and the area of the worst-hit area was 1.940 ×10
5
km
2
. (4) The west part of the Heilongjiang province and the Hebei
Henan
and Shandong provinces received more precipitation than in previous years
which is consistent with the waterlogging disaster areas.
涝渍害微波遥感土壤相对含水量降水时空分布
waterlogged disastermicrowave remote sensingrelative soil water contentprecipitationspatial and temporal distribution
Azimi S, Dariane A B, Modanesi S, Bauer-Marschallinger B, Bindlish R, Wagner W and Massari C. 2020. Assimilation of Sentinel 1 and SMAP-based satellite soil moisture retrievals into SWAT hydrological model: the impact of satellite revisit time and product spatial resolution on flood simulations in small basins. Journal of Hydrology, 581: 124367 [DOI: 10.1016/j.jhydrol.2019.124367http://dx.doi.org/10.1016/j.jhydrol.2019.124367]
Huang S F. 2013. Application of remote sensing technology in flood disaster monitoring and evaluation in China. Disaster Reduction in China, (24): 36-37
黄诗峰. 2013. 遥感技术在我国洪涝灾害监测评估中的应用. 中国减灾, (24): 36-37
Huo Z G, Fan Y X, Yang J Y and Shang Y. 2017. Review on agricultural flood disaster in China. Journal of Applied Meteorological Science, 28(6): 641-653
霍治国, 范雨娴, 杨建莹, 尚莹. 2017. 中国农业洪涝灾害研究进展. 应用气象学报, 28(6): 641-653 [DOI: 10.11898/1001-7313.20170601http://dx.doi.org/10.11898/1001-7313.20170601]
Li B X. 2020. Soil Moisture Retrieval in Vegetation Covered Agricultural Areas Based on Optical and Microwave Remote Sensing Data. Nanchang: 95
李伯祥. 2020. 基于光学与微波遥感数据的植被覆盖区农田土壤水分反演[D]. 南昌:东华理工大学. 南昌:95 [DOI:10.27145/d.cnki.ghddc.2020.000132http://dx.doi.org/10.27145/d.cnki.ghddc.2020.000132]
Li J, Yan H P and Zhu Z W. 2020. Quantitative analysis of changes of summer extremes temperature and precipitation days over China with respect to the mean temperature increase. Plateau Meteorology, 39(3): 532-542
李娟, 闫会平, 朱志伟. 2020. 中国夏季极端气温与降水事件日数随平均气温变化的定量分析. 高原气象, 39(3): 532-542 [DOI: 10.7522/j.issn.1000-0534.2019.00042http://dx.doi.org/10.7522/j.issn.1000-0534.2019.00042]
Liu X N. 1999. Climatic characteristics of extreme rainstorm events in China. Journal of Catastrophology, 14(1): 54-59
刘小宁. 1999. 我国暴雨极端事件的气候变化特征. 灾害学, 14(1): 54-59
Ma J W, Sun Y Y, Chen D Q, Huang S F, Li X T, Cui Q and Yong X. 2017. Applications of GF-3 satellite in flood and landslide disasters emergency monitoring. Spacecraft Engineering, 26(6): 161-166
马建威, 孙亚勇, 陈德清, 黄诗峰, 李小涛, 崔倩, 雍熙. 2017. 高分三号卫星在洪涝和滑坡灾害应急监测中的应用. 航天器工程, 26(6): 161-166 [DOI: 10.3969/j.issn.1673-8748.2017.06.026http://dx.doi.org/10.3969/j.issn.1673-8748.2017.06.026]
Qian L, Wang X G, Luo W B and Wu L. 2013. Experimental study on Morgan model under waterlogging stress. Transactions of the Chinese Society of Agricultural Engineering, 29(16): 92-101
钱龙, 王修贵, 罗文兵, 吴琳. 2013. 涝渍胁迫条件下Morgan模型的试验研究. 农业工程学报, 29(16): 92-101 [DOI: 10.3969/j.issn.1002-6819.2013.16.012http://dx.doi.org/10.3969/j.issn.1002-6819.2013.16.012]
Sekhon H S, Setia R, Singh S P, Kingra P K and Ansari J. 2021. Spatio-temporal analysis of the relationship between climate variables and waterlogging using satellite remote sensing. Arabian Journal of Geosciences, 14(14): 1306 [DOI: 10.1007/s12517-021-07653-8http://dx.doi.org/10.1007/s12517-021-07653-8]
Sun Q F, Liang J C, Meng H W, Wang M, Huang L P and Shen C M. 2021. Temporal changes of coherent droughts and floods over Yunnan in rainy season during the past five and a half centuries. Quaternary Sciences, 41(2): 379-388
孙启发, 梁家昌, 蒙红卫, 王敏, 黄林培, 沈才明. 2021. 云南近5个半世纪雨季同旱涝空间模态的时间变化. 第四纪研究, 41(2): 379-388 [DOI: 10.11928/j.issn.1001-7410.2021.02.07http://dx.doi.org/10.11928/j.issn.1001-7410.2021.02.07]
Wang J X, Qiu S K, Wang Z, Wang C and Du J. 2021. Flood disaster monitoring based on water body extraction of GF-3 image in Zhengzhou. Henan Science, 39(10): 1701-1706
王景旭, 邱士可, 王正, 王超, 杜军. 2021. 基于GF-3号遥感影像水体信息提取的郑州市洪涝灾害监测. 河南科学, 39(10): 1701-1706 [DOI: 10.3969/j.issn.1004-3918.2021.10.022http://dx.doi.org/10.3969/j.issn.1004-3918.2021.10.022]
Wang M, Gao G Q, Wang A J, Zhang L, Wan X J and Yuan L W. 2020. Relationship between the area suffered agricultural flood disaster and rainstorm in Tangshan. Journal of Meteorology and Environment, 36(3): 93-97
王猛, 高桂芹, 王爱军, 张莉, 万绪江, 袁雷武. 2020. 唐山市农业洪涝灾害面积与暴雨关系分析. 气象与环境学报, 36(3): 93-97 [DOI: 10.3969/j.issn.1673-503X.2020.03.013http://dx.doi.org/10.3969/j.issn.1673-503X.2020.03.013]
Wu D, Li Z H, Zhu Y C, Li X, Wu Y J and Fang S B. 2021. A new agricultural drought index for monitoring the water stress of winter wheat. Agricultural Water Management, 244: 106599 [DOI: 10.1016/j.agwat.2020.106599http://dx.doi.org/10.1016/j.agwat.2020.106599]
Xie H Y, Zhang S Y, Hou S C and Zheng X. 2018. Comparison research on rainfall interpolation methods for small sample areas. Research of Soil and Water Conservation, 25(3): 117-121
解恒燕, 张深远, 侯善策, 郑鑫. 2018. 降水量空间插值方法在小样本区域的比较研究. 水土保持研究, 25(3): 117-121 [DOI: 10.13869/j.cnki.rswc.2018.03.017http://dx.doi.org/10.13869/j.cnki.rswc.2018.03.017]
Zhai P M and Pan X H. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geographica Sinica, 58(S1): 1-10
翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化. 地理学报, 58(S1): 1-10 [DOI: 10.3321/j.issn:0375-5444.2003.z1.001http://dx.doi.org/10.3321/j.issn:0375-5444.2003.z1.001]
Zhang A M, Ma X Q, Yang T M, Sheng S X and Huang Y. 2007. The influence of drought and waterlogging disasters on crop yields in Anhui province. Journal of Applied Meteorological Science, 18(5): 619-626
张爱民, 马晓群, 杨太明, 盛绍学, 黄勇. 2007. 安徽省旱涝灾害及其对农作物产量影响. 应用气象学报, 18(5): 619-626 [DOI: 10.3969/j.issn.1001-7313.2007.05.006http://dx.doi.org/10.3969/j.issn.1001-7313.2007.05.006]
Zhang B W and Wan J H. 2013. Assessment and analysis of flood and water logging of China from 2003 to 2012. China Water Resources, (11): 35-37
张葆蔚, 万金红. 2013. 2003年—2012年我国洪涝灾情评估与成因分析. 中国水利, (11): 35-37 [DOI: 10.3969/j.issn.1000-1123.2013.11.016http://dx.doi.org/10.3969/j.issn.1000-1123.2013.11.016]
Zhang M M, Li Z, Tian B S, Zhou J M and Tang P P. 2016. The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: a case study. International Journal of Applied Earth Observation and Geoinformation, 45: 1-13 [DOI: 10.1016/j.jag.2015.10.001http://dx.doi.org/10.1016/j.jag.2015.10.001]
Zhong Z Z, Zhao J B, Li K H and Yan Y H. 1994. The drought-waterlogging index or the join zone between Qinling Mountain and Huanghuai Plain. Agricultural Research in the Arid Areas, 12(4): 105-112
钟兆站, 赵聚宝, 李克煌, 阎育华. 1994. 试论秦岭—黄淮平原交界带的农田水分旱涝指标. 干旱地区农业研究, 12(4): 105-112
Zhu Y C, Li X, Pearson S, Wu D L, Sun R J, Johnson S, Wheeler J and Fang S B. 2019. Evaluation of Fengyun-3C soil moisture products using in-situ data from the Chinese automatic soil moisture observation stations: a case study in Henan Province, China. Water, 11(2): 248 [DOI: 10.3390/w11020248http://dx.doi.org/10.3390/w11020248]
相关作者
相关机构