光谱可形变卷积驱动的高光谱图像分类
Hyperspectral image classification based on spectral deformable convolution neural network
- 2022年26卷第10期 页码:2014-2028
纸质出版日期: 2022-10-07
DOI: 10.11834/jrs.20221798
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-10-07 ,
扫 描 看 全 文
薛朝辉,李博.2022.光谱可形变卷积驱动的高光谱图像分类.遥感学报,26(10): 2014-2028
Xue Z H and Li B. 2022. Hyperspectral image classification based on spectral deformable convolution neural network. National Remote Sensing Bulletin, 26(10):2014-2028
基于卷积神经网络的高光谱图像分类是当前的研究热点,先后发展了空洞卷积、可形变卷积等先进模型。然而,现有可形变卷积只在空间维偏移,忽略了高光谱图像光谱之间的差异信息。为此,本文将可形变卷积从空间维扩展到光谱维,设计了光谱可形变卷积,提出了光谱可形变卷积网络SDCNN(Spectral Deformable Convolutional Neural Network)。首先,利用全连接层学习光谱可形变卷积的偏移量,采用线性差值对图像光谱维进行特征校准;其次,采用多层1×1卷积进行光谱维特征聚合;最后,使用三维卷积层提取光谱—空间联合特征。不同于空间可形变卷积,光谱可形变卷积只在光谱维上进行偏移,可以为不同类别选择更合适的特征波段,提升模型的判别性。在国际通用测试数据Indian Pines、University of Pavia以及University of Houston上进行了实验,结果表明:本文提出的SDCNN方法优于其他深度学习方法,在相同样本条件下取得了更高的分类精度,总体精度达到了98.86%(Indian Pines,10%/类)、99.81%(University of Pavia,5%/类)以及97.41%(University of Houston,50个/类),验证了该方法的有效性。
Currently
convolutional neural network is a research hot spot in hyperspectral image classification. Some advanced models such as dilated convolution and deformable convolution have been developed successfully. However
the existing deformable convolution modules only shift in spatial domain and ignore the spectral difference information. Therefore
this paper proposed a novel deformable convolution
which extends spatial deformable to the spectral domain. In addition
a spectral deformable convolutional neural network (SDCNN) is proposed for hyperspectral image classification. In view of the existing problems in the application of spatial deformable convolution in HSI classification
this paper extends the deformable convolution to the spectral dimension
and proposes the spectral deformable convolution. Given that different feature categories may have different classification effects
more appropriate classification bands can be selected for different class by the learnt shifts in spectral domain. Therefore
the spectral feature extraction can focus on more effective band
thereby promoting more discriminative features. In this way
only one direction of spectral dimension needs to be learned
which reduces computational complexity
that is
only half of the occupying time than that of spatial deformable convolution. First
a full connection layer is used to learn the offset of the spectral deformable convolution
and a linear difference is used to perform feature correction in spectral domain. Second
a multilayer 1×1 convolution is used for spectral feature aggregation. Finally
a 3D convolution layer is used to extract spectral–spatial features. Experiments were conducted on three international popular datasets including Indian Pines
University of Pavia
and University of Houston. The experimental results demonstrate that the SDCNN is superior to other deep learning methods. SDCNN yields the highest classification accuracy with an overall accuracy of 98.86% (Indian pines
10%/class)
99.81% (University of Pavia
5%/class)
and 97.41% (University of Houston
50/class)
which can well verify the effectiveness of the proposed model. First
through comprehensive experiments
SDCNN yields the highest accuracy compared with other existing models on three international popular datasets
which can prove the validity of the SDCNN method. Second
the effectiveness of the spectral deformable convolution module is proven by comparing the traditional dilated convolution module and the spatial deformable convolution module. SDCNN generalizes better with limited training samples
especially when the number of labeled samples is small
The stability of classification performance of SDCNN method is proved;. Finally
In the experiment of separating samples
SDCNN method achieves the best classification effect compared with other methods
and has obvious accuracy advantages compared with spatial deformable convolution method
which proves that SDCNN method has less dependence on spatial features and stronger feature extraction ability.
深度学习高光谱图像分类卷积神经网络可形变卷积
deep learninghyperspectral image classificationconvolutional neural networkdeformable convolution
Belgiu M and Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31 [DOI: 10.1016/j.isprsjprs.2016.01.011http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011]
Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J and Calpe-Maravilla J. 2006. Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 3(1): 93-97 [DOI: 10.1109/LGRS.2005.857031http://dx.doi.org/10.1109/LGRS.2005.857031]
Chen X, Li Z, Jiang Jet al. 2021. Adaptive Effective Receptive Field Convolution for Semantic Segmentation of VHR Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 59(4): 3532-3546[DOI: 10.1109/TGRS.2020.3009143http://dx.doi.org/10.1109/TGRS.2020.3009143]
Chen Y, Nasrabadi N M and Tran T D. 2011. Hyperspectral image classification using dictionary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3973-3985 [DOI: 10.1109/TGRS.2011.2129595http://dx.doi.org/10.1109/TGRS.2011.2129595]
Chen Y S, Lin Z H, Zhao X, Wang G and Gu Y F. 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2094-2107 [DOI: 10.1109/JSTARS.2014.2329330http://dx.doi.org/10.1109/JSTARS.2014.2329330]
Chen Y S, Jiang H L, Li C Y, Jia X P and Ghamisi P. 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10): 6232-6251[DOI: 10.1109/TGRS.2016.2584107http://dx.doi.org/10.1109/TGRS.2016.2584107]
Dai J F, Qi H Z, Xiong Y W, Li Y, Zhang G D, Hu H and Wei Y C. 2017. Deformable convolutional networks//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE: 764-773 [DOI: 10.1109/ICCV.2017.89http://dx.doi.org/10.1109/ICCV.2017.89]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2): 236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(2): 236-256 [DOI: 10.11834/jrs.20165022http://dx.doi.org/10.11834/jrs.20165022]
Fauvel M, Tarabalka Y, Benediktsson J A, Chanussot J and Tilton J C. 2013. Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3):652-675[DOI: 10.1109/JPROC.2012.2197589http://dx.doi.org/10.1109/JPROC.2012.2197589]
Feng J, Wu X D, Shang R H, Sui C, Li J, Jiao L C and Zhang X R. 2021. Attention multibranch convolutional neural network for hyperspectral image classification based on adaptive region search. IEEE Transactions on Geoscience and Remote Sensing, 59(6): 5054-5070 [DOI: 10.1109/TGRS.2020.3011943http://dx.doi.org/10.1109/TGRS.2020.3011943]
Hinton G E and Salakhutdinov R R. 2006. Reducing the dimensionality of data with Neural Networks. Science, 313(5786): 504-507[DOI: 10.1126/science.1127647http://dx.doi.org/10.1126/science.1127647]
Huang H and Qu H P. 2014. Hyperspectral remote sensing image classification based on SSDE. Optics and Precision Engineering, 22(2):434-442
黄鸿, 曲焕鹏. 2014. 基于半监督稀疏鉴别嵌入的高光谱遥感影像分类. 光学精密工程, 22(2):434-442 [DOI: 10.3788/OPE.20142202.0434http://dx.doi.org/10.3788/OPE.20142202.0434]
Hu W, Huang Y Y, Wei L, Zhang F and Li H C. 2015. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015: 258619[DOI: 10.1155/2015/258619http://dx.doi.org/10.1155/2015/258619]
Li C M, Qiu Z L, Cao X Y, Chen Z H, Gao H M and Hua Z J. 2021. Hybrid dilated convolution with multi-scale residual fusion network for hyperspectral image classification. Micromachines, 12(5): 545 [DOI: 10.3390/mi12050545http://dx.doi.org/10.3390/mi12050545]
Li J, Bioucas-Dias J M and Plaza A. 2010. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Transactions on Geoscience and Remote Sensing, 48(11): 4085-4098[DOI: 10.1109/TGRS.2010.2060550http://dx.doi.org/10.1109/TGRS.2010.2060550]
Li W, Du Q and Xiong M M. 2015. Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 12(1): 48-52 [DOI: 10.1109/LGRS.2014.2325978http://dx.doi.org/10.1109/LGRS.2014.2325978]
Li Z K, Wang T N, Li W, Du Q, Wang C Y, Liu C W and Shi X B. 2020. Deep multilayer fusion dense network for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 1258-1270 [DOI: 10.1109/JSTARS.2020.2982614http://dx.doi.org/10.1109/JSTARS.2020.2982614]
Liu G C, Lin Z C, Yan S C, Sun J, Yu Y and Ma Y. 2013. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1): 171-184 [DOI: 10.1109/TPAMI.2012.88http://dx.doi.org/10.1109/TPAMI.2012.88]
Lowe A, Harrison N and French A P. 2017. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13(1):1-12 [DOI: 10.1186/s13007-017-0233-zhttp://dx.doi.org/10.1186/s13007-017-0233-z]
Lu B, Dao P D, Liu J G, He Y H and Shang J L. 2020. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12(16):1-44 [DOI: 10.3390/rs12162659http://dx.doi.org/10.3390/rs12162659]
Melgani F and Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778-1790 [DOI: 10.1109/TGRS.2004.831865http://dx.doi.org/10.1109/TGRS.2004.831865]
Mou L C, Ghamisi P and Zhu X X. 2017. Deep recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3639-3655 [DOI: 10.1109/TGRS.2016.2636241http://dx.doi.org/10.1109/TGRS.2016.2636241]
Mou L C and Zhu X X. 2020. Learning to pay attention on spectral domain: a spectral attention module-based convolutional network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(1): 110-122[DOI: 10.1109/TGRS.2019.2933609http://dx.doi.org/10.1109/TGRS.2019.2933609]
Paoletti M E, Haut J M, Plaza J and Plaza A. 2019. Deep learning classifiers for hyperspectral imaging: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 158: 279-317 [DOI: 10.1016/j.isprsjprs.2019.09.006http://dx.doi.org/10.1016/j.isprsjprs.2019.09.006]
Pooja K, Nidamanuri R R and Mishra D. 2019. Multi-scale dilated residual convolutional neural network for hyperspectral image classification//2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). Amsterdam: IEEE: 1-5 [DOI: 10.1109/WHISPERS.2019.8921284http://dx.doi.org/10.1109/WHISPERS.2019.8921284]
Tong Q X, Zhang B and Zhang L F. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689-707
童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689-707 [DOI: 10.11834/jrs.20166264http://dx.doi.org/10.11834/jrs.20166264]
van der Meer F D, van der Werff H M A, van Ruitenbeek F J A, Hecker C A, Bakker W H, Noomen M F, Van Der meijde M, Carranza E J M, Smeth J B D and Woldai T. 2012. Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128 [DOI: 10.1016/j.jag.2011.08.002http://dx.doi.org/10.1016/j.jag.2011.08.002]
Wang P Q, Chen P F, Yuan Y, Liu D, Huang Z H, Hou X D and Cottrell G. 2018. Understanding convolution for semantic segmentation//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, NV: IEEE: 1451-1460 [DOI: 10.1109/WACV.2018.00163http://dx.doi.org/10.1109/WACV.2018.00163]
Wei X P, Yu X C, Zhang P Q, Zhi L and Yang F. 2020. CNN with local binary patterns for hyperspectral images classification. Journal of Remote Sensing, 24(8): 1000-1009
魏祥坡, 余旭初, 张鹏强, 职露, 杨帆. 2020. 联合局部二值模式的CNN高光谱图像分类. 遥感学报, 24(8): 1000-1009 [DOI: 10.11834/jrs.20208333http://dx.doi.org/10.11834/jrs.20208333]
Xu Y H, Du B and Zhang L P. 2020. Beyond the patchwise classification: spectral-spatial fully convolutional networks for hyperspectral image classification. IEEE Transactions on Big Data, 6(3): 492-506 [DOI: 10.1109/TBDATA.2019.2923243http://dx.doi.org/10.1109/TBDATA.2019.2923243]
Xu Y H, Zhang L P, Du B and Zhang F. 2018. Spectral-spatial unified networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(10): 5893-5909 [DOI: 10.1109/TGRS.2018.2827407http://dx.doi.org/10.1109/TGRS.2018.2827407]
Yu C Y, Han R, Song M P, Liu C Y and Chang C I. 2020. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 2485-2501 [DOI: 10.1109/JSTARS.2020.2983224http://dx.doi.org/10.1109/JSTARS.2020.2983224]
Zhang L P, Zhang L F and Du B. 2016. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geoscience and Remote Sensing, 4(2): 22-40[DOI: 10.1109/MGRS.2016.2540798http://dx.doi.org/10.1109/MGRS.2016.2540798]
Zhang M M, Li W and Du Q. 2018. Diverse region-based CNN for hyperspectral image classification. IEEE Transactions on Image Processing, 27(6): 2623-2634 [DOI: 10.1109/TIP.2018.2809606http://dx.doi.org/10.1109/TIP.2018.2809606]
Zhao F, Zhang J J, Meng Z and Liu H Q. 2021. Densely connected pyramidal dilated convolutional network for hyperspectral image classification. Remote Sensing, 13(17): 3396 [DOI: 10.3390/rs13173396http://dx.doi.org/10.3390/rs13173396]
Zhao W Z and Du S H. 2016. Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4544-4554 [DOI: 10.1109/TGRS.2016.2543748http://dx.doi.org/10.1109/TGRS.2016.2543748]
Zhong Z L, Li J, Luo Z M and Chapman M. 2018. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 847-858 [DOI: 10.1109/TGRS.2017.2755542http://dx.doi.org/10.1109/TGRS.2017.2755542]
Zhong Z L, Li J, Ma L F, Jiang H and Zhao H. 2017. Deep residual networks for hyperspectral image classification//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX: IEEE: 1824-1827 [DOI: 10.1109/IGARSS.2017.8127330http://dx.doi.org/10.1109/IGARSS.2017.8127330]
Zhu J, Fang L Y and Ghamisi P. 2018. Deformable convolutional neural networks for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 15(8): 1254-1258 [DOI: 10.1109/LGRS.2018.2830403http://dx.doi.org/10.1109/LGRS.2018.2830403]
相关作者
相关机构