基于REMA数据的东南极达尔克冰川表面塌陷研究
Monitoring and analyzing of the depression on Dalk Glacier, East Antarctica by REMA
- 2023年27卷第9期 页码:2114-2126
纸质出版日期: 2023-09-07
DOI: 10.11834/jrs.20221804
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-09-07 ,
扫 描 看 全 文
刘婷婷,丁锐,艾松涛,张保军,王泽民.2023.基于REMA数据的东南极达尔克冰川表面塌陷研究.遥感学报,27(9): 2114-2126
Liu T T,Ding R,Ai S T,Zhang B J and Wang Z M. 2023. Monitoring and analyzing of the depression on Dalk Glacier, East Antarctica by REMA. National Remote Sensing Bulletin, 27(9):2114-2126
全球气候变暖严重影响冰川的稳定性,南极多条冰川表面发生塌陷。由于缺少高空间和高时间分辨率的南极地表高程模型DEM(Digital Elevation Model),目前单支冰川表面时空变化的研究不充分。利用2011年—2016年11期南极参考高程模型REMA(The Reference Elevation Model of Antarctica)数据,开展东南极达尔克冰川表面塌陷区域的高程变化监测,并利用Landsat 7/8和Worldview-2光学影像等数据分析塌陷过程和原因。结果表明,达尔克冰川在2013年发生了一起严重的塌陷事件,塌陷深度最大约45.29 m,造成了约26.29×10
6
m
3
的水体损失;塌陷发生后,该区表面高程不断增加,于2016年恢复至塌陷前的高程。塌陷区具有明显的整体性沉降特征,并存在融水聚集,推测塌陷和达尔克冰川冰下湖的排水过程存在密切的联系。本研究证明达尔克冰川存在较大的不稳定性,同时验证了REMA数据监测冰川表面塌陷的可行性,为未来精细化监测南极冰盖/冰架响应气候变化提供技术参考。
With global warming
glacier surface depressions are frequently occurring in Antarctica
which is challenging for stability evaluation of glaciers. However
the shortage of high spatial and temporal resolution digital elevation model
researches on single glacier surface variations remain rather limited. 11-period REMA during 2011-2016 were used to measure surface sudden depression on Dalk Glaicer
East Antarctica. Landsat 7
8 Wordlview-2 satellite images and so on were utilized to analyze the process and reason of the glacier surface evolution. The results show that: a serious surface depression occurred on Dalk Glacier in 2013 with maximum depression depth of 45.29 m and caused the englacially stored meltwater loss of 26.29×10
6
m
3
; then the elevation were increasing until that the elevation achieved the pre-depression level in 2016.The depression was typical of uniform settlement and intense surface melting. And the depression was closely interconnected with active ice-covered lakes drainage inside Dalk Glacier. Thus
Dalk glacier has been in a dangerous and unstable position due to melting and depressions. In addition
REMA was verified to monitor glacier surface depression
which was valuable for refine monitoring ice shelf and glacier response to climate change.
南极,达尔克冰川,表面塌陷,气候变化,REMADigitalElevationModel,遥感,Landsat数据,Worldview数据
the AntarcticDalk Glaciersurface depressionclimate changeREMA Digital Elevation Modelremote sensingLandsate dataWorldview data
Ai S T, Wang S S, Li Y S, Moholdt G, Zhou C X, Liu L B and Yang Y D. 2019. High-precision ice-flow velocities from ground observations on Dalk Glacier, Antarctica. Polar Science, 19: 13-23 [DOI: 10.1016/j.polar.2018.09.003http://dx.doi.org/10.1016/j.polar.2018.09.003]
Banwell A F, Willis I C, Macdonald G J, Goodsell B and Macayeal D R. 2019. Direct measurements of ice-shelf flexure caused by surface meltwater ponding and drainage. Nature Communications, 10: 730 [DOI: 10.1038/s41467-019-08522-5http://dx.doi.org/10.1038/s41467-019-08522-5]
Bevan S L, Luckman A, Khan S A and Murray T. 2015. Seasonal dynamic thinning at Helheim Glacier. Earth and Planetary Science Letters, 415: 47-53 [DOI: 10.1016/j.epsl.2015.01.031http://dx.doi.org/10.1016/j.epsl.2015.01.031]
Bindschadler R, Scambos T A, Rott H, Skvarca P and Vornberger P. 2002. Ice dolines on Larsen Ice Shelf, Antarctica. Annals of Glaciology, 34: 283-290 [DOI: 10.3189/172756402781817996http://dx.doi.org/10.3189/172756402781817996]
Burton-Johnson A, Black M, Fretwell P T and Kaluza-Gilbert J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. The Cryosphere, 10(4): 1665-1677 [DOI: 10.5194/tc-10-1665-2016http://dx.doi.org/10.5194/tc-10-1665-2016]
Che T, Li X, Li X W and Jiang L M. 2020. Developing cryospheric remote sensing, promoting scientific programme of earth’s three poles. Bulletin of Chinese Academy of Sciences, 35(4): 484-493
车涛, 李新, 李新武, 江利明. 2020. 冰冻圈遥感: 助力“三极”大科学计划. 中国科学院院刊, 35(4): 484-493 [DOI: 10.16418/j.issn.1000-3045.20200323001http://dx.doi.org/10.16418/j.issn.1000-3045.20200323001]
Chen H N, Xu S F, Huang Y, Wang S J, Shu S, Yu B L and Wu J P. 2020a. Vertical accuracy correction and analysis of ASTER GDEM V2 over Antarctic Glacier. Journal of Remote Sensing (Chinese), 24(8): 1010-1022
陈昊楠, 许诗枫, 黄艳, 王淑杰, 舒松, 余柏蒗, 吴健平. 2020. ASTER GDEM V2的南极冰川高程误差校正及精度分析. 遥感学报, 24(8): 1010-1022 [DOI: 10.11834/jrs.20208361http://dx.doi.org/10.11834/jrs.20208361]
Chen Y M, Zhou C X, Ai S T, Liang Q, Zheng L, Liu R X and Lei H B. 2020b. Dynamics of dalk glacier in East Antarctica derived from multisource satellite observations since 2000. Remote Sensing, 12(11): 1809 [DOI: 10.3390/rs12111809http://dx.doi.org/10.3390/rs12111809]
Cheng Y, Xia M L, Qiao G, Lv D, Li Y J and Hai G. 2021. Imminent calving accelerated by increased instability of the Brunt Ice Shelf, in response to climate warming. Earth and Planetary Science Letters, 572: 117132 [DOI: 10.1016/j.epsl.2021.117132http://dx.doi.org/10.1016/j.epsl.2021.117132]
Dunmire D, Lenaerts J T M, Banwell A F, Wever N, Shragge J, Lhermitte S, Drews R, Pattyn F, Hansen J S S, Willis I C, Miller J and Keenan E. 2020. Observations of buried lake drainage on the Antarctic ice sheet. Geophysical Research Letters, 47(15): e2020GL087970 [DOI: 10.1029/2020GL087970http://dx.doi.org/10.1029/2020GL087970]
Engel Z, Láska K, Nývlt D and Stachoň Z. 2018. Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009-2015. Journal of Glaciology, 64(245): 349-361 [DOI: 10.1017/jog.2018.17http://dx.doi.org/10.1017/jog.2018.17]
Feng Z Z, Cheng X, Kang J, Hui F M, Liu Y, Cheng C, Wang F, Wang X W, Zhao C, Zhao S and Chen T B. 2013. Review of the NASA IceBridge mission: progress and prospects. Journal of Remote Sensing (Chinese), 17(2): 399-422
冯准准, 程晓, 康婧, 惠凤鸣, 刘岩, 程铖, 王芳, 王显威, 赵晨, 赵硕, 陈廷彪. 2013. 美国NASA冰桥(IceBridge)科学计划: 进展与展望. 遥感学报, 17(2): 399-422 [DOI: 10.11834/jrs.20131337http://dx.doi.org/10.11834/jrs.20131337]
Fretwell P, Pritchard H D, Vaughan D G, Bamber J L, Barrand N E, Bell R, Bianchi C, Bingham R G, Blankenship D D, Casassa G, Catania G, Callens D, Conway H, Cook A J, Corr H F J, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs J A, Hindmarsh R C A, Holmlund P, Holt J W, Jacobel R W, Jenkins A, Jokat W, Jordan T, King E C, Kohler J, Krabill W, Riger-Kusk M, Langley K A, Leitchenkov G, Leuschen C, Luyendyk B P, Matsuoka K, Mouginot J, Nitsche F O, Nogi Y, Nost O A, Popov S V, Rignot E, Rippin D M, Rivera A, Roberts J, Ross N, Siegert M J, Smith A M, Steinhage D, Studinger M, Sun B, Tinto B K, Welch B C, Wilson D, Young D A, Xiangbin C and Zirizzotti A. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1): 375-393 [DOI: 10.5194/tc-7-375-2013http://dx.doi.org/10.5194/tc-7-375-2013]
Fricker H A, Allison I, Craven M, Hyland G, Ruddell A, Young N, Coleman R, King M, Krebs K and Popov S. 2002. Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. Journal of Geophysical Research: Solid Earth, 107(B5): ECV 1-1-ECV 1-9 [DOI: 10.1029/2001JB000383http://dx.doi.org/10.1029/2001JB000383]
Fricker H A, Scambos T, Bindschadler R and Padman L. 2007. An active subglacial water system in West Antarctica mapped from space. Science, 315(5818): 1544-1548 [DOI: 10.1126/science.1136897http://dx.doi.org/10.1126/science.1136897]
Geng T, Xiao F, Zhang S K, Li J X, Xuan Y and Li F. 2021. Comparison and analysis of the accuracy of two new Antarctic DEMs based on remote sensing images. Chinese Journal of Polar Research, 33(2): 250-259
耿通, 肖峰, 张胜凯, 李佳星, 宣越, 李斐. 2021. 两种新的基于遥感影像的南极DEM精度比较与分析. 极地研究, 33(2): 250-259 [DOI: 10.13679/j.jdyj.20200031http://dx.doi.org/10.13679/j.jdyj.20200031]
Glasser N F and Scambos T A. 2008. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. Journal of Glaciology, 54(184): 3-16 [DOI: 10.3189/002214308784409017http://dx.doi.org/10.3189/002214308784409017]
Howat I M, Porter C, Noh M J, Smith B E and Jeong S. 2015. Brief Communication: sudden drainage of a subglacial lake beneath the Greenland Ice Sheet. The Cryosphere, 9(1): 103-108 [DOI: 10.5194/tc-9-103-2015http://dx.doi.org/10.5194/tc-9-103-2015]
Howat I M, Porter C, Smith B E, Noh M J and Morin P. 2019. The reference elevation model of Antarctica. The Cryosphere, 13(2): 665-674 [DOI: 10.5194/tc-13-665-2019http://dx.doi.org/10.5194/tc-13-665-2019]
Indrigo C, Dow C F, Greenbaum J S and Morlighem M. 2021. Drygalski Ice Tongue stability influenced by rift formation and ice morphology. Journal of Glaciology, 67(262): 243-252 [DOI: 10.1017/jog.2020.99http://dx.doi.org/10.1017/jog.2020.99]
Kang J, Cheng X, Liu Y, Hui F M, Ouyang L X and Li T. 2017. Shadow detection in Antarctica using Landsat8 satellite images. Journal of Beijing Normal University (Natural Science), 53(2): 187-193
康婧, 程晓, 刘岩, 惠凤鸣, 欧阳伦曦, 李田. 2017. 南极地区Landsat8卫星影像的阴影检测方法. 北京师范大学学报(自然科学版), 53(2): 187-193 [DOI: 10.16360/j.cnki.jbnuns.2017.02.013http://dx.doi.org/10.16360/j.cnki.jbnuns.2017.02.013]
Leeson A A, Shepherd A, Briggs K, Howat I, Fettweis X, Morlighem M and Rignot E. 2015. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nature Climate Change, 5(1): 51-55 [DOI: 10.1038/nclimate2463http://dx.doi.org/10.1038/nclimate2463]
Liu Y, Zhou C X, Zheng L and Wang Z M. 2020. Surface freeze-thaw dataset development of the Antarctic ice sheet based on multisource data (1999-2019). Journal of Global Change Data and Discovery, 4(4): 325-331
刘勇, 周春霞, 郑雷, 王泽民. 2020. 多源数据融合的南极冰盖冻融数据集(1999—2019). 全球变化数据学报, 4(4): 325-331 [DOI: 10.3974/geodp.2020.04.02http://dx.doi.org/10.3974/geodp.2020.04.02]
Lu P, Cao X, Wang Q, Leppäranta M, Cheng B and Li Z. 2018. Impact of a surface ice lid on the optical properties of melt ponds. Journal of Geophysical Research: Oceans, 123(11): 8313-8328 [DOI: 10.1029/2018JC014161http://dx.doi.org/10.1029/2018JC014161]
Macayeal D R and Sergienko O V. 2013. The flexural dynamics of melting ice shelves. Annals of Glaciology, 54(63): 1-10 [DOI: 10.3189/2013AoG63A256http://dx.doi.org/10.3189/2013AoG63A256]
Mallinson L, Swift D A and Sole A. 2019. Proglacial icings as indicators of glacier thermal regime: ice thickness changes and icing occurrence in Svalbard. Geografiska Annaler: Series A, Physical Geography, 101(4): 334-349 [DOI: 10.1080/04353676.2019.1670952http://dx.doi.org/10.1080/04353676.2019.1670952]
Mellor M. 1960. Antarctic ice terminology: ice dolines. Polar Record, 10(64): 92-92 [DOI: 10.1017/S0032247400050786http://dx.doi.org/10.1017/S0032247400050786]
Moore J. 1993. Ice blisters and ice dolines. Journal of Glaciology, 39(133): 714-716 [DOI: 10.3189/S002214300001666Xhttp://dx.doi.org/10.3189/S002214300001666X]
Petlicki M. 2018. Subglacial topography of an icefall inferred from repeated terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 15(9): 1461-1465 [DOI: 10.1109/LGRS.2018.2845342http://dx.doi.org/10.1109/LGRS.2018.2845342]
Popov S V, Pryakhin S S, Bliakharskii D P, Pryakhina G V and Tyurin S V. 2017. Vast ice depression in Dålk Glacier, East Antarctica. Ice and Snow, 57(3): 427-432 [DOI: 10.15356/2076-6734-2017-3-427-432http://dx.doi.org/10.15356/2076-6734-2017-3-427-432]
Qin D H. 2017. Cryospheric Sciences. Beijing: Science Press: 484-496
秦大河. 2017. 冰冻圈科学概论. 北京: 科学出版社: 484-496
Reynolds J M. 1983. Observations of glacial features near Fossil Bluff between 1936 and 1979. British Antarctic Survey Bulletin, 59: 75-78
Roy D P, Wulder M A, Loveland T R, Woodcock C E, Allen R G, Anderson M C, Helder D, Irons J R, Johnson D M, Kennedy R, Scambos T A, Schaaf C B, Schott J R, Sheng Y, Vermote E F, Belward A S, Bindschadler R, Cohen W B, Gao F, Hipple J D, Hostert P, Huntington J, Justice C O, Kilic A, Kovalskyy V, Lee Z P, Lymburner L, Masek J G, Mccorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne R H and Zhu Z. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154-172 [DOI: 10.1016/j.rse.2014.02.001http://dx.doi.org/10.1016/j.rse.2014.02.001]
Shen H, Sun Q Z, Dong J, Tian Z X, Zhao J C, Chen F Y and Han X P. 2017. Characteristics of weather and sea ice at the Antarctic Zhongshan station in 2015. Marine Forecasts, 34(6): 27-38
沈辉, 孙启振, 董剑, 田忠翔, 赵杰臣, 陈风云, 韩晓鹏. 2017. 2015年南极中山站气象和海冰特征分析. 海洋预报, 34(6): 27-38 [DOI: 10.11737/j.issn.1003-0239.2017.06.004http://dx.doi.org/10.11737/j.issn.1003-0239.2017.06.004]
Stephenson A and Fleming W L S. 1940. King George the sixth sound. The Geographical Journal, 96(3): 153-166 [DOI: 10.2307/1788550http://dx.doi.org/10.2307/1788550]
Tedesco M, Doherty S, Fettweis X, Alexander P, Jeyaratnam J and Stroeve J. 2016. The darkening of the Greenland ice sheet: trends, drivers, and projections (1981-2100). The Cryosphere, 10(2): 477-496 [DOI: 10.5194/tc-10-477-2016http://dx.doi.org/10.5194/tc-10-477-2016]
Tedesco M, Willis I C, Hoffman M J, Banwell A F, Alexander P and Arnold N S. 2013. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environmental Research Letters, 8(3): 034007 [DOI: 10.1088/1748-9326/8/3/034007http://dx.doi.org/10.1088/1748-9326/8/3/034007]
Tuckett P A, Ely J C, Sole A J, Livingstone S J, Davison B J, van Wessem J M and Howard J. 2019. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nature Communications, 10: 4311 [DOI: 10.1038/s41467-019-12039-2http://dx.doi.org/10.1038/s41467-019-12039-2]
Warner R C, Fricker H A, Adusumilli S, Arndt P, Kingslake J and Spergel J J. 2021. Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica. Geophysical Research Letters, 48(14): e2020GL091095 [DOI: 10.1029/2020GL091095http://dx.doi.org/10.1029/2020GL091095]
Williams R S Jr and Ferrigno J G. 1988. Satellite Image Atlas of Glaciers of the World. U.S. Geological Survey [DOI: 10.3133/pp1386http://dx.doi.org/10.3133/pp1386]
Xiao F, Li F, Zhang S K, Yuan L X and Zhu T T. 2017. DEM production for larsemann hills combining Cryosat-2 and Ground-based elevation data. Geomatics and Information Science of Wuhan University, 42(10): 1417-1422
肖峰, 李斐, 张胜凯, 袁乐先, 朱婷婷. 2017. 联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM. 武汉大学学报(信息科学版), 42(10): 1417-1422 [DOI: 10.13203/j.whugis20160011http://dx.doi.org/10.13203/j.whugis20160011]
Yin H, Sun J and Cheng B. 2021. The effect of snow density evolution on modelled snow depth in the Arctic. Haiyang Xuebao, 43(7): 75-89
尹豪, 苏洁, Cheng B. 2021. 积雪密度演变对北极积雪深度模拟的影响. 海洋学报, 43(7): 75-89 [DOI: 10.12284/hyxb2021143http://dx.doi.org/10.12284/hyxb2021143]
Zhang B G, Zhao J, Ma C, Li T, Cheng X and Liu L B. 2019. UAV photogrammetric monitoring of Antarctic ice doline formation. Journal of Beijing Normal University (Natural Science), 55(1): 19-24
张宝钢, 赵剑, 马驰, 李腾, 程晓, 刘雷保. 2019. 基于无人机遥感技术的南极冰川表面冰坑监测. 北京师范大学学报(自然科学版), 55(1): 19-24 [DOI: 10.16360/j.cnki.jbnuns.2019.01.003http://dx.doi.org/10.16360/j.cnki.jbnuns.2019.01.003]
Zhang B J, Wang Z M, Yang Q M, Liu J B, An J C, Li F, Liu T T and Geng H. 2020. Elevation changes of the Antarctic Ice sheet from joint envisat and CryoSat-2 radar altimetry. Remote Sensing, 12(22): 3746 [DOI: 10.3390/rs12223746http://dx.doi.org/10.3390/rs12223746]
Zhang D, Sun B, Ke C Q, Li X, Cui X B and Guo J X. 2012. Mapping the elevation change of Lambert Glacier in East Antarctica using ICESat GLAS. Journal of Maps, 8(4): 473-477 [DOI: 10.1080/17445647.2012.747355http://dx.doi.org/10.1080/17445647.2012.747355]
Zwally H J, Li J, Robbins J W, Saba J L, Yi D H and Brenner A C. 2015. Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61(230): 1019-1036 [DOI: 10.3189/2015JoG15J071http://dx.doi.org/10.3189/2015JoG15J071]
相关作者
相关机构