全球碳盘点卫星遥感监测方法、进展与挑战
Satellite remote sensing for global stocktaking: Methods, progress and perspectives
- 2022年26卷第2期 页码:243-267
纸质出版日期: 2022-02-07
DOI: 10.11834/jrs.20221806
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-02-07 ,
扫 描 看 全 文
刘良云,陈良富,刘毅,杨东旭,张兴嬴,卢乃锰,居为民,江飞,尹增山,刘国华,田龙飞,胡登辉,毛慧琴,刘思含,张建辉,雷莉萍,范萌,张雨琮,周翔,吴一戎.2022.全球碳盘点卫星遥感监测方法、进展与挑战.遥感学报,26(2): 243-267
Liu L Y,Chen L F,Liu Y,Yang D X,Zhang X Y,Lu N M,Ju W M,Jiang F,Yin Z S,Liu G H,Tian L F,Hu D H,Mao H Q,Liu S H,Zhang J H,Lei L P,Fan M,Zhang Y C,Zhou X and Wu Y R. 2022. Satellite remote sensing for global stocktaking: methods, progress and perspectives. National Remote Sensing Bulletin, 26(2):243-267
以全球变暖为主要特征的气候变化已成为全球性环境问题,对全球可持续发展带来严峻挑战。2015年《巴黎协定》确定了自2020年后国家自主贡献的减排方式,并从2023年开始每5 a开展一次全球碳盘点。2019年第49届IPCC全会明确增加了基于卫星遥感的排放清单校验方法。欧盟、美国、日本、加拿大等正在大力发展温室气体排放的MVS(Monitoring and Verification Support)能力。本文调研分析了全球碳盘点对卫星遥感技术的需求,介绍了全球碳盘点卫星遥感的技术原理,梳理了温室气体卫星遥感、生态系统碳源汇卫星遥感估算、人为源碳排放卫星遥感、碳通量同化估算等全球碳盘点卫星遥感核心环节的研究现状与进展,分析了当前卫星遥感技术对全球碳盘点任务的支撑能力,并结合国内外发展趋势,针对性地提出中国的碳监测卫星计划方案,并展望了中国开展全球碳盘点卫星遥感监测重点任务,期望为中国全球碳盘点卫星遥感体系建设提供思路与方案。
Climate warming has become a great challenge for global sustainable development. Under the Paris Agreement
every country must present a climate action plan in five-yearly cycles
a National Determined Contributions (NDC) report will be presented using a standard inventory approach for each country since 2020
and all countries will engage in the global stocktake every five years to assess countries’ NDC progress since 2023. The 49th session of the Intergovernmental Panel on Climate Change (IPCC 49) recommend a ‘top-down’ inversion approach to account greenhouse gas (GHG) emission based on space-borne atmospheric measurements. The European Union
the United States
Japan
and Canada are vigorously developing MVS (Monitoring & Verification Support) capabilities for accounting GHG emissions using satellite remote sensing. Here
we aimed to give a detailed review on the methods and progresses of satellite-based inversion for global stocktaking
and highlight the challenges and perspectives for satellite remote sensing for global stocktaking in China.
Firstly
Earth observation for atmospheric GHG
including ground-based observation networks and GHG satellites
were summarized. Compared to ground-based observations
satellite remote sensing has been providing more and more accurate and higher resolution global GHG detection. In the next five years
13 GHG satellites will be launched
with resolutions ranging from 25 m to 100 km. Secondly
the progresses of satellite remote sensing of ecosystem carbon fluxes were reviewed. There are three kinds of methods to estimate global carbon fluxes
including: the assimilation inversion method (also named as the “top-down” method)
that uses atmospheric chemical transmission model and ground-based or satellite observations of atmospheric GHG to invert carbon flux; the modelling simulation method (also named as the “bottom-up” method) that uses the process model to estimate terrestrial and marine ecosystems carbon fluxes; the data-driven machine learning method that uses remote sensing datasets and metrological datasets to model the carbon uptakes of terrestrial and marine ecosystems. However
the uncertainty in the estimation results of all these top-down or bottom-up methods is still huge at regional or global scale. Thirdly
the researches on satellite monitoring of anthropogenic GHG emissions were summarized. Satellite remote sensing has been an important platform for realizing large-scale
long-term observations of anthropogenic GHG emissions. Although the current accuracy of the satellite-based observations does not fully meet the requirements of the global stocktake
satellite remote sensing has become a promising tool for verifying hot-spot
city
national and global anthropogenic emissions. Finally
the current capability of satellite remote sensing to support global carbon monitoring was assessed
and the Chinese carbon satellite future program was proposed. According the preliminary simulations based on Observation System Simulation Experiments (OSSE)
the China’s next generation carbon satellite (TanSat-2) are presented. Similar to CO2M project supported by European Union
TanSat-2 will give global accurate retrieval of GHGs (1 ppm for CO
2
and 10 ppb for CH
4
)
pollution gases (1.0×10
15
molecules/cm
2
for NO
2
10% for CO) and solar-induced chlorophyll fluorescence (SIF) (0.25 mw m
-2
·nm
-1
·sr
-1
) with a swath of 1000 km and a resolution 500 m resolution
which will provide unprecedented imaging capabilities for estimating GHG emissions.
Satellite remote sensing plays extremely role in build the MVS capability for global stocktake
we provide a reference for the roadmap of the Chinese carbon monitoring program based on the preliminary OSSE simulations. It is absolutely necessary to integrate satellite remote sensing
in-situ observations
big data
carbon assimilation to achieve high precision
high-resolution scientific data on GHG fluxes at hot-spot
regional and global scales
and to effectively distinguish and quantify the flux contributions of anthropogenic GHG emissions and terrestrial carbon sinks /sources.
全球变暖碳盘点碳排放碳源汇卫星遥感同化
global warmingcarbon stocktakingcarbon emissionscarbon sources and sinkssatellite remote sensingassimilation
Andres R J, Boden T A, Bréon F M, Ciais P, Davis S, Erickson D, Gregg J S, Jacobson A, Marland G, Miller J, Oda T, Olivier J G J, Raupach M R, Rayner P and Treanton K. 2012. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9(5): 1845-1871 [DOI: 10.5194/bg-9-1845-2012http://dx.doi.org/10.5194/bg-9-1845-2012]
Basu S, Guerlet S, Butz A, Houweling S, Hasekamp O, Aben I, Krummel P, Steele P, Langenfelds R, Torn M, Biraud S, Stephens B, Andrews A and Worthy D. 2013. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmospheric Chemistry and Physics, 13(17): 8695-8717 [DOI: 10.5194/acp-13-8695-2013http://dx.doi.org/10.5194/acp-13-8695-2013]
Basu S, Lehman S J, Miller J B, Andrews A E, Sweeney C, Gurney K R, Xu X M, Southon J and Tans P P. 2020. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 117(24): 13300-13307 [DOI: 10.1073/pnas.1919032117http://dx.doi.org/10.1073/pnas.1919032117]
Basu S, Miller J B and Lehman S. 2016. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: observation system simulations. Atmospheric Chemistry and Physics, 16(9): 5665-5683 [DOI: 10.5194/acp-16-5665-2016http://dx.doi.org/10.5194/acp-16-5665-2016]
Baugh K, Elvidge C, Ghosh T and Ziskin D. 2010. Development of a 2009 stable lights product using DMSP-OLS data. Proceedings of the Asia-Pacific Advanced Network, 30: 114-130 [DOI: 10.7125/APAN.30.17http://dx.doi.org/10.7125/APAN.30.17]
Boschetti F, Thouret V, Maenhout G J, Totsche K U, Marshall J and Gerbig C. 2018. Multi-species inversion and IAGOS airborne data for a better constraint of continental-scale fluxes. Atmospheric Chemistry and Physics, 18(13): 9225-9241 [DOI: 10.5194/acp-18-9225-2018http://dx.doi.org/10.5194/acp-18-9225-2018]
Brondfield M N, Hutyra L R, Gately C K, Raciti S M and Peterson S A. 2012. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale. Environmental Pollution, 170: 113-123 [DOI: 10.1016/j.envpol.2012.06.003http://dx.doi.org/10.1016/j.envpol.2012.06.003]
Broquet G, Bréon F M, Renault E, Buchwitz M, Reuter M, Bovensmann H, Chevallier F, Wu L and Ciais P. 2018. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities. Atmospheric Measurement Techniques, 11(2): 681-708 [DOI: 10.5194/amt-11-681-2018http://dx.doi.org/10.5194/amt-11-681-2018]
Buchwitz M, Reuter M, Noël S, Bramstedt K, Schneising O, Hilker M, Fuentes Andrade B, Bovensmann H, Burrows J P, Di Noia A, Boesch H, Wu L H, Landgraf J, Aben I, Retscher C, O’Dell C W and Crisp D. 2021. Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals. Atmospheric Measurement Techniques, 14(3): 2141-2166 [DOI: 10.5194/amt-14-2141-2021http://dx.doi.org/10.5194/amt-14-2141-2021]
Buchwitz M, Schneising O, Burrows J P, Bovensmann H, Reuter M and Notholt J. 2007. First direct observation of the atmospheric CO2 year-to-year increase from space. Atmospheric Chemistry and Physics, 7(16): 4249-4256 [DOI: 10.5194/acp-7-4249-2007http://dx.doi.org/10.5194/acp-7-4249-2007]
Buchwitz M, Schneising O, Reuter M, Heymann J, Krautwurst S, Bovensmann H, Burrows J P, Boesch H, Parker R J, Somkuti P, Detmers R G, Hasekamp O P, Aben I, Butz A, Frankenberg C and Turner A J. 2017. Satellite-derived methane hotspot emission estimates using a fast data-driven method. Atmospheric Chemistry and Physics, 17(9): 5751-5774 [DOI: 10.5194/acp-17-5751-2017http://dx.doi.org/10.5194/acp-17-5751-2017]
Cai B F, Zhu S L, Yu S M, Dong H M, Zhang C Y, Wang C K, Zhu J H, Gao Q X, Fang S X, Pan X B and Zheng X H. 2019. The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory. Environmental Engineering, 37(8): 1-11
蔡博峰, 朱松丽, 于胜民, 董红敏, 张称意, 王长科, 朱建华, 高庆先, 方双喜, 潘学标, 郑循华. 2019. 《IPCC2006年国家温室气体清单指南2019修订版》解读. 环境工程, 37(8): 1-11 [DOI: 10.13205/j.hjgc.201908001http://dx.doi.org/10.13205/j.hjgc.201908001]
Cao X, Hu Y, Zhu X L, Shi F, Zhuo L and Chen J 2019. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images. Remote Sensing of Environment, 224: 401-411 [DOI: 10.1016/j.rse.2019.02.019http://dx.doi.org/10.1016/j.rse.2019.02.019]
Chen J D, Gao M, Cheng S L, Hou W X, Song M L, Liu X, Liu Y and Shan Y L. 2020. County-level CO2 emissions and sequestration in China during 1997-2017. Scientific Data, 7(1): 391 [DOI: 10.1038/s41597-020-00736-3http://dx.doi.org/10.1038/s41597-020-00736-3]
Chen J M, Ju W M, Liu R G, Li Y and Jiang F. 2015. Remote Sensing and Optimizing Method of Global Terrestrial Carbon Sink. Beijing: Science Press
陈镜明, 居为民, 刘荣高, 李勇, 江飞. 2015. 全球陆地碳汇的遥感和优化计算方法. 北京: 科学出版社
Chen L F, Zhang Y, Zou M M, Xu Q, Li L J, Li X Y and Tao J H. 2015. Overview of atmospheric CO2 remote sensing from space. Journal of Remote Sensing, 19(1): 1-11
陈良富, 张莹, 邹铭敏, 徐谦, 李令军, 李小英, 陶金花. 2015. 大气CO2浓度卫星遥感进展. 遥感学报, 19(1): 1-11 [DOI: 10.11834/jrs.20153331http://dx.doi.org/10.11834/jrs.20153331]
Cheng L X, Tao J H, Yu C, Zhang Y, Fan M, Wang Y P, Chen Y L, Zhu L L, Gu J B and Chen L F. 2021. Tropospheric NO2 column density retrieval from the GF-5 EMI data. National Remote Sensing Bulletin, 25(11): 2313-2325
程良晓, 陶金花, 余超, 张莹, 范萌, 王雅鹏, 陈元琳, 朱莉莉, 顾坚斌, 陈良富. 2021. 高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究. 遥感学报, 25(11): 2313-2325 [DOI: 10.11834/jrs.20210303http://dx.doi.org/10.11834/jrs.20210303]
Chevallier F, Palmer P I, Feng L, Boesch H, O’Dell C W and Bousquet P. 2014. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophysical Research Letters, 41(3): 1065-1070 [DOI: 10.1002/2013GL058772http://dx.doi.org/10.1002/2013GL058772]
Ciais P, Crisp D, van der Gon H D, Engelen R, Janssens-Maenhout G, Heiman M, Rayner P and Scholze M. 2015. Towards a European Operational Observing System to Monitor Fossil: CO2 Emissions: Final Report from the Expert Group. European Commission [DOI: 10.2788/350433http://dx.doi.org/10.2788/350433]
Cogan A J, Boesch H, Parker R J, Feng L, Palmer P I, Blavier J F L, Deutscher N M, Macatangay R, Notholt J, Roehl C, Warneke T and Wunch D. 2012. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations. Journal of Geophysical Research, 117(D21): D21301 [DOI: 10.1029/2012JD018087http://dx.doi.org/10.1029/2012JD018087]
Conley S, Franco G, Faloona I, Blake D R, Peischl J and Ryerson T B. 2016. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science, 351(6279): 1317-1320 [DOI: 10.1126/science.aaf2348http://dx.doi.org/10.1126/science.aaf2348]
Crisp D, Atlas R M, Breon F M, Brown L R, Burrows J P, Ciais P, Connor B J, Doney S C, Fung I Y, Jacob D J, Miller C E, O’Brien D, Pawson S, Randerson J T, Rayner P, Salawitch R J, Sander S P, Sen B, Stephens G L, Tans P P, Toon G C, Wennberg P O, Wofsy S C, Yung Y L, Kuang Z, Chudasama B, Sprague G, Weiss B, Pollock R, Kenyon D and Schroll S. 2004. The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 34(4): 700-709 [DOI: 10.1016/j.asr.2003.08.062http://dx.doi.org/10.1016/j.asr.2003.08.062]
Crisp D, Pollock H R, Rosenberg R, Chapsky L, Lee R A M, Oyafuso F A, Frankenberg C, O’Dell C W, Bruegge C J, Doran G B, Eldering A, Fisher B M, Fu D J, Gunson M R, Mandrake L, Osterman G B, Schwandner F M, Sun K, Taylor T E, Wennberg P O and Wunch D. 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10(1): 59-81 [DOI: 10.5194/amt-10-59-2017http://dx.doi.org/10.5194/amt-10-59-2017]
De Mazière M, Thompson A M, Kurylo M J, Wild J D, Bernhard G, Blumenstock T, Braathen G O, Hannigan J W, Lambert J C, Leblanc T, Mcgee T J, Nedoluha G, Petropavlovskikh I, Seckmeyer G, Simon P C, Steinbrecht W and Strahan S E. 2018. The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmospheric Chemistry and Physics, 18(7): 4935-4964 [DOI: 10.5194/acp-18-4935-2018http://dx.doi.org/10.5194/acp-18-4935-2018]
Deng F, Jones D B A, Henze D K, Bousserez N, Bowman K W, Fisher J B, Nassar R, O’Dell C, Wunch D, Wennberg P O, Kort E A, Wofsy S C, Blumenstock T, Deutscher N M, Griffith D W T, Hase F, Heikkinen P, Sherlock V, Strong K, Sussmann R and Warneke T. 2014. Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmospheric Chemistry and Physics, 14(7): 3703-3727 [DOI: 10.5194/acp-14-3703-2014http://dx.doi.org/10.5194/acp-14-3703-2014]
Du S S, Liu L Y, Liu X J and Chen J D. 2021. First investigation of the relationship between solar-induced chlorophyll fluorescence observed by TanSat and gross primary productivity. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 11892-11902 [DOI: 10.1109/JSTARS.2021.3128355http://dx.doi.org/10.1109/JSTARS.2021.3128355]
Du S S, Liu L Y, Liu X J, Zhang X, Zhang X Y, Bi Y M and Zhang L C. 2018. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Science Bulletin, 63(22): 1502-1512 [DOI: 10.1016/j.scib.2018.10.003http://dx.doi.org/10.1016/j.scib.2018.10.003]
Duren R M and Miller C E. 2012. Measuring the carbon emissions of megacities. Nature Climate Change, 2(8): 560-562 [DOI: 10.1038/nclimate1629http://dx.doi.org/10.1038/nclimate1629]
Eldering A, Wennberg P O, Crisp D, Schimel D S, Gunson M R, Chatterjee A, Liu J, Schwandner F M, Sun Y, O’Dell C W, Frankenberg C, Taylor T, Fisher B, Osterman G B, Wunch D, Hakkarainen J, Tamminen J and Weir B. 2017. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358(6360): eaam5745 [DOI: 10.1126/science.aam5745http://dx.doi.org/10.1126/science.aam5745]
Elvidge C D, Baugh K, Zhizhin M, Hsu F C and Ghosh T 2017. VIIRS night-time lights. International Journal of Remote Sensing, 38(21): 5860-5879 [DOI: 10.1080/01431161.2017.1342050http://dx.doi.org/10.1080/01431161.2017.1342050]
Elvidge C D, Bazilian M D, Zhizhin M, Ghosh T, Baugh K and Hsu F C. 2018. The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Reviews, 20: 156-162 [DOI: 10.1016/j.esr.2017.12.012http://dx.doi.org/10.1016/j.esr.2017.12.012]
Elvidge C D, Zhizhin M, Baugh K, Hsu F C and Ghosh T. 2016. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies, 9(1): 14 [DOI: 10.3390/en9010014http://dx.doi.org/10.3390/en9010014]
Elvidge C D, Zhizhin M, Hsu F C and Baugh K E. 2013. VIIRS nightfire: satellite pyrometry at night. Remote Sensing, 5(9): 4423-4449 [DOI: 10.3390/rs5094423http://dx.doi.org/10.3390/rs5094423]
Elvidge C D, Ziskin D, Baugh K E, Tuttle B T, Ghosh T, Pack D W, Erwin E H and Zhizhin M. 2009. A fifteen year record of global natural gas flaring derived from satellite data. Energies, 2(3): 595-622 [DOI: 10.3390/en20300595http://dx.doi.org/10.3390/en20300595]
Etheridge D M, Steele L, Langenfelds R L, Francey R J, Barnola J M and Morgan V I. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101(D2): 4115-4128 [DOI: 10.1029/95JD03410http://dx.doi.org/10.1029/95JD03410]
Eurocom. 2015. Development of regional ecosystem-atmosphere models assimilating the ICOS data for a European-scale intercomparison of net CO2 fluxes[EB/OL]. [2021-11-22]. https://eurocom.icos-cp.eu/https://eurocom.icos-cp.eu/
Facchinelli F, Pappalardo S E, Codato D, Diantini A, Della Fera G, Crescini E and De Marchi M. 2020. Unburnable and unleakable carbon in western amazon: using VIIRS nightfire data to map gas flaring and policy compliance in the yasuní biosphere reserve. Sustainability, 12(1): 58 [DOI: 10.3390/su12010058http://dx.doi.org/10.3390/su12010058]
Filges A, Gerbig C, Chen H L, Franke H, Klaus C and Jordan A. 2015. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO. Tellus B: Chemical and Physical Meteorology, 67(1): 27989 [DOI: 10.3402/tellusb.v67.27989http://dx.doi.org/10.3402/tellusb.v67.27989]
Frankenberg C, Butz A and Toon G C. 2011. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light. Geophysical Research Letters, 38(3): L03801 [DOI: 10.1029/2010GL045896http://dx.doi.org/10.1029/2010GL045896]
Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue X and Zaehle S. 2020. Global carbon budget 2020. Earth System Science Data, 12(4): 3269-3340 [DOI: 10.5194/essd-12-3269-2020http://dx.doi.org/10.5194/essd-12-3269-2020]
Gately C K, Hutyra L R, Wing I S and Brondfield M N. 2013. A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional planning. Environmental Science and Technology, 47(5): 2423-2430 [DOI: 10.1021/es304238vhttp://dx.doi.org/10.1021/es304238v]
Global Carbon Project. 2003. Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No.1; Global Carbon Project Report No.1 69pp, Canberra
Graven H, Fischer M L, Lueker T, Jeong S, Guilderson T P, Keeling R F, Bambha R, Brophy K, Callahan W, Cui X, Frankenberg C, Gurney K R, Lafranchi B W, Lehman S J, Michelsen H, Miller J B, Newman S, Paplawsky W, Parazoo N C, Sloop C and Walker S J. 2018. Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environmental Research Letters, 13(6): 065007 [DOI: 10.1088/1748-9326/aabd43http://dx.doi.org/10.1088/1748-9326/aabd43]
Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fan S M, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T and Yuen C W 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872): 626-630 [DOI: 10.1038/415626ahttp://dx.doi.org/10.1038/415626a]
Hakkarainen J, Ialongo I, Maksyutov S and Crisp D. 2019. Analysis of four years of global XCO2 anomalies as seen by orbiting carbon observatory-2. Remote Sensing, 11(7): 850 [DOI: 10.3390/rs11070850http://dx.doi.org/10.3390/rs11070850]
Hakkarainen J, Ialongo I and Tamminen J. 2016. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophysical Research Letters, 43(21): 11400-11406 [DOI: 10.1002/2016GL070885http://dx.doi.org/10.1002/2016GL070885]
Hazan L, Tarniewicz J, Ramonet M, Laurent O and Abbaris A. 2016. Automatic processing of atmospheric CO2 and CH4 mole fractions at the ICOS Atmosphere Thematic Centre. Atmospheric Measurement Techniques, 9(9): 4719-4736 [DOI: 10.5194/amt-9-4719-2016http://dx.doi.org/10.5194/amt-9-4719-2016]
He Z H, Lei L P, Zeng Z C, Sheng M Y and Welp L R. 2020. Evidence of carbon uptake associated with vegetation greening trends in Eastern China. Remote Sensing, 12(4): 718 [DOI: 10.3390/rs12040718http://dx.doi.org/10.3390/rs12040718]
He Z H, Zeng Z C, Lei L P, Bie N and Yang S Y. 2017. A data-driven assessment of biosphere-atmosphere interaction impact on seasonal cycle patterns of XCO2 using GOSAT and MODIS observations. Remote Sensing, 9(3): 251 [DOI: 10.3390/rs9030251http://dx.doi.org/10.3390/rs9030251]
Hedelius J K, Feng S, Roehl C M, Wunch D, Hillyard P W, Podolske J R, Iraci L T, Patarasuk R, Rao P, O’Keeffe D, Gurney K R, Lauvaux T and Wennberg P O. 2017. Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity. Journal of Geophysical Research, 122(13): 7200-7215 [DOI: 10.1002/2017JD026455http://dx.doi.org/10.1002/2017JD026455]
Huang K, Fu J S, Prikhodko V Y, Storey J M, Romanov A, Hodson E L, Cresko J, Morozova I, Ignatieva Y and Cabaniss J. 2015. Russian anthropogenic black carbon: emission reconstruction and Arctic black carbon simulation. Journal of Geophysical Research, 120(21): 11306-11333 [DOI: 10.1002/2015JD023358http://dx.doi.org/10.1002/2015JD023358]
Huang N, Wang L, Song X P, Black T A, Jassal R S, Myneni R B, Wu C Y, Wang L, Song W J, Ji D B, Yu S S and Niu Z. 2020. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances, 6(41): eabb8508 [DOI: 10.1126/sciadv.abb8508http://dx.doi.org/10.1126/sciadv.abb8508]
IPCC. 2019. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. [2021-11-22]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/
Janardanan R, Maksyutov S, Oda T, Saito M, Kaiser J W, Ganshin A, Stohl A, Matsunaga T, Yoshida Y and Yokota T. 2016. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates. Geophysical Research Letters, 43(7): 3486-3493 [DOI: 10.1002/2016GL067843http://dx.doi.org/10.1002/2016GL067843]
Janssens-Maenhout G, Petrescu A M R, Muntean M and Blujdea V. 2011. Verifying greenhouse gas emissions: methods to support international climate agreements. Greenhouse Gas Measurement and Management, 1(2): 132-133 [DOI: 10.1080/20430779.2011.579358http://dx.doi.org/10.1080/20430779.2011.579358]
Jiang F, Chen J M, Zhou L X, Ju W M, Zhang H F, Machida T, Ciais P, Peters W, Wang H M, Chen B Z, Liu L X, Zhang C H, Matsueda H and Sawa Y. 2016. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Scientific Reports, 6: 22130 [DOI: 10.1038/srep22130http://dx.doi.org/10.1038/srep22130]
Jiang F, Wang H M, Chen J M, Ju W M, Tian X J, Feng S Z, Li G C, Chen Z Q, Zhang S P, Lu X H, Liu J, Wang H K, Wang J, He W and Wu M S. 2021. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System. Atmospheric Chemistry and Physics, 21(3): 1963-1985 [DOI: 10.5194/acp-21-1963-2021http://dx.doi.org/10.5194/acp-21-1963-2021]
Jiang F, Wang H M, Chen J M, Zhou L X, Ju W M, Ding A J, Liu L X and Peters W. 2013. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences, 10(8): 5311-5324 [DOI: 10.5194/bg-10-5311-2013http://dx.doi.org/10.5194/bg-10-5311-2013]
Ju W M, Fang H L, Tian X J, Jiang F, Zhan W F, Liu Y, Wang Z X, He J F, Wang S Q, Peng S S, Zhang Y G, Zhou Y L, Jia B H, Yang D X, Fu Y, Li R, Liu J X, Wang H K, Li G C and Chen Z Q. 2016. Study on the global carbon assimilation system based on multisource remote sensing data. Advances in Earth Science, 31(11): 1105-1110
居为民, 方红亮, 田向军, 江飞, 占文凤, 刘洋, 王正兴, 何剑锋, 王绍强, 彭书时, 张永光, 周艳莲, 贾炳浩, 杨东旭, 符瑜, 李荣, 柳竟先, 王海鲲, 李贵才, 陈卓奇. 2016. 基于多源卫星遥感的高分辨率全球碳同化系统研究. 地球科学进展, 31(11): 1105-1110 [DOI: 10.11867/j.issn.1001-8166.2016.11.1105http://dx.doi.org/10.11867/j.issn.1001-8166.2016.11.1105]
Jung M, Schwalm C, Migliavacca M, Walther S, Camps-Valls G, Koirala S, Anthoni P, Besnard S, Bodesheim P, Carvalhais N, Chevallier F, Gans F, Goll D S, Haverd V, Köhler P, Ichii K, Jain A K, Liu J Z, Lombardozzi D, Nabel J E M S, Nelson J A, O’Sullivan M, Pallandt M, Papale D, Peters W, Pongratz J, Rödenbeck C, Sitch S, Tramontana G, Walker A, Weber U and Reichstein M. 2020. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17(5): 1343-1365 [DOI: 10.5194/bg-17-1343-2020http://dx.doi.org/10.5194/bg-17-1343-2020]
Kenea S T, Oh Y S, Rhee J S, Goo T Y, Byun Y H, Li S L, Labzovskii L D, Lee H and Banks R F. 2019. Evaluation of simulated CO2 concentrations from the carbontracker-asia model using in-situ observations over East Asia for 2009-2013. Advances in Atmospheric Sciences, 36(6): 603-613 [DOI: 10.1007/s00376-019-8150-xhttp://dx.doi.org/10.1007/s00376-019-8150-x]
Keppel-Aleks G, Wennberg P O, O’Dell C W and Wunch D. 2013. Towards constraints on fossil fuel emissions from total column carbon dioxide. Atmospheric Chemistry and Physics, 13(8): 4349-4357 [DOI: 10.5194/acp-13-4349-2013http://dx.doi.org/10.5194/acp-13-4349-2013]
Kiel M, Eldering A, Roten D D, Lin J C, Feng S, Lei R X, Lauvaux T, Oda T, Roehl C M, Blavier J F and Iraci L T. 2021. Urban-focused satellite CO2 observations from the orbiting carbon observatory-3: a first look at the los angeles megacity. Remote Sensing of Environment, 258: 112314 [DOI: 10.1016/j.rse.2021.112314http://dx.doi.org/10.1016/j.rse.2021.112314]
Kort E A, Frankenberg C, Miller C E and Oda T. 2012. Space-based observations of megacity carbon dioxide. Geophysical Research Letters, 39(17): L17806 [DOI: 10.1029/2012GL052738http://dx.doi.org/10.1029/2012GL052738]
Kuhlmann G, Broquet G, Marshall J, Clément V, Löscher A, Meijer Y and Brunner D. 2019. Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission. Atmospheric Measurement Techniques, 12(12): 6695-6719 [DOI: 10.5194/amt-12-6695-2019http://dx.doi.org/10.5194/amt-12-6695-2019]
Kulawik S, Wunch D, O’Dell C, Frankenberg C, Reuter M, Oda T, Chevallier F, Sherlock V, Buchwitz M, Osterman G, Miller C E, Wennberg P O, Griffith D, Morino I, Dubey M K, Deutscher N M, Notholt J, Hase F, Warneke T, Sussmann R, Robinson J, Strong K, Schneider M, De Mazière M, Shiomi K, Feist D G, Iraci L T and Wolf J. 2016. Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 9(2): 683-709 [DOI: 10.5194/amt-9-683-2016http://dx.doi.org/10.5194/amt-9-683-2016]
Le Quéré C, Andrew R M, Canadell J G, Sitch S, Korsbakken J I, Peters G P, Manning A C, Boden T A, Tans P P, Houghton R A, Keeling R F, Alin S, Andrews O D, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini L P, Ciais P, Currie K, Delire C, Doney S C, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain A K, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton J R, Metzl N, Millero F, Monteiro P M S, Munro D R, Nabel J E M S, Nakaoka S I, O’Brien K, Olsen A, Omar A M, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker B D, Sutton A J, Takahashi T, Tian H Q, Tilbrook B, van der Laan-Luijkx I T, van der Werf G R, Viovy N, Walker A P, Wiltshire A J and Zaehle S. 2016. Global carbon budget 2016. Earth System Science Data, 8(2): 605-649 [DOI: 10.5194/essd-8-605-2016http://dx.doi.org/10.5194/essd-8-605-2016]
Lei L P, Zhong H, He Z H, Cai B F, Yang S Y, Wu C J, Zeng Z C, Liu L Y and Zhang B. 2017. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations. Chinese Science Bulletin, 62(25): 2941-2950 [DOI: 10.1360/N972016-01316http://dx.doi.org/10.1360/N972016-01316]
Liu F, Duncan B N, Krotkov N A, Lamsal L N, Beirle S, Griffin D, McLinden C A, Goldberg D L and Lu Z F. 2020. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics, 20(1): 99-116 [DOI: 10.5194/acp-20-99-2020http://dx.doi.org/10.5194/acp-20-99-2020]
Liu J J, Baskaran L, Bowman K, Schimel D, Bloom A A, Parazoo N C, Oda T, Carroll D, Menemenlis D, Joiner J, Commane R, Daube B, Gatti L V, McKain K, Miller J, Stephens B B, Sweeney C and Wofsy S. 2021. Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth System Science Data, 13(2): 299-330 [DOI: 10.5194/essd-13-299-2021http://dx.doi.org/10.5194/essd-13-299-2021]
Liu J J and Bowman K. 2016. A method for independent validation of surface fluxes from atmospheric inversion: application to CO2. Geophysical Research Letters, 43(7): 3502-3508 [DOI: 10.1002/2016GL067828http://dx.doi.org/10.1002/2016GL067828]
Liu J J, Bowman K W, Schimel D S, Parazoo N C, Jiang Z, Lee M, Bloom A A, Wunch D, Frankenberg C, Sun Y, O’Dell C W, Gurney K R, Menemenlis D, Gierach M, Crisp D and Eldering A. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science, 358(6360): eaam5690 [DOI: 10.1126/science.aam5690http://dx.doi.org/10.1126/science.aam5690]
Liu L Y, Bai Y, Sun R and Niu Z G. 2021. Stereo observation and inversion of the key parameters of global carbon cycle: project overview and mid-term progressess. Remote Sensing Technology and Application, 36(1): 11-24
刘良云, 白雁, 孙睿, 牛振国. 2021. “全球生态系统碳循环关键参数立体观测与反演”项目概述与研究进展. 遥感技术与应用, 36(1): 11-24 [DOI: 10.11873/j.issn.1004-0323.2021.1.0011http://dx.doi.org/10.11873/j.issn.1004-0323.2021.1.0011]
Liu Y, Wang J, Che K, Cai Z N, Yang D X and Wu L. 2021. Satellite remote sensing of greenhouse gases: progress and trends. National Remote Sensing Bulletin, 25(1): 53-64
刘毅, 王婧, 车轲, 蔡兆男, 杨东旭, 吴林. 2021. 温室气体的卫星遥感—进展与趋势. 遥感学报, 25(1): 53-64 [DOI: 10.11834/jrs.20210081http://dx.doi.org/10.11834/jrs.20210081]
Maksyutov S, Takagi H, Valsala V K, Saito M, Oda T, Saeki T, Belikov D A, Saito R, Ito A, Yoshida Y, Morino I, Uchino O, Andres R J and Yokota T. 2013. Regional CO2 flux estimates for 2009-2010 based on GOSAT and ground-based CO2 observations. Atmospheric Chemistry and Physics, 13(18): 9351-9373 [DOI: 10.5194/acp-13-9351-2013http://dx.doi.org/10.5194/acp-13-9351-2013]
Monteil G, Broquet G, Scholze M, Lang M, Karstens U, Gerbig C, Koch F T, Smith N E, Thompson R L, Luijkx I T, White E, Meesters A, Ciais P, Ganesan A L, Manning A, Mischurow M, Peters W, Peylin P, Tarniewicz J, Rigby M, Rödenbeck C, Vermeulen A and Walton E M. 2020. The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006-2015. Atmospheric Chemistry and Physics, 20(20): 12063-12091 [DOI: 10.5194/acp-20-12063-2020http://dx.doi.org/10.5194/acp-20-12063-2020]
Nassar R, Hill T G, McLinden C A, Wunch D, Jones D B A and Crisp D. 2017. Quantifying CO2 emissions from individual power plants from space. Geophysical Research Letters, 44(19): 10045-10053 [DOI: 10.1002/2017GL074702http://dx.doi.org/10.1002/2017GL074702]
Nathan B J, Lauvaux T, Turnbull J C, Richardson S J, Miles N L and Gurney K R. 2018. Source sector attribution of CO2 emissions using an urban CO/CO2 bayesian inversion system. Journal of Geophysical Research, 123(23): 13611-13621 [DOI: 10.1029/2018JD029231http://dx.doi.org/10.1029/2018JD029231]
Oda T, Maksyutov S and Andres R J. 2018. The open-source data inventory for anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth System Science Data, 10(1): 87-107 [DOI: 10.5194/essd-10-87-2018http://dx.doi.org/10.5194/essd-10-87-2018]
Oda T, Román M O, Wang Z S, Stokes E C, Sun Q S, Shrestha R M, Feng S, Lauvaux T, Bun R, Maksyutov S, Chakraborty S, Paynter I and Kalb V L. 2021. US cities in the dark//YangX J, ed. Urban Remote Sensing. [s.l.]: John Wiley and Sons Ltd.: 337-367 [DOI: 10.1002/9781119625865.ch16http://dx.doi.org/10.1002/9781119625865.ch16]
Ou J P, Liu X P, Li X, Li M F and Li W K. 2015. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO2 emissions: a comparison with DMSP-OLS nighttime light data. PLoS One, 10(9): e0138310 [DOI: 10.1371/journal.pone.0138310http://dx.doi.org/10.1371/journal.pone.0138310]
Palmer P I, Feng L, Baker D, Chevallier F, Bösch H and Somkuti P. 2019. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nature Communications, 10(1): 3344 [DOI: 10.1038/s41467-019-11097-whttp://dx.doi.org/10.1038/s41467-019-11097-w]
Palmer P I, O’Doherty S, Allen G, Bower K, Bösch H, Chipperfield M P, Connors S, Dhomse S, Feng L, Finch D P, Gallagher M W, Gloor E, Gonzi S, Harris N R P, Helfter C, Humpage N, Kerridge B, Knappett D, Jones R L, Le Breton M, Lunt M F, Manning A J, Matthiesen S, Muller J B A, Mullinger N, Nemitz E, O’Shea S, Parker R J, Percival C J, Pitt J, Riddick S N, Rigby M, Sembhi H, Siddans R, Skelton R L, Smith P, Sonderfeld H, Stanley K, Stavert A R, Wenger A, White E, Wilson C and Young D. 2018. A measurement-based verification framework for UK greenhouse gas emissions: an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. Atmospheric Chemistry and Physics, 18(6): 11753-11777 [DOI: 10.5194/acp-18-11753-2018http://dx.doi.org/10.5194/acp-18-11753-2018]
Park C, Jeong S, Park H, Yun J and Liu J J. 2021. Evaluation of the potential use of satellite-derived XCO2 in detecting CO2 enhancement in megacities with limited ground observations: a case study in seoul using orbiting carbon observatory-2. Asia-Pacific Journal of Atmospheric Sciences, 57(2): 289-299 [DOI: 10.1007/s13143-020-00202-5http://dx.doi.org/10.1007/s13143-020-00202-5]
Pastorello G, Trotta C, Canfora E, Chu H S, Christianson D, Cheah Y W, Poindexter C, Chen J Q, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, Van Ingen C, Vuichard N, Zhang L M, Amiro B, Ammann C, Arain M A, Ardö J, Arkebauer T, Arndt S K, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini L B, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black T A, Blanken P D, Bohrer G, Boike J, Bolstad P V, Bonal D, Bonnefond J M, Bowling D R, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns S P, Buysse P, Cale P, Cavagna M, Cellier P, Chen S P, Chini I, Christensen T R, Cleverly J, Collalti A, Consalvo C, Cook B D, Cook D, Coursolle C, Cremonese E, Curtis P S, D’andrea E, Da Rocha H, Dai X Q, Davis K J, Cinti B D, Grandcourt A D, Ligne A D, De Oliveira R C, Delpierre N, Desai A R, Di Bella C M, Tommasi P D, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, Elkhidir H A M, Eugster W, Ewenz C M, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein A H, Gough C M, Goulden M L, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S J, Han X G, Hansen B U, Hanson C, Hatakka J, He Y T, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S C, Kato T, Khomik M, Klatt J, Knohl A, Knox A, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch W L, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y N, Liddell M, Limousin J M, Lion M, Liska A J, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S Y, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis H A, Marras S, Massman W, Mastepanov M, Matamala R, Matthes J H, Mazzenga F, McCaughey H, McHugh I, McMillan A M S, Merbold L, Meyer W, Meyers T, Miller S D, Minerbi S, Moderow U, Monson R K, Montagnani L, Moore C E, Moors E, Moreaux V, Moureaux C, Munger J W, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel E, Olesen J E, Ourcival J M, Papuga S A, Parmentier F J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips R P, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober S M, Rambal S, Rannik Ü, Raz-Yaseef N, Rebmann C, Reed D, de Dios V R, Restrepo-Coupe N, Reverter B R, Roland M, Sabbatini S, Sachs T, Saleska S R, Sánchez-Cañete E P, Sanchez-Mejia Z M, Peter Schmid H, Schmidt M, Schneider K, Schrader F, Schroder I, Scott R L, Sedlák P, Serrano-Ortíz P, Shao C L, Shi P L, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens R M, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y H, Tapper N, Thom J, Tomassucci M, Tuovinen J P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker J P, Walter-Shea E, Wang H M, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Li Y L, Zampedri R, Zhang J H, Zhou G Y, Zona D, Agarwal D, Biraud S, Torn M and Papale D. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1): 225 [DOI: 10.1038/s41597-020-0534-3http://dx.doi.org/10.1038/s41597-020-0534-3]
Peters W, Jacobson A R, Sweeney C, Andrews A E, Conway T J, Masarie K, Miller J B, Bruhwiler L M P, Pétron G, Hirsch A I, Worthy D E J, van der Werf G R, Randerson J T, Wennberg P O, Krol M C and Tans P P. 2007. An atmospheric perspective on North American carbon dioxide exchange: carbontracker. Proceedings of the National Academy of Sciences of the United States of America, 104(48): 18925-18930 [DOI: 10.1073/pnas.0708986104http://dx.doi.org/10.1073/pnas.0708986104]
Peters W, Krol M C, van der Werf G R, Houweling S, Jones C D, Hughes J, Schaefer K, Masarie K A, Jacobson A R, Miller J B, Cho C H, Ramonet M, Schmidt M, Ciattaglia L, Apadula F, Helta D, Meinhardt F, di Sarra A G, Piacentino S, Sferlazzo D, Aalto T, Hatakka J, Ström J, Haszpra L, Meijer H A J, van der Laan S, Neubert R E M, Jordan A, Rodó X, Morgui J A, Vermeulen A T, Popa E, Rozanski K, Zimnoch M, Manning A C, Leuenberger M, Uglietti C, Dolman A J, Ciais P, Heimann M and Tans P P. 2010. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Biogeochemical Cycles, 16(4): 1317-1337 [DOI: 10.1111/j.1365-2486.2009.02078.xhttp://dx.doi.org/10.1111/j.1365-2486.2009.02078.x]
Peylin P, Law R M, Gurney K R, Chevallier F, Jacobson A R, Maki T, Niwa Y, Patra P K, Peters W, Rayner P J, Rödenbeck C, van der Laan-Luijkx I T and Zhang X. 2013. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10(10): 6699-6720 [DOI: 10.5194/bg-10-6699-2013http://dx.doi.org/10.5194/bg-10-6699-2013]
Piao S L, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X H, Ahlström A, Anav A, Canadell J G, Cong N, Huntingford C, Jung M, Levis S, Levy P E, Li J S, Lin X, Lomas M R, Lu M, Luo Y Q, Ma Y C, Myneni R B, Poulter B, Sun Z Z, Wang T, Viovy N, Zaehle S and Zeng N. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Biogeochemical Cycles, 19(7): 2117-2132 [DOI: 10.1111/gcb.12187http://dx.doi.org/10.1111/gcb.12187]
Pinty B, Ciais P, Dee D, Dolman H, Dowell M, Engelen R, Holmlund K, Janssens-Maenhout G, Meijer Y, Palmer P, Scholze M, Denier van der Gon H, Heimann M, Juvyns O, Kentarchos A and Zunker H. 2019. An Operational Anthropogenic CO2 Emissions Monitoring and Verification Support Capacity. TNO
Raupach M R, Rayner P J and Paget M 2010. Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy, 38(9): 4756-4764 [DOI: 10.1016/j.enpol.2009.08.021http://dx.doi.org/10.1016/j.enpol.2009.08.021]
Reuter M, Buchwitz M, Schneising O, Krautwurst S, O’Dell C W, Richter A, Bovensmann H and Burrows J P. 2019. Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chemistry and Physics, 19(14): 9371-9383 [DOI: 10.5194/acp-19-9371-2019http://dx.doi.org/10.5194/acp-19-9371-2019]
Rusli S P, Hasekamp O, Aan De Brugh J, Fu G L, Meijer Y and Landgraf J. 2021. Anthropogenic CO2 monitoring satellite mission: the need for multi-angle polarimetric observations. Atmospheric Measurement Techniques, 14(2): 1167-1190 [DOI: 10.5194/amt-14-1167-2021http://dx.doi.org/10.5194/amt-14-1167-2021]
Schneising O, Heymann J, Buchwitz M, Reuter M, Bovensmann H and Burrows J P. 2013. Anthropogenic carbon dioxide source areas observed from space: assessment of regional enhancements and trends. Atmospheric Chemistry and Physics, 13(5): 2445-2454 [DOI: 10.5194/acp-13-2445-2013http://dx.doi.org/10.5194/acp-13-2445-2013]
Scholze M, Kaminski T, Knorr W, Blessing S, Vossbeck M, Grant J P and Scipal K. 2016. Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle. Remote Sensing of Environment, 180: 334-345 [DOI: 10.1016/j.rse.2016.02.058http://dx.doi.org/10.1016/j.rse.2016.02.058]
Schwandner F M, Gunson M R, Miller C E, Carn S A, Eldering A, Krings T, Verhulst K R, Schimel D S, Nguyen H M, Crisp D, O’Dell C W, Osterman G B, Iraci L T and Podolske J R. 2017. Spaceborne detection of localized carbon dioxide sources. Science, 358(6360): eaam5782 [DOI: 10.1126/science.aam5782http://dx.doi.org/10.1126/science.aam5782]
Shekhar A, Chen J, Paetzold J C, Dietrich F, Zhao X X, Bhattacharjee S, Ruisinger V and Wofsy S C. 2020. Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2 satellite. Environmental Research Letters, 15(9): 095010 [DOI: 10.1088/1748-9326/ab9cfehttp://dx.doi.org/10.1088/1748-9326/ab9cfe]
Shi H L, Li Z W, Ye H H, Luo H Y, Xiong W and Wang X H. 2021. First level 1 product results of the greenhouse gas monitoring instrument on the GaoFen-5 satellite. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 899-914 [DOI: 10.1109/TGRS.2020.2998729http://dx.doi.org/10.1109/TGRS.2020.2998729]
Shim C, Han J, Henze D K and Yoon T. 2019. Identifying local anthropogenic CO2 emissions with satellite retrievals: a case study in South Korea. International Journal of Remote Sensing, 40(3): 1011-1029 [DOI: 10.1080/01431161.2018.1523585http://dx.doi.org/10.1080/01431161.2018.1523585]
Silva S J and Arellano A F. 2017. Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2. Remote Sensing, 9(7): 744 [DOI: 10.3390/rs9070744http://dx.doi.org/10.3390/rs9070744]
Taylor T E, Eldering A, Merrelli A, Kiel M, Somkuti P, Cheng C, Rosenberg R, Fisher B, Crisp D, Basilio R, Bennett M, Cervantes D, Chang A, Dang L, Frankenberg C, Haemmerle V R, Keller G R, Kurosu T, Laughner J L, Lee R, Marchetti Y, Nelson R R, O’Dell C W, Osterman G, Pavlick R, Roehl C, Schneider R, Spiers G, To C, Wells C, Wennberg P O, Yelamanchili A and Yu S S. 2020. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sensing of Environment, 251: 112032 [DOI: 10.1016/j.rse.2020.112032http://dx.doi.org/10.1016/j.rse.2020.112032]
Thompson R L, Patra P K, Chevallier F, Maksyutov S, Law R M, Ziehn T, van der Laan-Luijkx I T, Peters W, Ganshin A, Zhuravlev R, Maki T, Nakamura T, Shirai T, Ishizawa M, Saeki T, Machida T, Poulter B, Canadell J G and Ciais P. 2016. Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 7(1): 10724 [DOI: 10.1038/ncomms10724http://dx.doi.org/10.1038/ncomms10724]
Tian X, Xie Z, Liu Y, Cai Z, Fu Y, Zhang H and Feng L. 2014. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations. Atmospheric Chemistry and Physics, 14(23): 13281-13293 [DOI: 10.5194/acp-14-13281-2014http://dx.doi.org/10.5194/acp-14-13281-2014]
Tollefson J. 2016. Carbon-sensing satellite system faces high hurdles: space agencies plan an advanced fleet, but technical and political challenges abound. Nature, 533(7604): 446-447
Vandyck T, Keramidas K, Saveyn B, Kitous A and Vrontisi Z. 2016. A global stocktake of the Paris pledges: implications for energy systems and economy. Global Environmental Change, 41: 46-63 [DOI: 10.1016/j.gloenvcha.2016.08.006http://dx.doi.org/10.1016/j.gloenvcha.2016.08.006]
Wang H M, Jiang F, Liu Y, Yang D X, Wu M S, He W, Wang J, Wang J, Ju W M and Chen J M. 2021b. Global terrestrial ecosystem carbon flux inferred from TanSat XCO2 retrievals. Journal of Remote Sensing [DOI: 10.5281/zenodo.5720212http://dx.doi.org/10.5281/zenodo.5720212]
Wang H M, Jiang F, Wang J, Ju W M and Chen J M. 2019. Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmospheric Chemistry and Physics, 19(18): 12067-12082 [DOI: 10.5194/acp-19-12067-2019http://dx.doi.org/10.5194/acp-19-12067-2019]
Wang J, Feng L, Palmer P I, Liu Y, Fang S X, Bösch H, O’Dell C W, Tang X P, Yang D X, Liu L X and Xia C Z. 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 586(7831): 720-723 [DOI: 10.1038/s41586-020-2849-9http://dx.doi.org/10.1038/s41586-020-2849-9]
Wang J, Jiang F, Wang H M, Qiu B, Wu M S, He W, Ju W M, Zhang Y G, Che J M and Zho Y L. 2021a. Constraining global terrestrial gross primary productivity in a global carbon assimilation system with OCO-2 chlorophyll fluorescence data. Agricultural and Forest Meteorology, 304-305: 108424 [DOI: 10.1016/j.agrformet.2021.108424http://dx.doi.org/10.1016/j.agrformet.2021.108424]
Wang S H, Zhang Y G, Hakkarainen J, Ju W M, Liu Y X, Jiang F and He W. 2018. Distinguishing anthropogenic CO2 emissions from different energy intensive industrial sources using OCO-2 observations: a case study in Northern China. Journal of Geophysical Research, 123(17): 9462-9473 [DOI: 10.1029/2018JD029005http://dx.doi.org/10.1029/2018JD029005]
Winkler H. 2008. Measurable, reportable and verifiable: the keys to mitigation in the Copenhagen deal. Climate Policy, 8(6): 534-547 [DOI: 10.3763/cpol.2008.0583http://dx.doi.org/10.3763/cpol.2008.0583]
World Meteorological Orgainzation. 2019. 2019 concludes a decade of exceptional global heat and high-impact weather[EB/OL]. [2019-12-03]. https://public.wmo.int/en/media/press-release/2019-concludes-decade-of-exceptional-global-heat-and-high-impact-weatherhttps://public.wmo.int/en/media/press-release/2019-concludes-decade-of-exceptional-global-heat-and-high-impact-weather
Wu M S, Scholze M, Kaminski T, Voßbeck M and Tagesson T. 2020. Using SMOS soil moisture data combining CO2 flask samples to constrain carbon fluxes during 2010-2015 within a Carbon Cycle Data Assimilation System (CCDAS). Remote Sensing of Environment, 240: 111719 [DOI: 10.1016/j.rse.2020.111719http://dx.doi.org/10.1016/j.rse.2020.111719]
Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V and Wennberg P O. 2011. The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943): 2087-2112 [DOI: 10.1098/rsta.2010.0240http://dx.doi.org/10.1098/rsta.2010.0240]
Xiong X, Butler J, Cao C and Wu X. 2018. Optical sensors—VIS/NIR/SWIR. Comprehensive Remote Sensing, 1: 353-375 [DOI: 10.1016/B978-0-12-409548-9.10325-2http://dx.doi.org/10.1016/B978-0-12-409548-9.10325-2]
Yang D, Boesch H, Liu Y, Somkuti P, Cai Z, Chen X, Di Noia A, Lin C, Lu N, Lyu D, Parker R J, Tian L, Wang M, Webb A, Yao L, Yin Z, Zheng Y, Deutscher N M, Griffith D W T, Hase F, Kivi R, Morino I, Notholt J, Ohyama H, Pollard D F, Shiomi K, Sussmann R, Té Y, Velazco V A, Warneke T and Wunch D. 2020. Toward high precision XCO2 retrievals from TanSat observations: retrieval improvement and validation against TCCON measurements. Journal of Geophysical Research, 125(22): e2020JD032794 [DOI: 10.1029/2020JD032794http://dx.doi.org/10.1029/2020JD032794]
Yang D X, Liu Y, Boesch H, Yao L, Di Noia A, Cai Z N, Lu N M, Lyu D, Wang M H, Wang J, Yin Z S and Zheng Y Q. 2021. A new TanSat XCO2 global product towards climate studies. Advances in Atmospheric Sciences, 38(1): 8-11 [DOI: 10.1007/s00376-020-0297-yhttp://dx.doi.org/10.1007/s00376-020-0297-y]
Yang D X, Liu Y, Cai Z N, Chen X, Yao L and Lu D. 2018. First global carbon dioxide maps produced from Tansat measurements. Advances in Atmospheric Sciences, 35(6): 621-623 [DOI: 10.1007/s00376-018-7312-6http://dx.doi.org/10.1007/s00376-018-7312-6]
Yang S Y, Lei L P, Zeng Z C, He Z H and Zhong H. 2019. An assessment of anthropogenic CO2 emissions by satellite-based observations in China. Sensors, 19(5): 118 [DOI: 10.3390/s19051118http://dx.doi.org/10.3390/s19051118]
Yao L, Yang D X, Liu Y, Wang J, Liu L Y, Du S S, Cai Z N, Lu N M, Lyu D, Wang M H, Yin Z S and Zheng Y Q. 2021. A new global Solar-induced Chlorophyll Fluorescence (SIF) data product from TanSat measurements. Advances in Atmospheric Sciences, 38(3): 341-345 [DOI: 10.1007/s00376-020-0204-6http://dx.doi.org/10.1007/s00376-020-0204-6]
Ye H H, Wang X H, Wu S C, Li C, Li Z W, Shi H L and Xiong W. 2021. Atmospheric CO2 retrieval method for satellite observations of greenhouse gases monitoring instrument on GF-5. Journal of Atmospheric and Environmental Optics, 16(3): 231-238
叶函函, 王先华, 吴时超, 李超, 李志伟, 施海亮, 熊伟. 2021. 高分五号卫星GMI大气CO2反演方法. 大气与环境光学学报, 16(3): 231-238 [DOI: 10.3969/j.issn.1673-6141.2021.03.008http://dx.doi.org/10.3969/j.issn.1673-6141.2021.03.008]
Ye X X, Lauvaux T, Kort E A, Oda T, Feng S, Lin J C, Yang E G and Wu D E. 2020. Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations of total column CO2. Journal of Geophysical Research, 125(8): e2019JD030528 [DOI: 10.1029/2019JD030528http://dx.doi.org/10.1029/2019JD030528]
Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H and Maksyutov S. 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. SOLA, 5: 160-163 [DOI: 10.2151/sola.2009-041http://dx.doi.org/10.2151/sola.2009-041]
Zeng J Y, Matsunaga T, Tan Z H, Saigusa N, Shirai T, Tang Y H, Peng S S and Fukuda Y. 2020. Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest. Scientific Data, 7(1): 313 [DOI: 10.1038/s41597-020-00653-5http://dx.doi.org/10.1038/s41597-020-00653-5]
Zhang H F, Chen B Z, van der Laan-Luijk I T, Machida T, Matsueda H, Sawa Y, Fukuyama Y, Langenfelds R, van der Schoot M, Xu G, Yan J W, Cheng M L, Zhou L X, Tans P P and Peters W. 2014. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006-2010. Atmospheric Chemistry and Physics, 14(11): 5807-5824 [DOI: 10.5194/acp-14-5807-2014http://dx.doi.org/10.5194/acp-14-5807-2014]
Zhang S, Zheng X, Chen J M, Chen Z, Dan B, Yi X, Wang L and Wu G. 2015. A global carbon assimilation system using a modified ensemble Kalman filter. Geoscientific Model Development, 8(3): 805-816 [DOI: 10.5194/gmd-8-805-2015http://dx.doi.org/10.5194/gmd-8-805-2015]
Zhao Y, Nielsen C P and McElroy M B. 2012. China’s CO2 emissions estimated from the bottom up: recent trends, spatial distributions, and quantification of uncertainties. Atmospheric Environment, 59: 214-223 [DOI: 10.1016/j.atmosenv.2012.05.027http://dx.doi.org/10.1016/j.atmosenv.2012.05.027]
Zheng B, Chevallier F, Ciais P, Broquet G, Wang Y L, Lian J H and Zhao Y H. 2020a. Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2. Atmospheric Chemistry and Physics, 20(4): 8501-8510 [DOI: 10.5194/acp-20-8501-2020http://dx.doi.org/10.5194/acp-20-8501-2020]
Zheng B, Geng G N, Ciais P, Davis S J, Martin R V, Meng J, Wu N N, Chevallier F, Broquet G, Boersma F, van der A R, Lin J T, Guan D B, Lei Y, He K B and Zhang Q. 2020b. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Science Advances, 6(49): eabd4998 [DOI: 10.1126/sciadv.abd4998http://dx.doi.org/10.1126/sciadv.abd4998]
Zhou M Q, Langerock B, Vigouroux C, Sha M K, Hermans C, Metzger J M, Chen H L, Ramonet M, Kivi R, Heikkinen P, Smale D, Pollard D F, Jones N, Velazco V A, García O E, Schneider M, Palm M, Warneke T and De Mazière M. 2019. TCCON and NDACC XCO measurements: difference, discussion and application. Atmospheric Measurement Techniques, 12(11): 5979-5995 [DOI: 10.5194/amt-12-5979-2019http://dx.doi.org/10.5194/amt-12-5979-2019]
Zhou M Q, Zhang X Y, Wang S P and Wang P C. 2014. HITRAN versions influence on calculation of CO2 transfer properties for satellite 1.6 μm channel. Journal of Remote Sensing, 18(5): 1003-1010
周敏强, 张兴赢, 王舒鹏, 王普才. 2014. HITRAN数据库对卫星1.6 μm通道CO2辐射传输特性计算的影响. 遥感学报, 18(5): 1003-1010 [DOI: 10.11834/jrs.20143316http://dx.doi.org/10.11834/jrs.20143316]
相关作者
相关机构