可见光—短波红外光谱辐射计现场量值传递方法
Field dissemination of the value of the quantity method of the spectroradiometer in visible-to-shortwave infrared
- 2023年27卷第5期 页码:1166-1176
纸质出版日期: 2023-05-07
DOI: 10.11834/jrs.20221841
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-05-07 ,
扫 描 看 全 文
程秋桐,李玲,代彩红,吴志峰,高彩霞,何思捷,王彦飞.2023.可见光—短波红外光谱辐射计现场量值传递方法.遥感学报,27(5): 1166-1176
Cheng Q T,Li L,Dai C H,Wu Z F,Gao C X,He S J and Wang Y F. 2023. Field dissemination of the value of the quantity method of the spectroradiometer in visible-to-shortwave infrared. National Remote Sensing Bulletin, 27(5):1166-1176
外场辐射测量是光学遥感研究的重要信息来源,为了保证外场测量数据的准确性,外场设备必须进行量值溯源。本文旨在开展外场光谱测量设备的现场量值传递方法研究,将外场测量设备的辐射测量水平溯源至统一基准,以此来保证外场测量时设备获取数据精准性以及数据质量一致性。通过分析实验室和外场光源差异、测量环境差异等因素对辐射量值准确性的影响,建立了杂散光修正模型和环境温度修正模型,构建了完整的从实验室到外场的量值传递链路,采用对称放置和互换测量的方法将光谱辐射量值从实验室国家基准有效传递至外场观测设备,实现了实验室到外场380—2400 nm波长的光谱辐射量值传递。进一步地,依据不确定度传播律,分析了可见光短波红外光谱辐射计现场量值传递的不确定度,最终实现量传光谱仪测量不确定度1.7%—2.3%(
k
=1)和外场观测设备定标不确定度1.9%—2.5%(
k
=1)。本文对于量传光谱仪及现场量值传递的不确定度分析,有助于今后不同外场测量设备间的交叉验证,保证多场地基验证试验的测量一致性。
Field spectroradiometers need to be traced back to a unified benchmark
namely
the international system (SI) of units
to ensure the accuracy and consistency of different field spectroradiometers. Considering that reports focusing on the accuracy of field radiometric calibration of spectroradiometers are lacking
this study investigates the field dissemination of the value of the quantity method.
Uncertainty evaluation methods
such as the model of the relationship between wavelength and spectral radiance
the stray light correction model
and the temperature correction model
are provided for the transfer spectroradiometer. Then
the radiometric quantity is transferred from the laboratory measurement standard to the transfer spectroradiometer and then to the field instruments. By analyzing the uncertainty components in the whole process
a laboratory-field dissemination method of the value of the quantity chain is established
and the field spectroradiometer is traced to the SI unit uninterruptedly. In accordance with the uncertainty propagation law
the uncertainties of the transfer spectroradiometer and field spectroradiometer are obtained. Experimental results show that the uncertainty of the transfer spectroradiometer is 1.7%—2.3% (
k
= 1) from 380 nm to 2400 nm
and the uncertainty of the field spectroradiometer is 1.9%—2.5% (
k
= 1) from 380 nm to 2400 nm.
The paper systematically introduces the method of field dissemination of the value of the quantity method. During the field calibration process
the uncertainty and characteristics of the standard transfer spectroradiometer are investigated. By analyzing the field calibration uncertainty in the whole process
the field spectroradiometer can be traced back to the international equivalent primary standard in the laboratory. The method is helpful for the cross verification of different types of field instruments at different sites and ensures the consistency of multiple field verification tests. It can also be used to calibrate satellite optical loads with high accuracy in the future.
The field dissemination of the value of the quantity method can be divided into two parts
2
calibration of a transfer spectroradiometer and field radiometric calibration. The influencing factors must be considered when a transfer spectroradiometer is used to calibrate the field spectroradiometer because of the differences between the laboratory and the actual site
such as relative spectral
radiation level
and temperature and humidity differences. Mathematical models are established to quantify the influence of various parameters on the spectral measurement accuracy
and a stray light correction model is built using the laser and filter method to correct the stray light caused by the relative spectral difference. The integrating sphere light source addition method is used to evaluate the nonlinearity at different radiation levels. In addition
whether spectral responsivity and detector temperature have a one-to-one correspondence is analyzed
and a temperature correction model is built according to the variation trend of spectral responsivity. After measuring and correcting the influence of the difference between the laboratory and actual site
the transfer spectroradiometer is utilized to transfer the radiometric quantity to the field spectroradiometer by using the symmetrical placement and exchange measurement method.
现场量值传递杂散光修正模型温度修正模型互换测量不确定度
field dissemination of the value of quantitystray light correction modeltemperature correction modelexchange measurementuncertainty
Bouvet M, Thome K, Berthelot B, Bialek A, Czapla-Myers J, Fox N P, Goryl P, Henry P, Ma L L, Marcq S, Meygret A, Wenny B N and Woolliams E R. 2019. RadCalNet: a radiometric calibration network for earth observing imagers operating in the visible to shortwave infrared spectral range. Remote Sensing, 11(20): 2401 [DOI: 10.3390/rs11202401http://dx.doi.org/10.3390/rs11202401]
Czapla-Myers J S, Thome K J, Cocilovo B R, McCorkel J T and Buchanan J H. 2008. Temporal, spectral, and spatial study of the automated vicarious calibration test site at Railroad Valley, Nevada//Proceedings of SPIE 7081, Earth Observing Systems XIII. San Diego: SPIE: 70810I [DOI: 10.1117/12.795551http://dx.doi.org/10.1117/12.795551]
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2016. JJF 1033-2016 Rule for the examination of measurement standards. Beijing: China Quality Inspection Press
中华人民共和国国家质量监督检验检疫总局. 2016. JJF 1033-2016 计量标准考核规范. 北京: 中国质检出版社
Gou Z Y, Yan L, Chen W, Jing X, Yin Z Y and Duan Y N. 2012. In-flight absolute radiometric calibration of UAV hyperspectral camera and its validation analysis. Spectroscopy and Spectral Analysis, 32(2): 430-434
勾志阳, 晏磊, 陈伟, 景欣, 尹中义, 段依妮. 2012. 无人机高光谱成像仪场地绝对辐射定标及验证分析. 光谱学与光谱分析, 32(2): 430-434 [DOI: 10.3964/j.issn.1000-0593(2012)02-0430-05http://dx.doi.org/10.3964/j.issn.1000-0593(2012)02-0430-05]
Kübarsepp T, Haapalinna A, Kärhä P and Ikonen E. 1998. Nonlinearity measurements of silicon photodetectors. Applied Optics, 37(13): 2716-2722 [DOI: 10.1364/AO.37.002716http://dx.doi.org/10.1364/AO.37.002716].
Li C R, Ma L L, Tang L L, Gao C X, Qian Y G, Wang N and Wang X H. 2021. A comprehensive calibration site for high resolution remote sensors dedicated to quantitative remote sensing and its applications. Journal of Remote Sensing, 25(1): 198-219
李传荣, 马灵玲, 唐伶俐, 高彩霞, 钱永刚, 王宁, 王新鸿. 2021. 面向定量遥感的高分辨遥感综合定标场及其应用. 遥感学报, 25(1): 198-219 [DOI: 10.11834/jrs.20210326http://dx.doi.org/10.11834/jrs.20210326]
Li L, Dai C H, Wu Z F and Wang Y F. 2019. Laboratory calibration and temperature research of spectral radiometric instruments. Spectroscopy and Spectral Analysis, 39(6): 1965-1969
李玲, 代彩红, 吴志峰, 王彦飞. 2019. 光谱辐射测量仪器温度修正方法的研究及验证. 光谱学与光谱分析, 39(6): 1965-1969 [DOI: 10.3964/j.issn.1000-0593http://dx.doi.org/10.3964/j.issn.1000-0593201906-1965-05]
Li X, Zheng X B and Yin Y P. 2014. Progress in automated site vicarious calibration technologies. Journal of Atmospheric and Environmental Optics, 9(1): 17-21
李新, 郑小兵, 尹亚鹏. 2014. 场地自动化定标技术进展. 大气与环境光学学报, 9(1): 17-21 [DOI: 10.3969/j.issn.1673-6141.2014.01.003http://dx.doi.org/10.3969/j.issn.1673-6141.2014.01.003]
Ma L L, Zhao Y G, Woolliams E R, Dai C H, Wang N, Liu Y K, Li L, Wang X H, Gao C X, Li C R and Tang L L. 2020. Uncertainty analysis for RadCalNet instrumented test sites using the Baotou sites BTCN and BSCN as examples. Remote Sensing, 12(11): 1696 [DOI: 10.3390/rs12111696http://dx.doi.org/10.3390/rs12111696]
Meftah M, Damé L, Bolsée D, Hauchecorne A, Pereira N, Sluse D, Cessateur G, Irbah A, Bureau J, Weber M, Bramstedt K, Hilbig T, Thiéblemont R, Marchand M, Lefèvre F, Sarkissian A and Bekki S. 2018. SOLAR-ISS: a new reference spectrum based on SOLAR/SOLSPEC observations. Astronomy and Astrophysics, 611: A1 [DOI: 10.1051/0004-6361/201731316http://dx.doi.org/10.1051/0004-6361/201731316]
Meygret A, Santer R P, and Berthelot B. 2011. ROSAS: a robotic station for atmosphere and surface characterization dedicated to on-orbit calibration//Proceedings of SPIE 8153, Earth Observing Systems XVI. San Diego: SPIE: 815311 [DOI: 10.1117/12.892759]
Price L L A, Hooke R J and Khazova M. 2014. Effects of ambient temperature on the performance of CCD array spectroradiometers and practical implications for field measurements. Journal of Radiological Protection, 34(3): 655-673 [DOI: 10.1088/0952-4746/34/3/655http://dx.doi.org/10.1088/0952-4746/34/3/655]
Salim S G R, Fox N P, Theocharous E, Sun T and Grattan K T V. 2011. Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field. Applied Optics, 50(6): 866-875 [DOI: 10.1364/AO.50.000866http://dx.doi.org/10.1364/AO.50.000866]
Santer R P, Six C and Buis J P. 2003. Vicarious calibration on land site using automatic ground-based optical measurements: applications to SPOT-HRV//Proceedings of SPIE 4891, Optical Remote Sensing of the Atmosphere and Clouds III. Hangzhou: SPIE: 524-534 [DOI: 10.1117/12.467562http://dx.doi.org/10.1117/12.467562]
Shin D J, Park S, Jeong K L, Park S N and Lee D H. 2014. High-accuracy measurement of linearity of optical detectors based on flux addition of LEDs in an integrating sphere. Metrologia, 51(1): 25-32 [DOI: 10.1088/0026-1394/51/1/25http://dx.doi.org/10.1088/0026-1394/51/1/25]
Thompson A and Chen H M. 1994. Beamcon III, a linearity measurement instrument for optical detectors. Journal of Research of the National Institute of Standards and Technology, 99(6): 751-755[DOI: 10.6028/jres.099.067http://dx.doi.org/10.6028/jres.099.067].
Wan Z, Li B Y, Li X S, Liu Z X, Liu H X and Ye Z. 2012. Influence of integrating sphere source’s distribution temperature on broadband optical remote sensor’s absolute radiometric calibration and correcting methods. Chinese Journal of Luminescence, 33(8): 863-868
万志, 李葆勇, 李宪圣, 刘则洵, 刘洪兴, 叶钊. 2012. 积分球光源分布温度对宽波段光学遥感器绝对辐射定标的影响及其校正. 发光学报, 33(8): 863-868 [DOI: 10.3788/fgxb20123308.0863http://dx.doi.org/10.3788/fgxb20123308.0863]
Wu Z F, Dai C H, Wang Y F and Zou J H. 2016. Measurement of optical parameters for array spectroradiometers. Optics and Precision Engineering, 24(8): 1902-1907
吴志峰, 代彩红, 王彦飞, 邹巨洪. 2016. 阵列式光谱辐射计光学参数测量. 光学 精密工程, 24(8): 1902-1907 [DOI: 10.3788/OPE.20162408.1902http://dx.doi.org/10.3788/OPE.20162408.1902]
Xu M M, Jiang Q W, Liu W Q, Zhang Y C, Chen J X and Zeng Y. 2014. An improved method for optical system design and optimization of double grating spectrometer. Infrared and Laser Engineering, 43(1): 184-189
徐明明, 江庆五, 刘文清, 张寅超, 陈结祥, 曾议. 2014. 一种新型双光栅光谱仪光学系统设计与优化. 红外与激光工程, 43(1): 184-189 [DOI: 10.3969/j.issn.1007-2276.2014.01.033http://dx.doi.org/10.3969/j.issn.1007-2276.2014.01.033]
Zheng X B. 2011. High-accuracy radiometric calibration of satellite optical remote sensors. Spacecraft Recovery & Remote Sensing, 32(5): 36-43
郑小兵. 2011. 高精度卫星光学遥感器辐射定标技术. 航天返回与遥感, 32(5): 36-43 [DOI: 10.3969/j.issn.1009-8518.2011.05.009http://dx.doi.org/10.3969/j.issn.1009-8518.2011.05.009]
Zong Y Q. 2010. Uncertainty analysis of stray-light correction//Proceedings of 2010 CIE Expert Symposium on Spectral and Imaging Methods for Photometry and Radiometry. [s.l.]: [s.n.]
Zong Y Q, Brown S W, Johnson B C, Lykke K R and Ohno Yoshi. 2006. Simple spectral stray light correction method for array spectroradiometers. Applied Optics, 45(6): 1111-1119 [DOI: 10.1364/AO.45.001111http://dx.doi.org/10.1364/AO.45.001111]