水位波动条件下不同类型内陆湿地动态范围的精准识别
Accurate identification of inland wetland dynamic range under water level fluctuation
- 2023年27卷第6期 页码:1348-1361
纸质出版日期: 2023-06-07
DOI: 10.11834/jrs.20222005
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-07 ,
扫 描 看 全 文
罗茗,宫兆宁,张园.2023.水位波动条件下不同类型内陆湿地动态范围的精准识别.遥感学报,27(6): 1348-1361
Luo M,Gong Z N and Zhang Y. 2023. Accurate identification of inland wetland dynamic range under water level fluctuation. National Remote Sensing Bulletin, 27(6):1348-1361
湿地动态范围的精准识别是湿地生态系统保护和恢复的基础。为了发挥遥感技术的高时效性及大规模重复观测的优势,本研究针对湿地具有的高空间异质性和高时间动态性特征,基于Google Earth Engine(GEE)遥感云平台全部可获取的年内Landsat OLI时序影像数据集,从湿地形成的发生学因素湿地水文要素出发,结合湿地发育成熟的诊断特征:湿地土壤和湿地植被,筛选用于湿地范围界定的水湿指数组合;采用图像合成法确定年内的高低水位;通过改进的模糊C均值(MFCM)算法弱化湿地背景的空间异质性,提高湿地与非湿地边界的对比度与区分性;选择最大类间方差法(OTSU)确定湿地消涨边界的自适应阈值;结合水湿指数组合方案叠加规则,进行年内时序湿地动态范围的识别,最终构建了一套基于“要素—指标—阈值”体系的湿地动态范围精准识别技术(简称EITS(Elements-Index-Threshold technology System))。从水库型湿地、沼泽型湿地、湖泊型湿地分别选取官厅水库、若尔盖湿地、鄱阳湖湿地作为典型内陆湿地的实验区,验证该套技术体系的适用性及精度。结果表明湿地范围的提取精度均高于94%,Kappa系数大于0.88,证明该套方法体系有效提高了湿地时空动态范围识别的精度和效率,以期为长时序、大范围湿地动态监测与制图提供可靠的技术支撑。
The accurate identification of the wetland dynamic range is the basis for the protection and restoration of the wetland ecosystem. To maximize the advantages of high timeliness and large-scale repeated observation of remote sensing technology and in consideration of the characteristics of high spatial heterogeneity and high temporal dynamics of wetlands
all Landsat OLI time series image datasets available for Google Earth Engine were used to study the accurate identification of inland wetland dynamic range under water level fluctuation.
Three typical inland wetlands were selected as research areas on the basis of the genetic factors and the hydrological factors of wetlands. In combination with the diagnostic characteristics of mature wetlands
i.e.
hygrophyte and wet soil
the combination of water-wetness indices for defining wetland scope was selected. Image composition was used to determine the high and low water levels in one year. A modified fuzzy C-means algorithm was proposed to reduce the spatial heterogeneity of wetland background and improve the contrast and distinction between wetland and nonwetland boundaries. The maximum between-class variance (OTSU) was selected to determine the adaptive threshold of wetland disinflation boundary and then combined with the superposition rules of the water-wetness index dynamic combination scheme to identify wetlands within one year. Finally
a set of accurate identification technology of wetland dynamic range based on the “Elements-Index-Threshold” technology System (EITS) was constructed.
Typical inland wetlands
such as the Guanting Reservoir
the Zoige wetland
and the Poyang Lake wetland
were selected as experimental areas to verify the applicability and accuracy of the set of technology system. Results showed that the extraction accuracy of wetland range was higher than 94%
and the Kappa coefficient was greater than 0.88.
This research improves the accuracy and efficiency of wetland spatiotemporal dynamic range identification
hoping to provide effective support for long-term and large-scale wetland dynamic monitoring and mapping.
遥感湿地动态范围界定水湿指数动态变化过程水位波动时序数据集内陆湿地
remote sensingdefining the dynamic range of wetlandwater-wetness indexdynamic processwater level fluctuationtime series data setinland wetland
Baig M H A,Zhang L,Shuai TandTong Q. 2014. Derivation of a tasselled cap transformation based on Landsat 8 at- satellite reflectance. Remote Sensing Letters, 5(5): 423-431 [DOI: 10.1080/2150704X.2014.915434http://dx.doi.org/10.1080/2150704X.2014.915434]
Charman D. 2002. Peatlands and Environmental Change. Chichester: John Wiley & Sons.
Cheng L N, Zhong C R, Li X Y, Jia M M, Wang Z M and Mao D H. 2022. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine. National Remote Sensing Bulletin, 26(2): 348-357
程丽娜, 钟才荣, 李晓燕, 贾明明, 王宗明, 毛德华. 2022. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类. 遥感学报, 26(2): 348-357 [DOI: 10.11834/jrs.20211311http://dx.doi.org/10.11834/jrs.20211311]
Feng L, Hu C M, Chen X L, Cai X B, Tian L Q and Gan W X. 2012. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 121: 80-92 [DOI: 10.1016/j.rse.2012.01.014http://dx.doi.org/10.1016/j.rse.2012.01.014]
Feyisa G L, Meilby H, Fensholt R and Proud S R. 2014. Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23-35 [DOI: 10.1016/j.rse.2013.08.029http://dx.doi.org/10.1016/j.rse.2013.08.029]
Gao B C. 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257-266 [DOI: 10.1016/S0034-4257(96)00067-3http://dx.doi.org/10.1016/S0034-4257(96)00067-3]
Gong Z N, Chen Y Z and Zhao W H. 2017. Analysis of fluctuation characteristics and subzone in hydro-fluctuation belt in the Guanting Reservoir during 1979—2013. Acta Ecologica Sinica, 37(16): 5294-5304
宫兆宁, 陈雨竹, 赵文慧. 2017. 近35年官厅水库消落带消涨特征及分区. 生态学报, 37(16): 5294-5304 [DOI: 10.5846/stxb201605190968http://dx.doi.org/10.5846/stxb201605190968]
Huo L L, Chen Z K, Zou Y C, Lu X G, Guo J W and Tang X G. 2013. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering, 51: 287-295 [DOI: 10.1016/j.ecoleng.2012.12.020http://dx.doi.org/10.1016/j.ecoleng.2012.12.020]
Kauth R J and Thomas G S. 1976. The tasselled cap -- a graphic description of the Spectral-Temporal development of agricultural crops as seen by LANDSAT. Machine Processing of Remotely Sensed Data
Khanna S, Palacios-Orueta A, Whiting M L, Ustin S L, Riaño D and Litago J. 2007. Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment, 109(2): 154-165 [DOI: 10.1016/j.rse.2006.12.018http://dx.doi.org/10.1016/j.rse.2006.12.018]
Landmann T, Schramm M, Colditz R R, Dietz A and Dech S. 2010. Wide area wetland mapping in Semi-Arid Africa using 250-Meter MODIS metrics and topographic variables. Remote Sensing, 2(7): 1751-1766 [DOI: 10.3390/rs2071751http://dx.doi.org/10.3390/rs2071751]
Li B L, Ti C P and Yan X Y. 2016. Study of derivation of tasseled cap transformation for Landsat 8 OLI images. Science of Surveying and Mapping, 41(4): 102-107
李博伦, 遆超普, 颜晓元. 2016. Landsat 8陆地成像仪影像的缨帽变换推导. 测绘科学, 41(4): 102-107 [DOI: 10.16251/j.cnki.1009-2307.2016.04.021http://dx.doi.org/10.16251/j.cnki.1009-2307.2016.04.021]
Li Y B, Meng T and Li A. 2012. Two-Dimensional Otsu image segmentation algorithm based on the particle swarm optimization algorithm//Deng W, ed. Future Control and Automation. Berlin: Springer: 115-120 [DOI: 10.1007/978-3-642-31006-5_14http://dx.doi.org/10.1007/978-3-642-31006-5_14]
Ludwig C, Walli A, Schleicher C, Weichselbaum J and Riffler M. 2019. A highly automated algorithm for wetland detection using multi-temporal optical satellite data. Remote Sensing of Environment, 224: 333-351[DOI: 10.1016/j.rse.2019.01.017http://dx.doi.org/10.1016/j.rse.2019.01.017]
McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Munyati C. 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing, 21(9): 1787-1806 [DOI: 10.1080/014311600209742http://dx.doi.org/10.1080/014311600209742]
Ning X G, Chang W T, Wang H, Zhang H C and Zhu Q D. 2022. Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data. National Remote Sensing Bulletin, 26(2): 386-396
宁晓刚, 常文涛, 王浩, 张翰超, 朱乾德. 2022. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取. 遥感学报, 26(2): 386-396 [DOI: 10.11834/jrs.20200033http://dx.doi.org/10.11834/jrs.20200033]
Niu Z G, Gong P, Cheng X, Guo J H, Wang L, Huang H B, Shen S Q, Wu Y Z, Wang X F, Wang X W, Ying Q, Liang L, Zhang L N, Wang L, Yao Q, Yang Z Z, Guo Z Q and Dai Y J. 2009. Geographical characteristics of China’s wetlands derived from remotely sensed data. Science in China Series D: Earth Sciences, 52(6): 723-738
牛振国, 宫鹏, 程晓, 虢建宏, 王琳, 黄华兵, 沈少青, 吴昀昭, 王晓风, 王显成, 王应清, 梁璐, 张丽娜, 王雷, 姚谦, 杨镇钟, 郭子祺, 戴永久. 2009. 中国湿地初步遥感制图及相关地理特征分析. 中国科学 D辑: 地球科学, 39(2): 188-203 [DOI: 10.1016/S1874-8651(10)60080-4http://dx.doi.org/10.1016/S1874-8651(10)60080-4]
Ozesmi S L and Bauer M E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5): 381-402 [DOI: 10.1023/A:1020908432489http://dx.doi.org/10.1023/A:1020908432489]
Gardner R.C., Davidson N.C. 2011. The Ramsar Convention. In: LePage, B. (eds) Wetlands. Springer, Dordrecht. [DOI: 10.1007/978-94-007-0551-7_11http://dx.doi.org/10.1007/978-94-007-0551-7_11]
Sader S A, Ahl D and Liou W S. 1995. Accuracy of landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sensing of Environment, 53(3): 133-144 [DOI: 10.1016/0034-4257(95)00085-Fhttp://dx.doi.org/10.1016/0034-4257(95)00085-F]
Sandholt I, Rasmussen K and Andersen J. 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2-3): 213-224 [DOI: 10.1016/S0034-4257(01)00274-7http://dx.doi.org/10.1016/S0034-4257(01)00274-7]
Shi T T and Xu H Q. 2019. Derivation of tasseled cap transformation coefficients for sentinel-2 MSI At-Sensor reflectance data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10): 4038-4048 [DOI: 10.1109/JSTARS.2019.2938388http://dx.doi.org/10.1109/JSTARS.2019.2938388]
Tana G, Letu H, Cheng Z K and Tateishi R. 2013. Wetlands mapping in North America by decision rule classification using MODIS and ancillary data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(6): 2391-2401 [DOI: 10.1109/JSTARS.2013.2249499http://dx.doi.org/10.1109/JSTARS.2013.2249499]
Tiner R W. 2016. Wetland Indicators: A Guide to Wetland Formation, Identification, Delineation, Classification, and Mapping. 2nd ed. Boca Raton: CRC Press
Töyrä J, Pietroniro A and Martz L W. 2001. Multisensor hydrologic assessment of a freshwater wetland. Remote Sensing of Environment, 75(2): 162-173 [DOI: 10.1016/S0034-4257(00)00164-4http://dx.doi.org/10.1016/S0034-4257(00)00164-4]
Wang L L and Qu J J. 2007. NMDI: a normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34(20): L20405 [DOI: 10.1029/2007GL031021http://dx.doi.org/10.1029/2007GL031021]
Wang P X, Gong J Y, Li X W. 2001. Vegetation-temperature condition index and its application for drought monitoring. Geomatics and Information Science of Wuhan University, 26(5): 412-418
王鹏新, 龚健雅, 李小文. 2001. 条件植被温度指数及其在干旱监测中的应用. 武汉大学学报(信息科学版), 26(5): 412-418 [DOI: 10.3969/j.issn.1671-8860.2001.05.007http://dx.doi.org/10.3969/j.issn.1671-8860.2001.05.007]
Wang Q W, Gong Z N, Guan H L, Zhang L, Jing R and Wang X. 2019. Extracting tidal creek features in an area of heterogeneous background at Yellow River Delta using remotely sensed imagery. Chinese Journal of Applied Ecology, 30(9): 3097-3107
王启为, 宫兆宁, 关鸿亮, 张磊, 井然, 汪星. 2019. 异质背景下黄河三角洲潮沟的遥感提取方法. 应用生态学报, 30(9): 3097-3107 [DOI: 10.13287/j.1001-9332.201909.019http://dx.doi.org/10.13287/j.1001-9332.201909.019]
Wang X, Gong Z N, Jing R, Zhang L and Jin D D. 2018. Extraction of aquatic plants based on continuous removal method and analysis of its temporal and spatial changes—A case study of Guanting Reservoir. Chinese Journal of Plant Ecology, 42(6): 640-652
汪星, 宫兆宁, 井然, 张磊, 金点点. 2018. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例. 植物生态学报, 42(6): 640-652 [DOI: 10.17521/cjpe.2017.0240http://dx.doi.org/10.17521/cjpe.2017.0240]
Wen Y, Huang C L, Lu L and Gu J. 2015. Theretrieval of vegetation water content based on ASTER images in Middle of Heihe River Basin. Remote Sensing Technology and Application, 30(5): 876-883
闻熠, 黄春林, 卢玲, 顾娟. 2015. 基于aster数据黑河中游植被含水量反演研究. 遥感技术与应用, 30(5): 876-883 [DOI: 10.11873/j.issn.1004-0323.2015.5.0876http://dx.doi.org/10.11873/j.issn.1004-0323.2015.5.0876]
Xu H Q. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033 [DOI: 10.1080/01431160600589179http://dx.doi.org/10.1080/01431160600589179]
Yang Y H, Liu Y X, Zhou M X, Zhang S Y, Zhan W F, Sun C and Duan Y W. 2015. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sensing of Environment, 171: 14-32 [DOI: 10.1016/j.res.2015.10.005http://dx.doi.org/10.1016/j.res.2015.10.005]
Yang Y X. 2002. New knowledge on the progress of international wetland science research and priority field and prospect of Chinese Wetland Science Reserch. Advance in Earthsciences, 17(4): 508-514
杨永兴. 2002. 国际湿地科学研究进展和中国湿地科学研究优先领域与展望. 地球科学进展, 17(4): 508-514 [DOI: 10.3321/j.issn:1001-8166.2002.04.008http://dx.doi.org/10.3321/j.issn:1001-8166.2002.04.008]
Yin S B, Li B and Shen F. 2014. Review on studies of wetland definition. Wetland Science, 12(4): 504-514
殷书柏, 李冰, 沈方. 2014. 湿地定义研究进展. 湿地科学, 12(4): 504-514 [DOI: 10.13248/j.cnki.wetlandsci.2014.04.015http://dx.doi.org/10.13248/j.cnki.wetlandsci.2014.04.015]
Yin S B and Lv X G. 2006. Study on the theory and methods of the identification of wetlands boundary. Progress in Geography, 25(4): 41-48
殷书柏, 吕宪国. 2006. 湿地边界确定研究进展. 地理科学进展, 25(4): 41-48 [DOI: 10.3969/j.issn.1007-6301.2006.04.005http://dx.doi.org/10.3969/j.issn.1007-6301.2006.04.005]
Zhen S, Dong L Q, Zheng R M and Yao P J. 2017. Landscape patterns of marsh wetlands in Zoigê Plateau in 2007 and 2016 and Change. Wetland Science, 15(4): 522-525
甄硕, 董李勤, 郑茹敏, 姚鹏举. 2017. 2007年和2016年若尔盖高原沼泽湿地景观格局及变化. 湿地科学, 15(4): 522-525 [DOI: 10.13248/j.cnki.wetlandsci.2017.04.007http://dx.doi.org/10.13248/j.cnki.wetlandsci.2017.04.007]
Zheng X M, Ding Y L, Zhao K, Jiang T, Li X F, Zhang S Y, Li Y Y, Wu L L, Sun J, Ren J H and Zhang X X. 2014. Estimation of vegetation water content from Landsat 8 OLI data. Spectroscopy and Spectral Analysis, 34(12): 3385-3390
郑兴明, 丁艳玲, 赵凯, 姜涛, 李晓峰, 张世轶, 李洋洋, 武黎黎, 孙建, 任建华, 张宣宣. 2014. 基于Landsat 8 OLI数据的玉米冠层含水量反演研究. 光谱学与光谱分析, 34(12): 3385-3390 [DOI: 10.3964/j.issn.1000-0593(2014)12-3385-06http://dx.doi.org/10.3964/j.issn.1000-0593(2014)12-3385-06]
Zhi C, Wu W T and Su H. 2022. Mapping the intertidal wetlands of Fujian Province based on tidal dynamics and vegetational phonology. National Remote Sensing Bulletin, 26(2): 373-385
智超, 吴文挺, 苏华. 2022. 潮汐和植被物候影响下的潮间带湿地遥感提取. 遥感学报, 26(2): 373-385 [DOI: 10.11834/jrs.20210586http://dx.doi.org/10.11834/jrs.20210586]
相关作者
相关机构