辐射传输:从唯象到第一性原理
Radiative transfer: From phenomenology to first principles
- 2023年27卷第7期 页码:1628-1641
纸质出版日期: 2023-07-07
DOI: 10.11834/jrs.20222062
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-07-07 ,
扫 描 看 全 文
吴自华,秦其明.2023.辐射传输:从唯象到第一性原理.遥感学报,27(7): 1628-1641
Wu Z H and Qin Q M. 2023. Radiative transfer: From phenomenology to first principles. National Remote Sensing Bulletin, 27(7):1628-1641
在回顾经典辐射传输理论的发展历程的基础上,本文对辐射传输理论与经典电磁理论的联系方面的研究工作进行了系统综述:从19世纪80年代提出至今,辐射传输理论已经过了一百多年的发展,并在诸多领域,尤其是定量遥感中得到了广泛的应用。经典辐射传输理论是一种唯象的近似理论,虽然描述的是电磁辐射的传播过程,但却长期被视为与经典电磁学相独立的一座“孤岛”。为了建立起辐射传输理论和经典电磁学间的联系,从20世纪60年代开始,众多研究者从第一性原理(也即Maxwell方程组)出发,从理论推导、数值模拟和受控实验3个角度展开了一系列研究,据此进一步明确了辐射传输理论的适用范围和条件,并针对相干后向散射和密集介质等情形提出了一些改进的辐射传输方法。展望未来,这一探索仍将继续,并将促进辐射传输理论与电磁理论的进一步结合,从而更好地服务于定量遥感的应用需求。
Radiative Transfer Theory (RTT) is one of the essential foundations in astrophysics
engineering thermophysics
computer graphics
biomedical imaging
and remote sensing. RTT is particularly widely used in the field of quantitative remote sensing. However
classical RTT is a phenomenological theory based on heuristic summarizations of experiments instead of being directly derived from the first principles. Given the ignorance of the wave property
RTT cannot explain interference and diffraction phenomena
e.g.
the well-known coherent backscattering.
The root of RTT dates back to the photometry study by Bouguer
Lambert
and Beer. Von Lommel and Chwolson are believed to propose the integral form of the Radiative Transfer Equation (RTE) for the first time in the 1880s. Afterward
many other scientists
including Schuster
Schwarzschild
Eddington
Milne
Gans
Sobolev
Chandrasekhar
Rozenberg
and Tsang
contributed to the establishment of RTT as a strict theory. However
classical RTT implicitly depends on the assumption of independent scattering
which fails when applied to dense matter. It requires the first-principle approach to bridge the gap between classical RTT and classical electromagnetics and extend the application of RTT. Three ways can be applied: (1) direct derivation
(2) numerical simulations
and (3) controlled experiments.Direct derivation of the RTE from first principles (i.e.
Maxwell equations) is the most fundamental approach. Mishchenko and his colleagues’ derivation is currently considered the most rigorous. This derivation is primarily based on previous research on multiple scattering of electromagnetic waves
to which Foldy
Lax
Twersky
and many others have made significant contributions. Mishchenko et al. managed to derive the RTE from Maxwell equations for both coherent and incoherent intensities under the condition of plane wave and discrete random media. The derivation proves that RTT is not a disconnected “island” from the “mainland” of classical electromagnetics.
Besides derivations
numerical simulations and controlled experiments help reveal the connection between RTT and numerically exacted computational electromagnetics. In these simulations and experiments
the RTT and electromagnetic computation results are compared under different conditions. Results show that RTT can yield satisfactory results when the volume percentage of scatterers is low. Some corrections
e.g.
the Percus-Yevick model
can be introduced to compensate for the errors of RTT when the density of scatterers further increases. Based on these studies
some efforts have been made to extend RTT to the case of dense matter. Notable achievements include the DMRT and the R
2
T
2
theories.
Although these studies are still limited to some ideal situations
they have provided some guidance for the mechanistic revision of RTT
thereby expanding the scope of its application. On the contrary
the combination of radiative transfer methods with computational electromagnetics becomes a research direction of interest
along with the development of computer performance and the improvement of relevant algorithms. At present
different methods are used in quantitative remote sensing for different wavebands and different research objects: for example
optical remote sensing and microwave remote sensing for vegetation or vegetation remote sensing and atmospheric remote sensing. Although the names of the methods used are “radiative transfer
” they are based on different assumptions and approximations. The combination of RTT and computational electromagnetics is a promising approach to unifying the remote sensing modeling and inversion studies of different wavelengths and objects.
遥感辐射传输唯象第一性原理经典电磁学Maxwell方程组
radiative transferphenomenologyfirst principlesclassical electromagneticsMaxwell equations
Arons A B and Peppard M B. 1965. Einstein’s proposal of the photon concept—a translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 33(5): 367-374 [DOI: 10.1119/1.1971542http://dx.doi.org/10.1119/1.1971542]
Bablet A, Vu P V H, Jacquemoud S, Viallefont-Robinet F, Fabre S, Briottet X, Sadeghi M, Whiting M L, Baret F and Tian J. 2018. MARMIT: a multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400-2500 nm). Remote Sensing of Environment, 217: 1-17 [DOI: 10.1016/j.rse.2018.07.031http://dx.doi.org/10.1016/j.rse.2018.07.031]
Balsara D. 2001. Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 69(6): 671-707 [DOI: 10.1016/S0022-4073(00)00114-Xhttp://dx.doi.org/10.1016/S0022-4073(00)00114-X]
Barabanenkov Y N. 1969. On the spectral theory of radiation transport equations. Soviet Physics Journal of Experimental and Theoretical Physics, 29(4): 679-684
Barabanenkov Y N, Kravtsov Y A, Rytov S M and Tamarskiĭ V I. 1971. Status of the theory of propagation of waves in a randomly inhomogeneous medium. Soviet Physics Uspekhi, 13(5): 551-575 [DOI: 10.1070/PU1971v013n05ABEH004213http://dx.doi.org/10.1070/PU1971v013n05ABEH004213]
Beer A. 1854. Grundriss des photometrischen Calcüles. Braunschweig: Friedrich Vieweg und Sohn
Benassi M, Garcia R D M, Karp A H and Siewert C E. 1984. A high-order spherical harmonics solution to the standard problem in radiative transfer. The Astrophysical Journal, 280: 853-864 [DOI: 10.1086/162059http://dx.doi.org/10.1086/162059]
Bernes C. 1979. A Monte Carlo approach to non-LTE radiative transfer problems. Astronomy and Astrophysics, 73: 67-73
Borovoi A G. 1966. The iteration method in multiple scattering: the transfer equation. Soviet Physics Journal, 9(6): 27-29 [DOI: 10.1007/BF01103181http://dx.doi.org/10.1007/BF01103181]
Bouguer P. 1729. Essai d’optique sur la gradation de la lumière. Paris: Claude Jombert
Bouguer P. 1760. Traité d’optique sur la gradation de la lumière. Paris: H. L. Guerin & L. F. Delatour
Bremmer H. 1964. Random volume scattering. Radio Science, 68(9): 967-981
Chandrasekhar S. 1950. Radiative Transfer. Oxford: Oxford University Press
Chang W M, Tan S R, Lemmetyinen J, Tsang L, Xu X L and Yueh S H. 2014. Dense media radiative transfer applied to SnowScat and SnowSAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3811-3825 [DOI: 10.1109/JSTARS.2014.2343519http://dx.doi.org/10.1109/JSTARS.2014.2343519]
Chwolson O D. 1889. Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bulletin de l’Académie Impériale des sciences de St.-Pétersbourg, 33: 221-256
Doicu A and Mishchenko M I. 2018. Overview of methods for deriving the radiative transfer theory from the Maxwell equations. I: approach based on the far-field Foldy equations. Journal of Quantitative Spectroscopy and Radiative Transfer, 220: 123-139 [DOI: 10.1016/j.jqsrt.2018.09.004http://dx.doi.org/10.1016/j.jqsrt.2018.09.004]
Doicu A and Mishchenko M I. 2019a. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: approach based on the Dyson and Bethe–Salpeter equations. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 25-36 [DOI: 10.1016/j.jqsrt.2018.10.032http://dx.doi.org/10.1016/j.jqsrt.2018.10.032]
Doicu A and Mishchenko M I. 2019b. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. III: Effects of random rough boundaries and packing density. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 154-170 [DOI: 10.1016/j.jqsrt.2018.11.002http://dx.doi.org/10.1016/j.jqsrt.2018.11.002]
Doicu A, Mishchenko M I and Trautmann T. 2020a. Electromagnetic scattering by discrete random media illuminated by a Gaussian beam II: Solution of the radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 256: 107297 [DOI: 10.1016/j.jqsrt.2020.107297http://dx.doi.org/10.1016/j.jqsrt.2020.107297
Doicu A, Mishchenko M I and Trautmann T. 2020b. Electromagnetic scattering by discrete random media illuminated by a Gaussian beam I: derivation of the radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 256: 107301 [DOI: 10.1016/j.jqsrt.2020.107301http://dx.doi.org/10.1016/j.jqsrt.2020.107301
Dyson F J. 1949. The S matrix in quantum electrodynamics. Physical Review, 75(11): 1736 [DOI: 10.1103/PhysRev.75.1736http://dx.doi.org/10.1103/PhysRev.75.1736]
Eddington A S. 1916. On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society, 77(1): 16-35 [DOI: 10.1093/mnras/77.1.16http://dx.doi.org/10.1093/mnras/77.1.16]
Efremenko D and Kokhanovsky A. 2021. Light scattering, absorption, extinction, and propagation in the terrestrial atmosphere//Foundations of Atmospheric Remote Sensing. Switzerland: Springer: 77-147 [DOI: 10.1007/978-3-030-66745-0_3http://dx.doi.org/10.1007/978-3-030-66745-0_3]
Egel A, Pattelli L, Mazzamuto G, Wiersma D S and Lemmer U. 2017. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 199: 103-110 [DOI: 10.1016/j.jqsrt.2017.05.010http://dx.doi.org/10.1016/j.jqsrt.2017.05.010]
Ergül Ö and Gürel L. 2014. The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems. Piscataway: John Wiley and Sons [DOI: 10.1002/9781118844977http://dx.doi.org/10.1002/9781118844977]
Foldy L L. 1945. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review, 67(3/4): 107-119
Furutsu K. 1975. Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation. Radio Science, 10(1): 29-44 [DOI: 10.1029/RS010i001p00029http://dx.doi.org/10.1029/RS010i001p00029]
Gans R. 1924. Die Farbe des Meeres. Annalen der Physik, 380(17): 1-22 [DOI: 10.1002/andp.19243801702http://dx.doi.org/10.1002/andp.19243801702]
Garcia R D M and Siewert C E. 1986. A generalized spherical harmonics solution for radiative transfer models that include polarization effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 36(5): 401-423 [DOI: 10.1016/0022-4073(86)90097-Xhttp://dx.doi.org/10.1016/0022-4073(86)90097-X]
Gastellu-Etchegorry J P, Martin E and Gascon F. 2004. DART: a 3D model for simulating satellite images and studying surface radiation budget. International Journal of Remote Sensing, 25(1): 73-96 [DOI: 10.1080/0143116031000115166http://dx.doi.org/10.1080/0143116031000115166]
Glassner A S. 1989. An Introduction to Ray Tracing. London: Academic Press
Guo J, Tsang L, Asher W, Ding K H and Chen C T. 2001. Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 1019-1027 [DOI: 10.1109/36.921420http://dx.doi.org/10.1109/36.921420]
Howell J R, Mengüc M P and Siegel R. 2010. Thermal Radiation Heat Transfer. Boca Raton: CRC Press
Ishimaru A. 1978. Wave Propagation and Scattering in Random Media. New York: Academic Press
Ishimaru A and Kuga Y. 1982. Attenuation constant of a coherent field in a dense distribution of particles. Journal of the Optical Society of America, 72(10): 1317-1320 [DOI: 10.1364/JOSA.72.001317http://dx.doi.org/10.1364/JOSA.72.001317]
Ito G, Arnold J A and Glotch T D. 2017. T-matrix and radiative transfer hybrid models for densely packed particulates at mid-infrared wavelengths. Journal of Geophysical Research: Planets, 122(5): 822-838 [DOI: 10.1002/2017JE005271http://dx.doi.org/10.1002/2017JE005271]
Ito G, Mishchenko M I and Glotch T D. 2018. Radiative-transfer modeling of spectra of planetary regoliths using cluster-based dense packing modifications. Journal of Geophysical Research: Planets, 123(5): 1203-1220 [DOI: 10.1029/2018JE005532http://dx.doi.org/10.1029/2018JE005532]
Jin Y. 1992. Radiative Transfer of multi-layer random media with multi-component dense random scattering particles. Science China A, (12): 1311-1317
金亚秋. 1992. 多成分密集随机散射粒子多层随机介质的辐射传输. 中国科学: A 辑, (12): 1311-1317
Jin Y. 1997. Radiative transfer of snowpack/vegetation canopy at the SSM/I channels and satellite data analysis. Remote Sensing of Environment, 61(1): 55-63 [DOI: 10.1016/S0034-4257(96)00240-4http://dx.doi.org/10.1016/S0034-4257(96)00240-4]
Kaasalainen S, Kaasalainen M, Mielonen T, Suomalainen J, Peltoniemi J I and Näränen J. 2006. Optical properties of snow in backscatter. Journal of Glaciology, 52(179): 574-584 [DOI: 10.3189/172756506781828421http://dx.doi.org/10.3189/172756506781828421]
Kravtsov Y A and Apresyan L A. 1996. Radiative transfer: new aspects of the old theory//Progress in Optics. Amsterdam: Elsevier, 36: 179-244 [DOI: 10.1016/S0079-6638(08)70315-9http://dx.doi.org/10.1016/S0079-6638(08)70315-9]
Kuusk A. 2018. Canopy radiative transfer modeling//Comprehensive Remote Sensing. Oxford: Elsevier: 9-22 [DOI: 10.1016/B978-0-12-409548-9.10534-2http://dx.doi.org/10.1016/B978-0-12-409548-9.10534-2]
Kuzmina M G, Bass L P and Nikolaeva O V. 2018. Polarized radiative transfer in optically active light scattering media//Kokhanovsky A, ed. Springer Series in Light Scattering Volume 2: Light Scattering, Radiative Transfer and Remote Sensing. [s.l.]: Springer: 1-53 [DOI: 10.1007/978-3-319-70808-9_1http://dx.doi.org/10.1007/978-3-319-70808-9_1]
Lambert J H. 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Augsburg: Detlefsen
Lax M. 1951. Multiple scattering of waves. Reviews of Modern Physics, 23(4): 287-310 [DOI: 10.1103/RevModPhys.23.287http://dx.doi.org/10.1103/RevModPhys.23.287]
Lax M. 1952. Multiple scattering of waves. II. The effective field in dense systems. Physical Review, 85: 621 [DOI: 10.1103/PhysRev.85.621http://dx.doi.org/10.1103/PhysRev.85.621]
Liang S L and Mishchenko M I. 1997. Calculations of the soil hot-spot effect using the coherent backscattering theory. Remote Sensing of Environment, 60(2): 163-173 [DOI: 10.1016/S0034-4257(96)00179-4http://dx.doi.org/10.1016/S0034-4257(96)00179-4]
Lommel E. 1887. Die Photometrie der diffusen Zurückwerfung. Sitzber Acad Wissensch München, 17: 95-124
Ma L X, Tan J Y, Zhao J M, Wang F Q and Wang C A. 2017. Multiple and dependent scattering by densely packed discrete spheres: comparison of radiative transfer and Maxwell theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 187: 255-266 [DOI: 10.1016/j.jqsrt.2016.09.025http://dx.doi.org/10.1016/j.jqsrt.2016.09.025]
Mackowski D W and Mishchenko M I. 2011. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13): 2182-2192 [DOI: 10.1016/j.jqsrt.2011.02.019http://dx.doi.org/10.1016/j.jqsrt.2011.02.019]
Milne E A. 1921. Radiative equilibrium in the outer layers of a star: the temperature distribution and the law of darkening. Monthly Notices of the Royal Astronomical Society, 81(5): 361-375 [DOI: 10.1093/mnras/81.5.361http://dx.doi.org/10.1093/mnras/81.5.361]
Mishchenko M I. 2002. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics, 41(33): 7114 [DOI: 10.1364/AO.41.007114http://dx.doi.org/10.1364/AO.41.007114]
Mishchenko M I. 2010. Poynting–Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm. Optics Express, 18(19): 19770 [DOI: 10.1364/OE.18.019770http://dx.doi.org/10.1364/OE.18.019770]
Mishchenko M I. 2014a. Directional radiometry and radiative transfer: the convoluted path from centuries-old phenomenology to physical optics. Journal of Quantitative Spectroscopy and Radiative Transfer, 146: 4-33 [DOI: 10.1016/j.jqsrt.2014.02.033http://dx.doi.org/10.1016/j.jqsrt.2014.02.033]
Mishchenko M I. 2014b. Electromagnetic Scattering by Particles and Particle Groups: An Introduction. Cambridge: Cambridge University Press [DOI: 10.1017/CBO9781139019064http://dx.doi.org/10.1017/CBO9781139019064]
Mishchenko M I, Dlugach J M, Yanovitskij E G and Zakharova N T. 1999. Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 63(2/6): 409-432
Mishchenko M I, Dlugach J M, Yurkin M A, Bi L, Cairns B, Liu L, Panetta R L, Travis L D, Yang P and Zakharova N T. 2016. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Physics Reports, 632: 1-75 [DOI: 10.1016/j.physrep.2016.04.002http://dx.doi.org/10.1016/j.physrep.2016.04.002]
Mishchenko M I, Goldstein D H, Chowdhary J and Lompado A. 2013. Radiative transfer theory verified by controlled laboratory experiments. Optics Letters, 38(18): 3522 [DOI: 10.1364/OL.38.003522http://dx.doi.org/10.1364/OL.38.003522]
Mishchenko M I, Hovenier J W and Mackowski D W. 2004. Single scattering by a small volume element. Journal of the Optical Society of America A, 21(1): 71-87 [DOI: 10.1364/JOSAA.21.000071http://dx.doi.org/10.1364/JOSAA.21.000071]
Mishchenko M I and Liu L. 2007. Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1/3): 616-621 [DOI: 10.1016/j.jqsrt.2007.01.039http://dx.doi.org/10.1016/j.jqsrt.2007.01.039]
Mishchenko M I, Liu L, Mackowski D W, Cairns B and Videen G. 2007. Multiple scattering by random particulate media: exact 3D results. Optics Express, 15(6): 2822 [DOI: 10.1364/OE.15.002822http://dx.doi.org/10.1364/OE.15.002822]
Mishchenko M I, Travis L D and Lacis A A. 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press
Mishchenko M I, Travis L D and Lacis A A. 2006. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge: Cambridge University Press
Mobley C D. 2001. Radiative transfer in the ocean//Encyclopedia of Ocean Sciences. San Diego: Academic Press: 2321-2330 [DOI: 10.1006/rwos.2001.0469http://dx.doi.org/10.1006/rwos.2001.0469]
Muinonen K. 2004. Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves in Random Media, 14(3): 365-388 [DOI: 10.1088/0959-7174/14/3/010http://dx.doi.org/10.1088/0959-7174/14/3/010]
Muinonen K, Markkanen J, Väisänen T, Peltoniemi J and Penttilä A. 2018. Multiple scattering of light in discrete random media using incoherent interactions. Optics Letters, 43(4): 683-686 [DOI: 10.1364/OL.43.000683http://dx.doi.org/10.1364/OL.43.000683]
Muinonen K, Mishchenko M I, Dlugach J M, Zubko E, Penttilä A and Videen G. 2012. Coherent backscattering verified numerically for a finite volume of spherical particles. The Astrophysical Journal, 760(2): 118 [DOI: 10.1088/0004-637X/760/2/118http://dx.doi.org/10.1088/0004-637X/760/2/118]
Panetta R L, Liu C and Yang P. 2013. A pseudo-spectral time domain method for light scattering computation//Kokhanovsky A A, ed. Light Scattering Reviews 8. Berlin: Springer: 139-188 [DOI: 10.1007/978-3-642-32106-1_4http://dx.doi.org/10.1007/978-3-642-32106-1_4]
Peraiah A. 2002. An Introduction to Radiative Transfer: Methods and Applications in Astrophysics. Cambridge: Cambridge University Press
Prahl S A. 1995. The adding-doubling method//Optical-Thermal Response of Laser-Irradiated Tissue. New York: Springer: 101-129 [DOI: 10.1007/978-1-4757-6092-7_5http://dx.doi.org/10.1007/978-1-4757-6092-7_5]
Preisendorfer R W. 1965. Radiative Transfer on Discrete Spaces. Oxford: Pergamon Press
Prishivalko A P, Babenko V A and Kuzmin V N. 1984. Scattering and absorption of light by inhomogeneous and anisotropic spherical particles. Minsk: Hauka i Tehnika
Qin Q M, Chen J, Zhang Y G, Ren H Z, Wu Z H, Zhang C S, Wu L S and Liu J L. 2020. A discussion on some frontier directions of quantitative remote sensing. Remote Sensing for Land and Resources, 32(4): 8-15
秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 2020. 定量遥感若干前沿方向探讨. 国土资源遥感, 32(4): 8-15 [DOI: 10.6046/gtzyyg.2020.04.02http://dx.doi.org/10.6046/gtzyyg.2020.04.02]
Qin Q M, Fan W J and Ren H Z. 2018. Theories, Methods and Applications of Quantitative Remote Sensing for Croplands. Beijing: Science Press
秦其明, 范闻捷, 任华忠. 2018. 农田定量遥感理论、方法与应用. 北京: 科学出版社
Royer A, Roy A, Montpetit B, Saint-Jean-Rondeau O, Picard G, Brucker L and Langlois A. 2017. Comparison of commonly-used microwave radiative transfer models for snow remote sensing. Remote Sensing of Environment, 190: 247-259
Rozenberg G V. 1955. Vector-parameter Stokes. UAN 56(1): 79-110
Sadeghi M, Babaeian E, Tuller M and Jones S B. 2018. Particle size effects on soil reflectance explained by an analytical radiative transfer model. Remote Sensing of Environment, 210: 375-386 [DOI: 10.1016/j.rse.2018.03.028http://dx.doi.org/10.1016/j.rse.2018.03.028]
Salpeter E E and Bethe H A. 1951. A relativistic equation for bound-state problems. Physical Review, 84(6): 1232-1242 [DOI: 10.1103/PhysRev.84.1232http://dx.doi.org/10.1103/PhysRev.84.1232]
Schäfer J and Kienle A. 2008. Scattering of light by multiple dielectric cylinders: comparison of radiative transfer and Maxwell theory. Optics Letters, 33(20): 2413 [DOI: 10.1364/OL.33.002413http://dx.doi.org/10.1364/OL.33.002413]
Schmugge T J. and Choudhury B J. 1981. A comparison of radiative transfer models for predicting the microwave emission from soils. Radio Science, 16(5), 927-938 [DOI: 10.1029/RS016i005p00927http://dx.doi.org/10.1029/RS016i005p00927]
Schuster A. 1905. Radiation through a foggy atmosphere. The Astrophysical Journal, 21: 1 [DOI: 10.1086/141186http://dx.doi.org/10.1086/141186]
Schwarzschild K. 1906. Über das gleichgewicht der sonnenatmosphäre. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1906: 41-53
Siewert C E. 2000. A discrete-ordinates solution for radiative-transfer models that include polarization effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 64(3): 227-254 [DOI: 10.1016/S0022-4073(99)00006-0http://dx.doi.org/10.1016/S0022-4073(99)00006-0]
Sobolev V V. 1949. On polarization of scattered light. Trudy Astron. Obs. Leningr. Univ, 13: 3-16
Sun B Q, Bi L, Yang P, Kahnert M and Kattawar G. 2019. Invariant Imbedding T-Matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles. Amsterdam: Elsevier
Titov G A. 1990. Statistical description of radiation transfer in clouds. Journal of the Atmospheric Sciences, 47(1): 24-38 [DOI: 10.1175/1520-0469(1990)047<0024:SDORTI>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1990)047<0024:SDORTI>2.0.CO;2]
Tsang L. 1984. Thermal emission of nonspherical particles. Radio Science, 19(4): 966-974 [DOI: 10.1029/RS019i004p00966http://dx.doi.org/10.1029/RS019i004p00966]
Tsang L, Chen C T, Chang A T C, Guo J J and Ding K H. 2000a. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow. Radio Science, 35(3): 731-749 [DOI: 10.1029/1999RS002270http://dx.doi.org/10.1029/1999RS002270]
Tsang L and Ishimaru A. 1987. Radiative wave equations for vector electromagnetic propagation in dense nontenuous media. Journal of Electromagnetic Waves and Applications, 1(1): 59-72 [DOI: 10.1163/156939387X00090http://dx.doi.org/10.1163/156939387X00090]
Tsang L and Kong J A. 2001. Scattering of Electromagnetic Waves: Advanced Topics. New York: John Wiley and Sons [DOI: 10.1002/0471224278http://dx.doi.org/10.1002/0471224278]
Tsang L and Kong J A. 1980. Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism. Journal of Applied Physics, 51(7): 3465-3485 [DOI: 10.1063/1.328200http://dx.doi.org/10.1063/1.328200]
Tsang L, Kong J A and Ding K H. 2000b. Scattering of Electromagnetic Waves: Theories and Applications. New York: John Wiley and Sons [DOI: 10.1002/0471224286http://dx.doi.org/10.1002/0471224286]
Tsang L, Kong J A and Habashy T. 1982. Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus–Yevick approximation. The Journal of the Acoustical Society of America, 71(3): 552-558 [DOI: 10.1121/1.387524http://dx.doi.org/10.1121/1.387524]
Tsang L, Pan J, Liang D, Li Z X, Cline D W and Tan Y H. 2007. Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects. IEEE Transactions on Geoscience and Remote Sensing, 45(4): 990-1004 [DOI: 10.1109/TGRS.2006.888854http://dx.doi.org/10.1109/TGRS.2006.888854]
Tseng S H and Huang B. 2007. Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell’s equations of light scattering by a macroscopic random medium. Applied Physics Letters, 91(5): 051114 [DOI: 10.1063/1.2767777http://dx.doi.org/10.1063/1.2767777]
Twersky V. 1964. On propagation in random media of discrete scatterers//Bellman R, ed. Proceedings of Symposia in Applied Mathematics. Providence: American Mathematical Society: 84-116 [DOI: 10.1090/psapm/016/0163605http://dx.doi.org/10.1090/psapm/016/0163605]
Twersky V. 1983. Propagation in correlated distributions of large-spaced scatterers. Journal of the Optical Society of America, 73(3): 313-320 [DOI: 10.1364/JOSA.73.000313http://dx.doi.org/10.1364/JOSA.73.000313]
Väisänen T. 2020. Light Scattering in Dense Particulate Media. Helsinki: University of Helsinki
Väisänen T, Markkanen J, Hadamcik E, Renard J B, Lasue J, Levasseur-Regourd A C, Blum J and Muinonen K. 2020a. Scattering of light by a large, densely packed agglomerate of small silica spheres. Optics Letters, 45(7): 1679 [DOI: 10.1364/OL.382240http://dx.doi.org/10.1364/OL.382240]
Väisänen T, Martikainen J and Muinonen K. 2020b. Scattering of light by dense particulate media in the geometric optics regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 241: 106719 [DOI: 10.1016/j.jqsrt.2019.106719http://dx.doi.org/10.1016/j.jqsrt.2019.106719]
Väisänen T, Markkanen J, Penttilä A and Muinonen K. 2019. Radiative transfer with reciprocal transactions: numerical method and its implementation. PLoS ONE, 14(1): e0210155 [DOI: 10.1371/journal.pone.0210155http://dx.doi.org/10.1371/journal.pone.0210155]
Verhoef W. 1998. Theory of Radiative Transfer Models Applied in Optical Remote Sensing of Vegetation Canopies. Wageningen: Wageningen Agricultural University
Voit F, Hohmann A, Schäfer J and Kienle A. 2012. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory. Journal of Biomedical Optics, 17(4): 045003 [DOI: 10.1117/1.JBO.17.4.045003http://dx.doi.org/10.1117/1.JBO.17.4.045003]
Voit F, Schäfer J and Kienle A. 2009. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations. Optics Letters, 34(17): 2593 [DOI: 10.1364/OL.34.002593http://dx.doi.org/10.1364/OL.34.002593]
Wang L V and Wu H. 2007. Biomedical Optics: Principles and Imaging. Hoboken: John Wiley and Sons
Watson K M. 1953. Multiple scattering and the many-body problem—applications to photomeson production in complex nuclei. Physical Review, 89(3): 575-587 [DOI: 10.1103/PhysRev.89.575http://dx.doi.org/10.1103/PhysRev.89.575]
Wen B, Tsang L, Winebrenner D P and Ishimaru A. 1990. Dense medium radiative transfer theory: comparison with experiment and application to microwave remote sensing and polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 28(1): 46-59 [DOI: 10.1109/36.45744http://dx.doi.org/10.1109/36.45744]
Wendisch M and Yang P. 2012. Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. Singapore: John Wiley and Sons
Whitney B A. 2011. Monte Carlo radiative transfer//Fluid Flows to Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary. Singapore: World Scientific: 151-176 [DOI: 10.1142/9789814374774_0011http://dx.doi.org/10.1142/9789814374774_0011]
Wolf E. 1976. New theory of radiative energy transfer in free electromagnetic fields. Physical Review D, 13(4): 869-886 [DOI: 10.1103/PhysRevD.13.869http://dx.doi.org/10.1103/PhysRevD.13.869]
Wolf P E and Maret G. 1985. Weak localization and coherent backscattering of photons in disordered media. Physical Review Letters, 55(24): 2696-2699 [DOI: 10.1103/PhysRevLett.55.2696http://dx.doi.org/10.1103/PhysRevLett.55.2696]
Yang W, Jin X and Gao X Q. 2021. Vector radiative transfer equation for arbitrary shape particles derived from Maxwell’s electromagnetic theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 265: 107307 [DOI: 10.1016/j.jqsrt.2020.107307http://dx.doi.org/10.1016/j.jqsrt.2020.107307]
Yu J H, Bi L, Han W and Zhang X Y. 2022. Application of a neural network to store and compute the optical properties of non-spherical particles. Advances in Atmospheric Sciences, 39(12): 2024-2039 [DOI: 10.1007/s00376-021-1375-5http://dx.doi.org/10.1007/s00376-021-1375-5]
Yurkin M A and Hoekstra A G. 2011. The discrete-dipole-approximation code ADDA: capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13): 2234-2247 [DOI: 10.1016/j.jqsrt.2011.01.031http://dx.doi.org/10.1016/j.jqsrt.2011.01.031]
Zhai P W, Hu Y X, Trepte C R and Lucker P L. 2009. A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method. Optics Express, 17(4): 2057-2079 [DOI: 10.1364/OE.17.002057http://dx.doi.org/10.1364/OE.17.002057]
Zhou L, Tsang L and Chen D. 2003. Polarimetric passive microwave remote sensing of wind vectors with foam-covered rough ocean surfaces. Radio Science, 38(4): 1073 [DOI: 10.1029/2002RS002764http://dx.doi.org/10.1029/2002RS002764]
相关作者
相关机构