临近空间高度卫星光学载荷辐射定标试验与初步结果
The near-space altitude experiment for satellite radiometric calibration and the first results
- 2023年27卷第5期 页码:1177-1193
纸质出版日期: 2023-05-07
DOI: 10.11834/jrs.20222070
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-05-07 ,
扫 描 看 全 文
王宁,马灵玲,刘强,赵永光,腾格尔,刘耀开,高彩霞,刘恩超,张东辉,黎荆梅,王任飞,张贝贝,高海亮,吴骅,韩启金,张泰华,杨燕初,牛沂芳,郑青川,欧阳光洲.2023.临近空间高度卫星光学载荷辐射定标试验与初步结果.遥感学报,27(5): 1177-1193
Wang N,Ma L L,Liu Q,Zhao Y G,Teng G E,Liu Y K,Gao C X,Liu E C,Zhang D H,Li J M,Wang R F,Zhang B B,Gao H L,Wu H,Han Q J,Zhang T H,Yang Y C,Niu Y F,Zheng Q C and Ouyang G Z. 2023. The near-space altitude experiment for satellite radiometric calibration and the first results. National Remote Sensing Bulletin, 27(5):1177-1193
卫星遥感载荷在轨辐射定标需要高稳定、高可靠、可追溯的辐射定标源支持。将辐射基准搬至空间平台,利用同步对地观测的方式将基准传递至卫星载荷,已成为未来提升在轨辐射定标精度的可行方式之一。临近空间高度上可获得与卫星相接近的观测,同时,以高空科学气球为代表的临近空间浮空器还具有长时区域驻空、可回收等平台优势,也是空间辐射基准可选择的搭载平台之一。本文介绍了将高空科学气球作为平台搭载辐射参考载荷的系统设计,以及在青海大柴旦地区开展的临近空间光学载荷辐射定标飞行试验情况。结合试验获取的临空平台位置姿态数据、观测辐射亮度数据,分析了临近空间高空科学气球平台及辐亮度计的工作稳定性,给出了在临近空间开展卫星光学载荷定标的一般性方法,并对定标不确定度进行了分析,得到气球过境均匀区和山地区辐亮度观测的不确定度分别为3.8%—4.3%和5.0%—6.8%。与MODIS、GF-6\WFI同步观测数据比对结果也一定程度上证实了不确定度估算的可靠性。本次基于临近空间高空科学气球的卫星光学载荷辐射定标试验探索了高空科学气球作为空间辐射基准搭载平台的可行性,为进一步发展基于临近空间的辐射基准传递定标系统积累了经验。
On-orbit calibration and performance monitoring of satellite remote sensing payloads call for the support of the radiometric calibration source
which has high stability
reliability
and traceability. One of the most effective ways to improve the accuracy of on-orbit radiometric calibration is to move the radiometric benchmark from the laboratory to a space-borne platform to form “calibration satellites
” such as “THUTHS
” “CLARREO
” and the Chinese “LIBRA.” Then
the simultaneous nadir overpass observations obtained from the calibration satellite and other satellites can be employed to transfer the benchmark to other satellites. However
up to now
all of the abovementioned projects are at the research and development stage. At present
no operational satellites can be used to validate the benchmark transfer chain
which is one of the core functions of future calibration satellites. Given that the high-altitude scientific balloon has the advantages of being close to TOA observations
long-term regional flight
and recyclability
it can be regarded as an optional platform for space radiometric benchmarks. This study examined the composition of the demonstration system that can operate at a near-space altitude
with the high-altitude scientific balloon as a platform and a radiometer covering the spectrum range of 400—2500 nm as the main Earth observation instrument. A flight experiment was also performed by utilizing this system in Da-Qaidam in Qinghai Province. During the flight
the position and attitude data of the balloon platform and the observed radiance data were obtained and fully recorded. These data were initially used to analyze the stability of the high-altitude scientific balloon platform and the radiometer in near-space. Results revealed that during the whole flight
the radiometer was in a stable environment and worked well. Then
a general method of satellite radiometric calibration with the balloon observation in near-space was established in consideration of balloon flight tracks that are difficult to fully control. The uncertainty of the proposed method reached 3.15%—3.35% and 4.60%—4.75% in the uniform and mountain areas
respectively. A comparison with MODIS and GF-6/WFI synchronous observations was performed to confirm the reliability of the uncertainty analysis. The satellite and balloon observations showed good agreement with each other. The successful flight experiment revealed the feasibility of using high-altitude scientific balloons as a space radiometric benchmark-carrying platform. It can also serve as a reference for the further development of near-space-borne radiometric benchmark transfer calibration systems.
遥感临近空间高空科学气球辐射定标外场试验
remote sensingnear-spacehigh-altitude science balloonradiometric calibrationfield experiment
Chander G, Hewison T J, Fox N, Wu X Q, Xiong X X and Blackwell W J. 2013. Overview of intercalibration of satellite instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1056-1080 [DOI: 10.1109/TGRS.2012.2228654http://dx.doi.org/10.1109/TGRS.2012.2228654] DoiA, KonoY, KimuraK, NakaharaS, OyamaT, OkadaN, SatouY, YamashitaK, MatsumotoN, BabaM, YasudaD, SuzukiS, HasegawaY, HonmaM, TanakaH, IshimuraK, MurataY, ShimomukaiR, TachiT, SaitoK, WatanabeN, BandoN, KameyaO, YonekuraY, SekidoM, InoueY, SakamotoH, KogisoN, ShojiY, OgawaH, FujisawaK, NaritaM, ShibaiH, FukeH, UeharaK and KoyamaS. 2019. A balloon-borne very long baseline interferometry experiment in the stratosphere: systems design and developments. Advances in Space Research, 63(1): 779-793. [DOI: 10.1016/j.asr.2018.09.020http://dx.doi.org/10.1016/j.asr.2018.09.020]
Fox N, Aiken J, Barnett J J, Briottet X, Carvell R, Fröhlich C, Groom S B, Hagolle O, Haigh J D, Kieffer H H, Lean J, Pollock D B, Quinn T, Sandford M C W, Schaepman M, Shine K P, Schmutz W K, Teillet P M, Thome K J, Verstraete M M and Zalewski E. 2003. Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS). Advances in Space Research, 32(11): 2253-2261 [DOI: 10.1016/S0273-1177(03)90551-5http://dx.doi.org/10.1016/S0273-1177(03)90551-5]
Fox N and Green P. 2020. Traceable radiometry underpinning terrestrial- and helio-Studies (TRUTHS): an element of a space-based climate and calibration observatory. Remote Sensing, 12(15): 2400 [DOI: 10.3390/rs12152400http://dx.doi.org/10.3390/rs12152400]
Franks S, Neigh C S R, Campbell P K, Sun G Q, Yao T, Zhang Q Y, Huemmrich K F, Middleton E M, Ungar S G and Frye S W. 2017. EO-1 Data quality and sensor stability with changing orbital precession at the end of a 16 Year mission. Remote Sensing, 9(5): 412 [DOI: 10.3390/rs9050412http://dx.doi.org/10.3390/rs9050412]
Kopp G, Belting C, Castleman Z, Drake G, Espejo J, Heuerman K, Lamprecht B, Lanzi J, Smith P, Stuchlik D and Vermeer B. 2014. First results from the hyperspectral imager for climate science (HySICS)//Proceedings of the SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX. Baltimore: SPIE: 90880Q [DOI: 10.1117/12.2053426http://dx.doi.org/10.1117/12.2053426]
Kopp G, Smith P, Belting C, Castleman Z, Drake G, Espejo J, Heuerman K, Lanzi J and Stuchlik D. 2017. Radiometric flight results from the HyperSpectral imager for climate science (HySICS). Geoscientific Instrumentation, Methods and Data Systems, 6(1): 169-191 [DOI: 10.5194/gi-6-169-2017http://dx.doi.org/10.5194/gi-6-169-2017]
Markham B, Barsi J, Kvaran G, Ong L, Kaita E, Biggar S, Czapla-Myers J, Mishra N and Helder D. 2014. Landsat-8 operational land imager radiometric calibration and stability. Remote Sensing, 6(12): 12275-12308 [DOI: 10.3390/rs61212275http://dx.doi.org/10.3390/rs61212275]
Mukherjee B, Wu X F, Maczka T, Kwan T, Huang Y J and Mares V. 2016. Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector. Radiation Measurements, 94: 65-72 [DOI: 10.1016/j.radmeas.2016.09.007http://dx.doi.org/10.1016/j.radmeas.2016.09.007]
Slater P N, Biggar S F, Holm R G, Jackson R D, Mao Y, Moran M S, Palmer J M and Yuan B. 1987. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22(1): 11-37. [ DOI: 10.1016/0034-4257(87)90026-5]
Takahashi S and Aoki S. 2018. GRAINE project, prospects for scientific balloon-borne experiments. Advances in Space Research, 62(10): 2945-2953 [DOI: 10.1016/j.asr.2017.08.029http://dx.doi.org/10.1016/j.asr.2017.08.029]
Thome K J, Crowther B G and Biggar S F. 1997. Reflectance- and irradiance-based calibration of Landsat-5 Thematic Mapper. Canadian Journal of Remote Sensing, 23(4): 309-317 [DOI: 10.1080/07038992.1997.10855217http://dx.doi.org/10.1080/07038992.1997.10855217]
Wang M, He M Y, Zhang S P, Chen X Y and Qiu M. 2014. Calibration methods of visible-near infrared channel-type satellite radiometric sensor. Remote Sensing Information, 29(1): 114-120
王敏, 何明元, 张水平, 陈晓颖, 邱敏. 2014. 通道式可见光近红外卫星遥感器辐射定标方法综述. 遥感信息, 29(1): 114-120 [DOI: 10.3969/j.issn.1000-3177.2014.01.022http://dx.doi.org/10.3969/j.issn.1000-3177.2014.01.022]
Wielicki B A, Young D F, Mlynczak M G, Thome K J, Leroy S, Corliss J, Anderson J G, Ao C O, Bantges R, Best F, Bowman K, Brindley H, Butler J J, Collins W, Dykema J A, Doelling D R, Feldman D R, Fox N, Huang X, Holz R, Huang Y, Jin Z, Jennings D, Johnson D G, Jucks K, Kato S, Kirk-Davidoff D B, Knuteson B, Kopp G, Kratz D P, Liu X, Lukashin C, Mannucci A J, Phojanamongkolkij N, Pilewskie P, Ramaswamy V, Revercomb H, Rice J, Roberts Y, Roithmayr C M, Rose F, Sandford S, Shirley E L, Smith Sr W L, Soden B, Speth P W, Sun W, Taylor P C, Tobin D and Xiong X. 2013. Achieving climate change absolute accuracy in orbit. Bulletin of the American Meteorological Society, 94(10): 1519-1539 [DOI: 10.1175/BAMS-D-12-00149.1http://dx.doi.org/10.1175/BAMS-D-12-00149.1]
Xiong X X, Angal A, Twedt K A, Chen H D, Link D, Geng X, Aldoretta E and Mu Q Z. 2019. MODIS reflective solar bands on-orbit calibration and performance. IEEE Transactions on Geoscience and Remote Sensing, 57(9): 6355-6371 [DOI: 10.1109/TGRS.2019.2905792http://dx.doi.org/10.1109/TGRS.2019.2905792]
Xiong X, Chiang K, Esposito J, Guenther B and Barnes W. 2003. MODIS on-orbit calibration and characterization. Metrologia, 40(1): S89-S92 [DOI: 10.1088/0026-1394/40/1/320http://dx.doi.org/10.1088/0026-1394/40/1/320]
Zhang P, Lu N M, Li C R, Ding L, Zheng X B, Zhang X J, Hu X Q, Ye X, Ma L L, Xu N, Chen L and Schmetz J. 2020. Development of the Chinese space-based radiometric benchmark mission LIBRA. Remote Sensing, 12(14): 2179 [DOI: 10.3390/rs12142179http://dx.doi.org/10.3390/rs12142179]
相关作者
相关机构