高寒湿地分类的遥感特征优选研究
Remote sensing feature selection for alpine wetland classification
- 2023年27卷第4期 页码:1045-1060
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20222080
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
霍轩琳,牛振国,张波,刘林崧,李霞.2023.高寒湿地分类的遥感特征优选研究.遥感学报,27(4): 1045-1060
Huo X L,Niu Z G, Zhang B, Liu L S and Li X. 2023. Remote sensing feature selection for alpine wetland classification. National Remote Sensing Bulletin, 27(4):1045-1060
高寒湿地是青藏高原重要的地表覆盖类型之一,对于水源涵养、调节气候、维护生物多样性等起着关键作用,准确及时获知高寒湿地的时空分布对于湿地的保护和管理十分必要。遥感分类特征优选对湿地制图具有关键性的作用。虽然像光谱特征、纹理特征、地形特征等均在已有研究中有涉及,但鲜有研究聚焦光谱指数特征,深入探讨其数理统计特征和特征优选方法。本研究以甘肃首曲高寒湿地保护区为研究区,基于Sentinel-2数据得到各分类特征(光谱、植被指数、红边指数和水体指数),采用Filter和Wrapper特征选择方法包括Jeffries-Matusita距离、光谱角距离(SAD)、欧氏距离(ED)、RF-RFE算法和Relief-F算法对上述特征进行优选,并利用Filter方法的Z检验进行量化评价。研究表明:(1)所有参与分类的类别中,河流与裸地最容易区分,其次为草原与沼泽,沼泽化草甸与草甸较为难分。对沼泽、沼泽化草甸、草甸、草原邻近两类可尝试MCARI2、NDWI、DVI、EVI、EWI、IRECI、MCARI、TCARI、UGWI指数进行区分;(2)就不同指数特征对湿地信息提取贡献程度而言,水体指数特征>植被指数特征>红边指数特征;(3)从特征优选方法角度看,Filter方法中的ED距离算法与 Relief-F算法表现突出;(4)最终选出适于高寒湿地信息提取的指数有RDVI、NDVI、MSR、RVI、VIgreen、RNDWI、NDWI、NDWI_B、MNDWI、EWI、CIre;(5)从不同分类特征的数理统计指标看,中值特征的分类结果最好,其次是平均值特征。本研究为湿地信息提取在特征变量优选方面提供了一种可迁移且普适性高的方法和思路。
Alpine wetlands are an important surface cover type on the Qinghai―Tibet Plateau because they play a key role in water conservation
climate regulation
and biodiversity maintenance. Accurate and timely knowledge of the temporal and spatial distribution of alpine wetlands is necessary for wetland protection and management. The selection of remote sensing classification features is crucial in wetland mapping. Although spectral
texture
and topographic features have been investigated
studies focusing on spectral index features and their mathematical statistical features and feature selection methods are limited. This study aims to classify alpine wetlands from the aspects of mathematical statistical features
alpine wetland types
feature selection methods
and selected feature sets combined with random forest classification algorithm using Sentinel-2 image data and taking the Shouqu Alpine Wetland Reserve as the research site. An in-depth and comprehensive analysis on the spectral index characteristics of alpine wetlands is performed to optimize the classification characteristics of alpine wetlands.
The Gansu Shouqu Alpine Wetland Reserve was used as the research area
and classification characteristics (spectrum
vegetation index
red edge index
and water body index) were obtained on the basis of Sentinel-2 data. Filter and wrapper feature selection methods
including Jeffries–Matusita distance
Spectral Angular Distance (SAD)
Euclidean Distance (ED)
RF-RFE algorithm
and Relief-F algorithm are utilized to optimize these features. Meanwhile
Z test is applied for quantitative evaluation.
The following conclusions can be drawn from this study. (1) Among the categories of alpine wetlands involved in the classification
rivers and bare land are the easiest to distinguish
followed by grasslands and swamps and then swampy meadows and meadows. MCARI2
NDWI
DVI
EVI
EWI
IRECI
MCARI
TCARI
and UGWI indices can be used to differentiate among adjacent swamps
swampy meadows
meadows
and grasslands. (2) The order of contribution of different index characteristics to wetland information extraction in terms of degree is water body index characteristics > vegetation index characteristics > red edge index characteristics. (3) ED and Relief-F algorithms in the filter method demonstrate excellent performance from the perspective of feature optimization methods. (4) A suitable alpine wetland information extraction method is selected using the indices RDVI
NDVI
MSR
RVI
VIgreen
RNDWI
NDWI
NDWI_B
MNDWI
EWI
and CIre. (5) The mathematical statistics of different classification features indicated that the median feature obtains the best classification result
followed by the average value feature.
We provide detailed results from feature optimization methods
wetland classification optimization index
statistical feature evaluation
and categories involved in alpine wetland classification using multi-dimensional analysis. To the best of our knowledge
this study provides a novel transferable and universal method for the selection of characteristic variables for wetland information extraction.
遥感湿地分类高寒湿地特征优选青藏高原Sentinel-2
remote sensingwetland classificationalpine wetlandfeature selectionQinghai-Tibet PlateauSentinel-2
Barnes E M, Clarke T R, Richards S R, Colaizzi P D, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano R J, Li H and Moran M S. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data//Proceedings of the 5th International Conference on Precision Agriculture. Bloomington, Minnesota, USA: [s.n.]: 1-15
Birth G S and Mcvey G R. 1968. Measuring the color of growing turf with a reflectance Spectrophotometer. Agronomy Journal, 60(6): 640-643 [DOI: 10.2134/agronj1968.00021962006000060016xhttp://dx.doi.org/10.2134/agronj1968.00021962006000060016x]
Breiman L. 2001. Random forest. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Broge N H and Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2): 156-172 [DOI: 10.1016/s0034-4257(00)00197-8http://dx.doi.org/10.1016/s0034-4257(00)00197-8]
Carvalho Júnior O A, Guimarães R F, Gillespie A R, Silva N C and Gomes R A T. 2011. A new approach to change vector analysis using distance and similarity measures. Remote Sensing, 3(11): 2473-2493 [DOI: 10.3390/rs3112473http://dx.doi.org/10.3390/rs3112473]
Chang W T, Wang H, Ning X G and Zhang H C. 2020. Extraction of Zhalong wetlands information based on images of Sentinel-2 red-edge bands and Sentinel-1 radar bands. Wetland Science, 18(1): 10-19
常文涛, 王浩, 宁晓刚, 张翰超. 2020. 融合Sentinel-2红边波段和Sentinel-1雷达波段影像的扎龙湿地信息提取. 湿地科学, 18(1): 10-19 [DOI: 10.13248/j.cnki.wetlandsci.2020.01.002http://dx.doi.org/10.13248/j.cnki.wetlandsci.2020.01.002]
Chen J M. 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3): 229-242 [DOI: 10.1080/07038992.1996.10855178http://dx.doi.org/10.1080/07038992.1996.10855178]
Chen W Q, Ding J L, Li Y H and Niu Z Y. 2015. Extraction of water information based on China made-GF-1 remote sense image. Resources Science, 37(6): 1166-1172
陈文倩, 丁建丽, 李艳华, 牛增懿. 2015. 基于国产GF-1遥感影像的水体提取方法. 资源科学, 37(6): 1166-1172
Dabboor M, Howell S, Shokr M and Yackel J. 2014. The Jeffries-Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data. International Journal of Remote Sensing, 35(19/20): 6859-6873 [DOI: 10.1080/01431161.2014.960614http://dx.doi.org/10.1080/01431161.2014.960614]
Dash M, Choi K, Scheuermann P and Liu H. 2002. Feature selection for clustering-a filter solution//2002 IEEE International Conference on Data Mining. Maebashi City, Japan: IEEE: 115-122 [DOI: 10.1109/ICDM.2002.1183893http://dx.doi.org/10.1109/ICDM.2002.1183893]
Dash J and Curran P J. 2004. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23): 5403-5413 [DOI: 10.1080/0143116042000274015http://dx.doi.org/10.1080/0143116042000274015]
Dash M and Liu H. 1997. Feature selection for classification. Intelligent Data Analysis, 1(1/4): 131-156 [DOI: 10.1016/S1088-467X(97)00008-5http://dx.doi.org/10.1016/S1088-467X(97)00008-5]
Daughtry C S T, Walthall C L, Kim M S, de Colstoun E B and McMurtrey J E III. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2): 229-239 [DOI: 10.1016/s0034-4257(00)00113-9http://dx.doi.org/10.1016/s0034-4257(00)00113-9]
Defries R S and Townshend J R G. 1994. NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing, 15(17): 3567-3586 [DOI: 10.1080/01431169408954345http://dx.doi.org/10.1080/01431169408954345]
Duan J W, Zhong J S, Jiang L and Zhong M M. 2021. Extraction method of ultra-green water index for flood area after rain based on GF-2 image. Geography and Geo-Information Science, 37(3): 35-41
段纪维, 钟九生, 江丽, 钟淼淼. 2021. 基于GF-2影像的雨后洪涝区超绿水体指数提取方法. 地理与地理信息科学, 37(3): 35-41 [DOI: 10.3969/j.issn.1672-0504.2021.03.006http://dx.doi.org/10.3969/j.issn.1672-0504.2021.03.006]
Elavarasan D, Vincent P M D R, Srinivasan K and Chang C Y. 2020. A hybrid CFS filter and RF-RFE wrapper-based feature extraction for enhanced agricultural crop yield prediction modeling. Agriculture, 10(9): 400 [DOI: 10.3390/agriculture10090400http://dx.doi.org/10.3390/agriculture10090400]
Frampton W J, Dash J, Watmough G and Milton E J. 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82: 83-92 [DOI: 10.1016/j.isprsjprs.2013.04.007http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007]
Gao B B. 2008. Research on the Status Quo of Wetland in Shouqu Nature Reserve of the Yellow River in Gansu Province and its protection Countermeasures. Gansu Science and Technology, 24(12): 3-5
高斌斌. 2008. 甘肃黄河首曲自然保护区湿地现状及其保护对策研究. 甘肃科技, 24(12): 3-5 [DOI: 10.3969/j.issn.1000-0952.2008.12.002http://dx.doi.org/10.3969/j.issn.1000-0952.2008.12.002]
Gitelson A A, Kaufman Y J, Stark R and Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1): 76-87 [DOI: 10.1016/s0034-4257(01)00289-9http://dx.doi.org/10.1016/s0034-4257(01)00289-9]
Gitelson A A, Keydan G P and Merzlyak M N. 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 33(11): L11402 [DOI: 10.1029/2006gl026457http://dx.doi.org/10.1029/2006gl026457]
Gitelson A and Merzlyak M N. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3): 286-292 [DOI: 10.1016/s0176-1617(11)81633-0http://dx.doi.org/10.1016/s0176-1617(11)81633-0]
Gitelson A A and Merzlyak M N. 1996. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148(3/4): 494-500 [DOI: 10.1016/s0176-1617(96)80284-7http://dx.doi.org/10.1016/s0176-1617(96)80284-7]
Gitelson A A, Viña A, Arkebauer T J, Rundquist D C, Keydan G and Leavitt B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5): 1248 [DOI: 10.1029/2002GL016450http://dx.doi.org/10.1029/2002GL016450]
Guyon I and Elisseeff A. 2003. An introduction to variable and feature selection. Journal of Machine Learning Research, 3: 1157-1182
Guyot G and Baret F. 1988. Utilisation de la haute resolution spectrale pour suivre l'etat des couverts vegetaux//Proceedings of the 4th International Conference on Spectral Signatures of Objects in Remote Sensing. Aussois, France: [s.n.]: 279-286
Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J and Dextraze L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2/3): 416-426 [DOI: 10.1016/s0034-4257(02)00018-4http://dx.doi.org/10.1016/s0034-4257(02)00018-4]
Han N, Wang K, Yu L and Zhang X Y. 2012. Integration of texture and landscape features into object-based classification for delineatingTorreyausing IKONOS imagery. International Journal of Remote Sensing, 33(7): 2003-2033 [DOI: 10.1080/01431161.2011.605084http://dx.doi.org/10.1080/01431161.2011.605084]
Hao Y F, Man W D, Wang J H, Liu M Y and Zhang K. 2021. Wetland information extraction based on Relief-F algorithm and decision tree method. Journal of Liaoning Technical University (Natural Science), 40(3): 225-233
郝玉峰, 满卫东, 汪金花, 刘明月, 张阔. 2021. Relief-F算法及决策树方法下的湿地信息提取. 辽宁工程技术大学学报(自然科学版), 40(3): 225-233
He J H, Zhang T B, Yi G H, Bie X J, Luo N, Wang Q and Fan W W. 2015. Wetland information extraction and change detection in Zoige Plateau area based on the EOS/MODIS. Geomatics and Spatial Information Technology, 38(9): 38-41
何菊红, 张廷斌, 易桂花, 别小娟, 罗娜, 王强, 范微维. 2015. 基于EOS/MODIS若尔盖高原地区湿地信息提取及变化监测. 测绘与空间地理信息, 38(9): 38-41
Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1/2): 195-213 [DOI: 10.1016/S0034-4257(02)00096-2http://dx.doi.org/10.1016/S0034-4257(02)00096-2]
Huete A R.1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309 [DOI: 10.1016/0034-4257(88)90106-Xhttp://dx.doi.org/10.1016/0034-4257(88)90106-X]
John G H, Kohavi R and Pfleger K. 1994. Irrelevant features and the subset selection problem//Proceedings of the Eleventh International Conference on Machine Learning. New Brunswick, NJ: Rutgers University, 121-129 [DOI: 10.1016/B978-1-55860-335-6.50023-4http://dx.doi.org/10.1016/B978-1-55860-335-6.50023-4]
Kira K and Rendell L A. 1992. The feature selection problem: traditional methods and a new algorithm//Proceedings of the Tenth National Conference on Artificial Intelligence. San Jose, California: AAAI Press: 129-134
Korhonen L, Hadi, Packalen P and Rautiainen M. 2017. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 195: 259-274 [DOI: 10.1016/j.rse.2017.03.021http://dx.doi.org/10.1016/j.rse.2017.03.021]
Kruse F A, Lefkoff A B and Dietz J B. 1993. Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 44(2/3): 309-336 [DOI: 10.1016/0034-4257(93)90024-rhttp://dx.doi.org/10.1016/0034-4257(93)90024-r]
Liu J H and Wang F. 2021. A semi-supervised feature selection algorithm based on Relief-F. Journal of Zhengzhou University (Natural Science Edition), 53(1): 42-46, 53
刘吉超, 王锋. 2021. 基于Relief-F的半监督特征选择算法. 郑州大学学报(理学版), 53(1): 42-46, 53 [DOI: 10.13705/j.issn.1671-6841.2020196http://dx.doi.org/10.13705/j.issn.1671-6841.2020196]
Mahdianpari M, Salehi B, Mohammadimanesh F, Homayouni S and Gill E. 2019. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google earth engine cloud computing platform. Remote Sensing, 11(1): 43 [DOI: 10.3390/rs11010043http://dx.doi.org/10.3390/rs11010043]
McFeeters S K. 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Moor H, Hylander K and Norberg J. 2015. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio, 44(S1): 113-126 [DOI: 10.1007/s13280-014-0593-9http://dx.doi.org/10.1007/s13280-014-0593-9]
Phan T N, Kuch V and Lehnert L W. 2020. Land cover classification using Google earth engine and random forest classifier—The role of image composition. Remote Sensing, 12(15): 2411 [DOI: 10.3390/rs12152411http://dx.doi.org/10.3390/rs12152411]
Roujean J L and Breon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3): 375-384 [DOI: 10.1016/0034-4257(94)00114-3http://dx.doi.org/10.1016/0034-4257(94)00114-3]
Saeys Y, Inza I and Larrañaga P. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19): 2507-2517 [DOI: 10.1093/bioinformatics/btm344http://dx.doi.org/10.1093/bioinformatics/btm344]
Shoko C and Mutanga O. 2017. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 32-40 [DOI: 10.1016/j.isprsjprs.2017.04.016http://dx.doi.org/10.1016/j.isprsjprs.2017.04.016]
Sun Y L, Zhang X, Shuai T, Shang K and Feng S N. 2015. Radiometric normalization of hyperspectral satellite images with spectral angle distance and Euclidean distance. Journal of Remote Sensing, 19(4): 618-626
孙艳丽, 张霞, 帅通, 尚坤, 冯淑娜. 2015. 光谱角—欧氏距离的高光谱图像辐射归一化. 遥感学报, 19(4): 618-626 [DOI: 10.11834 /jrs.20154176http://dx.doi.org/10.11834/jrs.20154176]
Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150 [DOI: 10.1016/00344257(79)90013-0http://dx.doi.org/10.1016/00344257(79)90013-0]
Wang G X, Li Y S, Wang Y B and Chen L. 2007. Typical alpine wetland system changes on the Qinghai-Tibet Plateau in recent 40 years. Acta Geographica Sinica, 62(5): 481-491
王根绪, 李元寿, 王一博, 陈玲. 2007. 近40年来青藏高原典型高寒湿地系统的动态变化. 地理学报, 62(5): 481-491 [DOI: 10.3321/j.issn:0375-5444.2007.05.004http://dx.doi.org/10.3321/j.issn:0375-5444.2007.05.004]
White L, Ryerson R A, Pasher J and Duffe J. 2020. State of science assessment of remote sensing of great lakes coastal wetlands: responding to an operational requirement. Remote Sensing, 12(18): 3024 [DOI: 10.3390/rs12183024http://dx.doi.org/10.3390/rs12183024]
Wu C Y, Niu Z, Tang Q and Huang W J. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agricultural and Forest Meteorology, 148(8/9): 1230-1241 [DOI: 10.1016/j.agrformet.2008.03.005http://dx.doi.org/10.1016/j.agrformet.2008.03.005]
Xiao X M, Boles S, Liu J Y, Zhuang D F, Frolking S, Li C S, Salas W and Moore B. 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4): 480-492 [DOI: 10.1016/j.rse.2004.12.009http://dx.doi.org/10.1016/j.rse.2004.12.009]
Xie S Y, Fu B L, Li Y, Liu Z L, Zuo P P, Lan F W, He H C and Fan D L. 2021. Classification method on marsh wetlands in Honghe National Nature Reserve based on multi-dimensional remote sensing images. Wetland Science, 19(1): 1-16
解淑毓, 付波霖, 李颖, 刘兆礼, 左萍萍, 蓝斐芜, 何宏昌, 范冬林. 2021. 基于多维度遥感影像的洪河国家级自然保护区沼泽湿地分类方法研究. 湿地科学, 19(1): 1-16 [DOI: 10.13248/j.cnki.wetlandsci.2021.01.001http://dx.doi.org/10.13248/j.cnki.wetlandsci.2021.01.001]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Xu X L, Liu J Y, Shao Q Q and Fan J W. 2008. The dynamic changes of ecosystem spatial pattern and structure in the Three-River Headwaters region in Qinghai Province during recent 30 years. Geographical Research, 27(4): 829-838
徐新良, 刘纪远, 邵全琴, 樊江文. 2008. 30年来青海三江源生态系统格局和空间结构动态变化. 地理研究, 27(4): 829-838 [DOI: 10.11821/yj2008040011http://dx.doi.org/10.11821/yj2008040011]
Xue P F, Li W L, Zhu G F, Zhou H K, Liu C L and Yan H P. 2021. Changes in the pattern of an alpine wetland landscape in Maqu County in the first meander of the Yellow River. Chinese Journal of Plant Ecology, 45(5): 467-475
薛鹏飞, 李文龙, 朱高峰, 周华坤, 刘陈立, 晏和飘. 2021. 黄河首曲玛曲县高寒湿地景观格局演变. 植物生态学报, 45(5): 467-475 [DOI: 10.17521/cjpe.2020.0288http://dx.doi.org/10.17521/cjpe.2020.0288]
Yan P, Zhang Y J and Zhang Y. 2007. A study on information extraction of water system in semi- arid regions with the enhanced water index (EWI) and GIS based noise remove techniques. Remote Sensing Information, (6): 62-67
闫霈, 张友静, 张元. 2007. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究. 遥感信息, (6): 62-67 [DOI: 10.3969/j.issn.1000-3177.2007.06.015http://dx.doi.org/10.3969/j.issn.1000-3177.2007.06.015]
Yu L and Liu H. 2003. Feature selection for high-dimensional data: a fast correlation-based filter solution//Proceedings of the Twentieth International Conference on Machine Learning. Washington, DC, USA: AAAI Press: 856-863
Zhang L, Gong Z N, Wang Q W, Jin D D and Wang X. 2019. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Journal of Remote Sensing, 23(2): 313-326
张磊, 宫兆宁, 王启为, 金点点, 汪星. 2019. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取. 遥感学报, 23(2): 313-326 [DOI: 10.11834/jrs.20198083http://dx.doi.org/10.11834/jrs.20198083]
Zhang S Q, Zhou B R, Shi F F, Chen Q and Su S L. 2020. Study on information extraction method of alpine wetland in Qinghai-Xizang Plateau based on remote sensing data of GF-1 Satellite. Plateau Meteorology, 39(6): 1309-1317
张帅旗, 周秉荣, 史飞飞, 陈奇, 苏淑兰. 2020. 基于高分一号卫星遥感数据的青藏高原高寒湿地信息提取方法研究. 高原气象, 39(6): 1309-1317 [DOI: 10.7522/j.issn.1000-0534.2019.00131http://dx.doi.org/10.7522/j.issn.1000-0534.2019.00131]
Zheng Y, Wu B F and Zhang M. 2017. Estimating the above ground biomass of winter wheat using the Sentinel-2 data. Journal of Remote Sensing, 21(2): 318-328
郑阳, 吴炳方, 张淼. 2017. Sentinel-2数据的冬小麦地上干生物量估算及评价. 遥感学报, 21(2): 318-328 [DOI: 10.11834/jrs.20176269http://dx.doi.org/10.11834/jrs.20176269]
相关作者
相关机构