多尺度特征和多模型相融合的草原区牧畜遥感监测
Remote sensing monitoring method of livestock in grassland based on multi-scale features and multi-models fusion
- 2023年27卷第10期 页码:2383-2394
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20222099
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
肖如林,高吉喜,刘爱军,侯鹏,张文国,杨勇,李运保,付卓,靳川平,杨栩,郑淑华,殷守敬.2023.多尺度特征和多模型相融合的草原区牧畜遥感监测.遥感学报,27(10): 2383-2394
Xiao R L, Gao J X, Liu A J, Hou P, Zhang W G, Yang Y, Li Y B, Fu Z, Jin C P, Yang X, Zheng S H and Yin S J. 2023. Remote sensing monitoring method of livestock in grassland based on multi-scale features and multi-models fusion. National Remote Sensing Bulletin, 27(10):2383-2394
超载过牧是中国草原退化的主要原因之一,而载畜情况是评估草畜平衡的关键。面向牧畜高效、精准监管工作需求,针对牧畜“小(微)目标”监测的痛点难点,基于亚米级卫星遥感数据,综合利用牧畜“点”特征、“群”特征、“移动不固定”特征等多种特征,融合深度学习、面向对象等多种识别技术方法,构建了一种多尺度特征和多模型方法相融合的牧畜高分卫星遥感监测技术方法。该方法通过对牧畜弱信号的有效增强、“牧畜群”和“牧畜斑点”的分阶段检测与相互融合增强,实现了对牧畜群分布、牧畜斑点分布和牧畜群规模的监测提取,推动牧畜卫星遥感监测向“点数”式精细化监测迈进。锡林郭勒草原区域监测实验数据显示,模型检出率约0.802,误检率约0.244,具有较好效果。该方法的应用,可为草原区载畜情况的监测监管提供支撑,也可为其他“小(微)目标”的遥感监测提供借鉴;无论是在技术创新还是业务应用方面都具有十分重要的意义。
China is a large country of grassland and animal husbandry. Overloading and overgrazing is one of the main causes of grassland degradation in China. To protect the grassland
it is necessary to precisely monitoring livestock carrying capacity
which is the key to evaluation and control grass-livestock balance. However
traditional method of livestock carrying capacity such as hierarchical statistics
sampling field survey and online camera monitoring is whether time-consuming
labor-intensive
costly or poor quality. So it is very urgent to find a kind of efficient and precise monitoring method of livestock carrying capacity in grassland.
To achieve this goal
this research proposes an efficient and precise monitoring method of the livestock in grassland by using of sub-meter resolution satellite image. The method not only fuses multi-scale features of livestock in sub-meter resolution satellite image such as “blob feature”、“flock feature”、“moving feature”
but also integrates deep learning technology and object oriented recognition technology. Firstly
considering that the livestock in satellite image is a kind of small (tiny) target
it uses kinds of image enhancement method such as bi-lateral filtering and Laplace of Gaussian (LoG) operator to enhance the weak livestock signal successfully. Secondly
in consideration of “flock feature” of livestock flock
it use a kind of “livestock flock detection model” based on deep learning technology to get the rough distribution area of livestock flocks. Thirdly
in consideration of “blob feature” and “moving feature” of livestock
it use a kind of “livestock blob detection method” based on LoG Gradient Difference and object oriented recognition technology to get the possible livestock blobs. Finally
by integrating the detecting result of both livestock flocks and livestock blobs
it uses the livestock blobs result to enhance and verify the livestock flocks result
and the enhanced and verified livestock flocks and the livestock blobs within them is finally get by using some simple manually revising work.
Through an experiment in Xilingol grassland
it is found that the approach has good effect on livestock flock detection: with positive detection rate about 0.802 and false detection rate about 0.244
especially as to big livestock flock
the positive detection rate is up to 0.937
the false detection rate is low to 0.072.
It is very helpful for the monitoring and supervision of livestock flock in grassland
and can also provide reference for remote sensing monitoring of other “small (tiny) targets”. It is of great significance both in terms of technological innovation and business application. It makes a litter effort in promoting the livestock satellite remote sensing monitoring into an intuitive and fine monitoring era-“Number-Counting Era”.
牧畜遥感载畜草原小(微)目标
livestockremote sensinglivestock carryinggrasslandsmall (tiny) target
Fu G C, Yang W and Song Z H. 2009. Preliminary discussion on current situation of meadows and main reasons of degradation of China. Inner Mongolia Environmental Sciences, 21(4): 32-35
付国臣, 杨韫, 宋振宏. 2009. 我国草地现状及其退化的主要原因. 内蒙古环境科学, 21(4): 32-35 [DOI: 10.3969/j.issn.1007-0370.2009.04.008http://dx.doi.org/10.3969/j.issn.1007-0370.2009.04.008]
Guo X J, Shao Q Q, Yang F, Li Y Z, Wang Y C and Wang D L. 2019. Using UAV remote sensing for a population census of blue sheep (Pseudois nayaur) in Maduo county, source region of the Yellow River. Journal of Natural Resources, 34(5): 1054-1065
郭兴健, 邵全琴, 杨帆, 李愈哲, 汪阳春, 王东亮. 2019. 无人机遥感调查黄河源玛多县岩羊数量及分布. 自然资源学报, 34(5): 1054-1065
Institute of Botany, The Chinese Academy of Sciences. 2020. Method and system for recognizing cattle and sheep based on remote sensing image. China, 202010111366.1
中国科学院植物研究所. 2020. 一种基于遥感影像识别牛羊的方法和系统. 中国, 202010111366.1
Li G, Sun W L, Zhang H and Gao C Y. 2014. Balance between actual number of livestock and livestock carrying capacity of grassland after added forage of straw based on remote sensing in Tibetan Plateau. Transactions of the Chinese Society of Agricultural Engineering, 30(17): 200-211
李刚, 孙炜琳, 张华, 高春雨. 2014. 基于秸秆补饲的青藏高原草地载畜量平衡遥感监测. 农业工程学报, 30(17): 200-211 [DOI: 10.3969/j.issn.1002-6819.2014.17.026http://dx.doi.org/10.3969/j.issn.1002-6819.2014.17.026]
Liang H, Wang Q W, Zhang Q and Li C X. 2021. Small object detection technology: a review. Computer Engineering and Applications, 57(1): 17-28
梁鸿, 王庆玮, 张千, 李传秀. 2021. 小目标检测技术研究综述. 计算机工程与应用, 57(1): 17-28 [DOI: 10.3778/j.issn.1002-8331.2009-0099http://dx.doi.org/10.3778/j.issn.1002-8331.2009-0099]
Liang T G, Cui X, Feng Q S, Wang Y and Xia W T. 2019. Remotely sensed dynamics monitoring of grassland aboveground biomass and carrying capacity during 2001-2008 in Gannan pastoral area. Acta Prataculturae Sinica, 18(6): 12-22
梁天刚, 崔霞, 冯琦胜, 王莺, 夏文韬. 2019. 2001-2008年甘南牧区草地地上生物量与载畜量遥感动态监测. 草业学报, 18(6): 12-22 [DOI: 10.3321/j.issn:1004-5759.2009.06.002http://dx.doi.org/10.3321/j.issn:1004-5759.2009.06.002]
Liu A J and Han J G. 2007. The study of method about monitoring grazing intensity in Xilingol rangeland using RS data. Chinese Journal of Grassland, 29(2): 70-74
刘爱军, 韩建国. 2007. 利用遥感技术监测锡林郭勒天然草原利用强度方法初探. 中国草地学报, 29(2): 70-74 [DOI: 10.3969/j.issn.1673-5021.2007.02.013http://dx.doi.org/10.3969/j.issn.1673-5021.2007.02.013]
Liu A J, Xing Q, Gao W, Yang G Q, Su R N, Ha S and An M Z. 2003. Productivity monitoring and livestock capacity calculation of natural grassland in Inner Mongolia in 2003. Inner Mongolia Prataculture, 15(4): 1-3
刘爱军, 邢旗, 高娃, 杨国奇, 苏日娜, 哈斯, 安卯柱. 2003. 内蒙古2003年天然草原生产力监测及载畜能力测算. 内蒙古草业, 15(4): 1-3
Liu X N, Wang Z P, He Y T and Liu Q. 2019. Research on small target detection based on deep learning. Tactical Missile Technology, (1): 100-107
刘晓楠, 王正平, 贺云涛, 刘倩. 2019. 基于深度学习的小目标检测研究综述. 战术导弹技术, (1): 100-107 [DOI: 10.16358/j.issn.1009-1300.2019.8.522http://dx.doi.org/10.16358/j.issn.1009-1300.2019.8.522]
Ma Z L and Ni J Z. 2022. A vehicle detection method for remote sensing image. Beijing Surveying and Mapping, 36(5): 547-551
马志龙, 倪佳忠. 2022. 一种遥感图像车辆检测方法. 北京测绘, 36(5): 547-551 [DOI: 10.19580/j.cnki.1007-3000.2022.05.004http://dx.doi.org/10.19580/j.cnki.1007-3000.2022.05.004]
Pearson C, Filippi P and González L A. 2021. The relationship between satellite-derived vegetation indices and live weight changes of beef cattle in extensive grazing conditions. Remote Sensing, 13(20): 4132 [DOI: 10.3390/rs13204132http://dx.doi.org/10.3390/rs13204132]
Peng J B, Wang D L, Liao X H, Shao Q Q, Sun Z G, Yue H Y and Ye H P. 2020. Wild animal survey using UAS Imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 364-376 [DOI: 10.1016/j.isprsjprs.2020.08.026http://dx.doi.org/10.1016/j.isprsjprs.2020.08.026]
Sha M M, Li Y and Li A. 2022. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN. National Remote Sensing Bulletin, 26(8): 1624-1635
沙苗苗, 李宇, 李安. 2022. 改进Faster R-CNN的遥感图像多尺度飞机目标检测. 遥感学报, 26(8): 1624-1635 [DOI: 10.11834/jrs.20219365http://dx.doi.org/10.11834/jrs.20219365]
Shao Q Q, Guo X J, Li Y Z, Wang Y C, Wang D L, Liu J Y, Fan J W and Yang F. 2018. Using UAV remote sensing to analyze the population and distribution of large wild herbivores. Journal of Remote Sensing, 22(3): 497-507
邵全琴, 郭兴健, 李愈哲, 汪阳春, 王东亮, 刘纪远, 樊江文, 杨帆. 2018. 无人机遥感的大型野生食草动物种群数量及分布规律研究. 遥感学报, 22(3): 497-507 [DOI: 10.11834/jrs.20187267http://dx.doi.org/10.11834/jrs.20187267]
Tong K, Wu Y Q and Zhou F. 2020. Recent advances in small object detection based on deep learning: a review. Image and Vision Computing, 97: 103910 [DOI: 10.1016/j.imavis.2020.103910http://dx.doi.org/10.1016/j.imavis.2020.103910]
Tong K and Wu Y Q. 2022. Deep learning-based detection from the perspective of small or tiny objects: a survey. Image and Vision Computing, 123: 104471 [DOI: 10.1016/j.imavis.2022.104471http://dx.doi.org/10.1016/j.imavis.2022.104471]
Wang K, Wu P, Xuan C Z, Yu W B and Su H. 2020. Progress in monitoring the grazing information of livestock. Journal of Nanjing Agricultural University, 43(3): 403-413
王奎, 武佩, 宣传忠, 于文波, 苏赫. 2020. 放牧家畜牧食信息监测的研究进展. 南京农业大学学报, 43(3): 403-413 [DOI: 10.7685/jnau.201906052http://dx.doi.org/10.7685/jnau.201906052]
Wang M T and Li D Q. 2017. Analysis of animal husbandry economy development in Northern Tibet Plateau based on the statistical data and investigation of 111 shepherds. Journal of Shanxi Agricultural University (Social Science Edition), 16(12): 18-24
王美兔, 李迪强. 2017. 基于统计数据及111户牧户调查的藏北高原畜牧经济发展探析. 山西农业大学学报(社会科学版), 16(12): 18-24 [DOI: 10.3969/j.issn.1671-816X.2017.12.003http://dx.doi.org/10.3969/j.issn.1671-816X.2017.12.003]
Wang Q, Ma L L, Wang N, Wang Y H, Li J M, Teng G E, Ouyang G Z, Zhang Y P, Ao L, Niu Y F, Zheng Q C and Li Z Y. 2021. Automatic grassland livestock quantity accounting method for optical images acquired by tethered balloon. Radio Engineering, 51(12): 1485-1492
汪琪, 马灵玲, 王宁, 王宇航, 黎荆梅, 腾格尔, 欧阳光洲, 张远平, 敖磊, 牛沂芳, 郑青川, 李子扬. 2021. 系留球载光学影像的草原牲畜数量自动核算方法. 无线电工程, 51(12): 1485-1492 [DOI: 10.3969/j.issn.1003-3106.2021.12.015http://dx.doi.org/10.3969/j.issn.1003-3106.2021.12.015]
Wang Q, Sun B P and Zhao T N. 2007. Investigation and research of forage yield and livestock capacity in Yanchi county. Research of Soil and Water Conservation, 14(4): 109-112
王庆, 孙保平, 赵廷宁. 2007. 盐池县天然草场产草量与载畜量调查研究. 水土保持研究, 14(4): 109-112
Yao H G, Wang C, Yu J, Bai X J and Li W. 2020. Recognition of small-target ships in complex satellite images. Journal of Remote Sensing, 24(2): 116-125
姚红革, 王诚, 喻钧, 白小军, 李蔚. 2020. 复杂卫星图像中的小目标船舶识别. 遥感学报, 24(2): 116-125 [DOI: 10.11834/jrs.20208238http://dx.doi.org/10.11834/jrs.20208238]
Zhang X S, Zhang M J, Wang L, Luo H L and Li J. 2019. Research status and development analysis of wearable information monitoring technology in animal husbandry. Transactions of the Chinese Society for Agricultural Machinery, 50(11): 1-14
张小栓, 张梦杰, 王磊, 罗海玲, 李军. 2019. 畜牧养殖穿戴式信息监测技术研究现状与发展分析. 农业机械学报, 50(11): 1-14 [DOI: 10.6041/j.issn.1000-1298.2019.11.001http://dx.doi.org/10.6041/j.issn.1000-1298.2019.11.001]
Zhao J B and Du B S. 2023. Development of small target detection technology based on deep learning. Electronics Optics and Control, 30(2): 63-70, 74
赵景波, 杜保帅. 2023. 基于深度学习的小目标检测技术发展. 电光与控制, 30(2): 63-70, 74 [DOI: 10.3969/j.issn.1671-637X.2023.02.012http://dx.doi.org/10.3969/j.issn.1671-637X.2023.02.012]
相关作者
相关机构