海洋白帽的高空间分辨率光学遥感估算分析
Estimation of oceanic whitecaps using high spatial-resolution optical remote sensing
- 2023年27卷第1期 页码:92-103
纸质出版日期: 2023-01-07
DOI: 10.11834/jrs.20222106
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-01-07 ,
扫 描 看 全 文
赵碧,丁静,刘建强,焦俊男,唐君,陆应诚.2023.海洋白帽的高空间分辨率光学遥感估算分析.遥感学报,27(1): 92-103
Zhao B,Ding J,Liu J Q,Jiao J N,Tang J and Lu Y C. 2023. Estimation of oceanic whitecaps using high spatial-resolution optical remote sensing. National Remote Sensing Bulletin, 27(1):92-103
海洋白帽是海面波浪破碎的直观表现,反映了海面风速等海洋动力环境情况,是海气交换的重要通道,也是海洋研究关注的重点目标之一。海洋白帽对入射光具有较强的反射散射作用,随着海洋光学遥感空间分辨率的提高,海洋白帽能被有效识别与区分。在空间分辨率为10 m的哨兵2号卫星(Sentinel-2)多光谱成像仪MSI(Multi-Spectral Instrument)数据的近红外波段(842 nm)中,不同风速下的海洋白帽影像特征清晰;基于海洋白帽对入射光的辐射传输过程与图像特征,本研究利用一种白帽覆盖率的光学遥感估算方法,实现了MSI弱耀光反射图像上的白帽覆盖率估算。研究表明:(1)基于MSI数据估算的海面白帽覆盖率,在无其他海洋环境动力的影响下,能进一步用于海面风速的遥感反演,且具有较高的空间分辨率;(2)其他海洋动力环境要素,能对海面波浪的破碎程度产生调制作用,因此海洋白帽的识别提取也有助于海洋环境动力遥感监测;(3)海面强耀光反射会对海洋白帽遥感带来较大的干扰,导致海面白帽覆盖率的高估,有效剔除耀光反射是提高海洋白帽识别提取精度的重要前提。对中国首个海洋水色业务卫星星座(海洋一号C/D卫星,HY-1C/D)获取的海岸带成像仪CZI(Coastal Zone Imager)数据开展分析,结果表明,在无其他海洋环境动力的调制下,当风速约高于9 m/s时,海洋白帽能为CZI载荷探测并区分,白帽覆盖率随着风速的增加而增加;CZI瑞利校正反射率图像的统计分析还表明,白帽反射率会比背景海水反射率高约5.8%—8.3%;对CZI图像中海洋白帽的深入研究,不仅为大气校正提供数据参考,也有助于光学遥感对海洋环境的深入理解与应用开发。随着海面白帽光学遥感的不断深入,今后将能为海面风场反演、海洋环境动力监测、海气交换评估提供新的技术方法参考。
Oceanic whitecaps
generated from wind-wave breaking process
are the medium of air-sea exchange and the indicator of sea surface state. Due to the intense reflection and scattering of incident light
whitecaps can be effectively recognized and distinguished in in-situ photos or videos. Whitecap coverage (
W
)
defined as the proportion of ocean surface covered by whitecaps
is an important parameter for the quantification of whitecaps. Of course
oceanic whitecaps can also be discriminated in high spatial resolution optical remote sensing images
such as Sentinel-2 MSI and Landsat-8 OLI data. This can provide a new research direction in marine environment observation
and may be further used for wind speed monitoring. However
how to estimate oceanic whitecap coverage from these optical remote sensing images is still a challenge. In this study
the formula of whitecap coverage is obtained by converting the form of radiative equation related with the constant and image reflectance of Sentinel-2 MSI data under some assumptions. The background signal of seawater and atmosphere was eliminated by data optimization
and the signal of whitecaps can be distinguished using regional filtering method. Then
whitecap coverage can be estimated. The identification and estimation results indicate that whitecap coverage derived from Sentinel-2 MSI images are consistent with previous studies using in situ observations in the order of magnitude
and can invert sea surface wind speed using a statistical model. Coarse spatial resolution wind speed images converted from MSI inversion were validated by ERA5 wind speed products from European Centre for Medium-Range Weather Forecasts (ECMWF). In addition
whitecap coverage can imply the modulation of other marine environmental dynamic factors (
e.g
.
water mass
ocean fronts
ocean eddies and internal waves). Moreover
it should be noted that sunglint reflection is a non-negligible issue for optical remote sensing of oceanic whitecaps whose signal should be effectively eliminated. Examining the MSI-derived results to HY1-C/D CZI
it indicates that whitecaps can be identified in CZI images when wind speed is greater than 9 m/s
and the reflectance difference between whitecaps and background seawater is 5.8%—8.3%. We hope the above results can be used to improve the accuracy of atmospheric correction
and provide new reference for using high spatial resolution optical remote sensing in sea surface wind speed estimation and marine environmental dynamic factors monitoring. This will hopefully expand the research and application fields of ocean color remote sensing.
光学遥感海洋白帽耀光HY-1C/DSentinel-2MSICZI
optical remote sensingoceanic whitecapssunglintHY-1C/DSentinel-2MSICZI
Anguelova M D and Bettenhausen M H. 2019. Whitecap fraction from satellite measurements: Algorithm description[J]. Journal of Geophysical Research: Oceans, 124(3): 1827-1857 [DOI: 10.1029/2018JC014630http://dx.doi.org/10.1029/2018JC014630]
Anguelova M D and Webster F. 2006. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps[J]. Journal of Geophysical Research: Oceans, 111(C3) [DOI: 10.1029/2005JC003158]
Asher W E and Wanninkhof R. 1998. The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments. Journal of Geophysical Research: Oceans, 103(C5): 10555-10560 [DOI: 10.1029/98jc00245http://dx.doi.org/10.1029/98jc00245]
Blanchard D C. 1983. The production, distribution, and bacterial enrichment of the sea-salt aerosol//Air-Sea Exchange of Gases and Particles. Dordrecht: Springer: 407-454 [DOI: 10.1007/978-94-009-7169-17http://dx.doi.org/10.1007/978-94-009-7169-17]
Callaghan A H, Deane G B and Stokes M D. 2008a. Observed physical and environmental causes of scatter in whitecap coverage values in a fetch-limited coastal zone. Journal of Geophysical Research: Oceans, 113(C5): C05022 [DOI: 10.1029/2007jc004453http://dx.doi.org/10.1029/2007jc004453]
Callaghan A, de Leeuw G, Cohen L and O'Dowd C D. 2008b. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophysical Research Letters, 35(23): L23609 [DOI: 10.1029/2008gl036165http://dx.doi.org/10.1029/2008gl036165]
Cox C and Munk W. 1954. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Journal of the Optical Society of America, 44(11): 838-850 [DOI: 10.1364/josa.44.000838http://dx.doi.org/10.1364/josa.44.000838]
Frouin R, Iacobellis S F and Deschamps P Y. 2001. Influence of oceanic whitecaps on the global radiation budget. Geophysical Research Letters, 28(8): 1523-1526 [DOI: 10.1029/2000gl012657http://dx.doi.org/10.1029/2000gl012657]
Frouin R, Schwindling M and Deschamps P Y. 1996. Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications. Journal of Geophysical Research: Oceans, 101(C6): 14361-14371 [DOI: 10.1029/96JC00629http://dx.doi.org/10.1029/96JC00629]
Garaba S P and Dierssen H M. 2018. An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics. Remote Sensing of Environment, 205: 224-235 [DOI: 10.1016/j.rse.2017.11.023http://dx.doi.org/10.1016/j.rse.2017.11.023]
Goddijn-Murphy L, Woolf D K and Callaghan A H. 2011. Parameterizations and algorithms for oceanic whitecap coverage. Journal of Physical Oceanography, 41(4): 742-756 [DOI: 10.1175/2010jpo4533.1http://dx.doi.org/10.1175/2010jpo4533.1]
Goddijn-Murphy L, Woolf D K, Callaghan A H, Nightingale P D and Shutler J D. 2016. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity. Journal of Geophysical Research: Oceans, 121(1): 818-835 [DOI: 10.1002/2015jc011096http://dx.doi.org/10.1002/2015jc011096]
Gordon H R and Wang M H. 1994. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Applied Optics, 33(33): 7754-7763 [DOI: 10.1364/ao.33.007754http://dx.doi.org/10.1364/ao.33.007754]
Harmel T, Chami M, Tormos T, Reynaud N and Danis P A. 2018. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands[J]. Remote Sensing of Environment, 204: 308-321 [DOI: 10.1016/j.rse.2017.10.022http://dx.doi.org/10.1016/j.rse.2017.10.022]
Hanson J L and Phillips O M. 1999. Wind sea growth and dissipation in the open ocean. Journal of Physical Oceanography, 29(8): 1633-1648 [DOI: 10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2http://dx.doi.org/10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2]
Hu C M, Carder K L and Muller-Karger F E. 2000. Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method. Remote Sensing of Environment, 74(2): 195-206 [DOI: 10.1016/s0034-4257(00)00080-8http://dx.doi.org/10.1016/s0034-4257(00)00080-8]
Hu C M, Li X F, Pichel W G and Muller-Karger F E. 2009. Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery. Geophysical Research Letters, 36(1): L01604 [DOI: 10.1029/2008gl036119http://dx.doi.org/10.1029/2008gl036119]
Jackson C R and Alpers W. 2010. The role of the critical angle in brightness reversals on sunglint images of the sea surface[J]. Journal of Geophysical Research: Oceans, 115(C9) [DOI: 10.1029/2009JC006037]
Jia N and Zhao D L. 2019. The influence of wind speed and sea states on whitecap coverage. Journal of Ocean University of China, 18(2): 282-292 [DOI: 10.1007/s11802-019-3808-7http://dx.doi.org/10.1007/s11802-019-3808-7]
Kay S, Hedley J D and Lavender S. 2009. Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths[J]. Remote sensing, 1(4): 697-730 [DOI: 10.3390/rs1040697http://dx.doi.org/10.3390/rs1040697]
Kneizys F X, Shettle E P and Gallery W O. 1981. Atmospheric transmittance and radiance: the LOWTRAN 5 code//Proceedings Volume 0277, Atmospheric Transmission. Washington, D.C.: SPIE 277: 116-124 [DOI: 10.1117/12.931910http://dx.doi.org/10.1117/12.931910]
Koepke P. 1984. Effective reflectance of oceanic whitecaps. Applied Optics, 23(11): 1816-1824 [DOI: 10.1364/AO.23.001816http://dx.doi.org/10.1364/AO.23.001816]
Kokhanovsky A A. 2004. Spectral reflectance of whitecaps. Journal of Geophysical Research: Oceans, 109(C5): C05021 [DOI: 10.1029/2003jc002177http://dx.doi.org/10.1029/2003jc002177]
Kubryakov A A, Kudryavtsev V N and Stanichny S V. 2021. Application of Landsat imagery for the investigation of wave breaking. Remote Sensing of Environment, 253: 112144 [DOI: 10.1016/j.rse.2020.112144http://dx.doi.org/10.1016/j.rse.2020.112144]
Lafon C, Piazzola J, Forget P, Le Calve O and Despiau S. 2004. Analysis of the variations of the whitecap fraction as measured in a coastal zone. Boundary-Layer Meteorology, 111(2): 339-360 [DOI: 10.1023/B:BOUN.0000016490.83880.63http://dx.doi.org/10.1023/B:BOUN.0000016490.83880.63]
Lu Y C, Sun S J, Zhang M W, Murch B and Hu C M. 2016. Refinement of the critical angle calculation for the contrast reversal of oil slicks under sunglint. Journal of Geophysical Research: Oceans, 121(1): 148-161 [DOI: 10.1002/2015JC011001http://dx.doi.org/10.1002/2015JC011001]
Melville W K. 1996. The role of surface-wave breaking in air-sea interaction. Annual Review of Fluid Mechanics, 28(1): 279-321 [DOI: 10.1146/annurev.fl.28.010196.001431http://dx.doi.org/10.1146/annurev.fl.28.010196.001431]
Monahan E C, Fairall C W, Davidson K L and Boyle P J. 1983. Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Quarterly Journal of the Royal Meteorological Society, 109(460): 379-392 [DOI: 10.1002/qj.49710946010http://dx.doi.org/10.1002/qj.49710946010]
Monahan E C and Muircheartaigh I. 1980. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. Journal of Physical Oceanography, 10(12): 2094-2099 [DOI: 10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2http://dx.doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2]
Monahan E C and Zietlow C R. 1969. Laboratory comparisons of fresh-water and salt-water whitecaps. Journal of Geophysical Research, 74(28): 6961-6966 [DOI: 10.1029/JC074i028p06961http://dx.doi.org/10.1029/JC074i028p06961]
Moore K D, Voss K J and Gordon H R. 2000. Spectral reflectance of whitecaps: their contribution to water-leaving radiance. Journal of Geophysical Research: Oceans, 105(C3): 6493-6499 [DOI: 10.1029/1999jc900334http://dx.doi.org/10.1029/1999jc900334]
Myrhaug D and Holmedal L E. 2008. Effects of wave age and air stability on whitecap coverage. Coastal Engineering, 55(12): 959-966 [DOI: 10.1016/j.coastaleng.2008.03.005http://dx.doi.org/10.1016/j.coastaleng.2008.03.005]
Nicolas J M, Deschamps P Y and Frouin R. 2001. Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean. Geophysical Research Letters, 28(23): 4445-4448 [DOI: 10.1029/2001gl013556http://dx.doi.org/10.1029/2001gl013556]
Paget A C, Bourassa M A and Anguelova M D. 2015. Comparing in situ and satellite-based parameterizations of oceanic whitecaps. Journal of Geophysical Research: Oceans, 120(4): 2826-2843 [DOI: 10.1002/2014jc010328http://dx.doi.org/10.1002/2014jc010328]
Phillips O M. 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics, 156: 505-531 [DOI: 10.1017/s0022112085002221http://dx.doi.org/10.1017/s0022112085002221]
Pivaev P D, Kudryavtsev V N, Korinenko A E and Malinovsky V V. 2021. Field observations of breaking of dominant surface waves. Remote Sensing, 13(16): 3321 [DOI: 10.3390/rs13163321http://dx.doi.org/10.3390/rs13163321]
Raizer V Y, Novikov V M and Bocharova T Y. 1994. The geometrical and fractal properties of visible radiances associated with breaking waves in the ocean. Annales Geophysicae, 12(12): 1229-1233 [DOI: 10.1007/s00585-994-1229-3http://dx.doi.org/10.1007/s00585-994-1229-3]
Romero L. 2019. Distribution of surface wave breaking fronts. Geophysical Research Letters, 46(17/18): 10463-10474 [DOI: 10.1029/2019gl083408http://dx.doi.org/10.1029/2019gl083408]
Salisbury D J, Anguelova M D and Brooks I M. 2014. Global distribution and seasonal dependence of satellite-based whitecap fraction. Geophysical Research Letters, 41(5): 1616-1623 [DOI: 10.1002/2014gl059246http://dx.doi.org/10.1002/2014gl059246]
Shen Y F, Liu J Q, Ding J, Jiao J N, Sun S J and Lu Y C. 2020. HY-1C COCTS and CZI observation of marine oil spills in the South China Sea. Journal of Remote Sensing, 24(8): 933-944
沈亚峰, 刘建强, 丁静, 焦俊男, 孙绍杰, 陆应诚. 2020. 海洋一号C星光学载荷对海面溢油的识别能力分析. 遥感学报, 24(8): 933-944 [DOI: 10.11834/jrs.20209475http://dx.doi.org/10.11834/jrs.20209475]
Thorpe S A, Belloul M B and Hall A J. 1987. Internal waves and whitecaps. Nature, 330(6150): 740-742 [DOI: 10.1038/330740a0http://dx.doi.org/10.1038/330740a0]
Wen Y S, Wang M Q, Lu Y C, Sun S J, Zhang M W, Mao Z H, Shi J and Liu Y X. 2018. An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint. International Journal of Digital Earth, 11(9): 972-979 [DOI: 10.1080/17538947.2018.1470687http://dx.doi.org/10.1080/17538947.2018.1470687]
Wu X Y, Lu Y C, Jiao J N, Ding J, Fu W X and Qian W X. 2022. Using sea wave simulations to interpret the sunglint reflection variation with different spatial resolutions. IEEE Geoscience and Remote Sensing Letters, 19: 1501304 [DOI: 10.1109/LGRS.2020.3033700http://dx.doi.org/10.1109/LGRS.2020.3033700]
Zhang H G, Lou X L, Li Y, Shi A Q, Li D L and Fu B. 2015. Whitecap features induced by submarine sand waves in stereo optical imagery. Journal of Geophysical Research: Oceans, 120(9): 6225-6233 [DOI: 10.1002/2015jc010947http://dx.doi.org/10.1002/2015jc010947]
相关作者
相关机构