HY-2卫星微波散射计海面风场地球物理模式函数研究
Development of a geophysical model function for HY-2 satellite microwave scatterometer wind retrievals
- 2023年27卷第4期 页码:871-880
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20222221
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
王志雄,邹巨洪,林明森,林文明,张有广,李秀仲,冯倩,何宜军.2023.HY-2卫星微波散射计海面风场地球物理模式函数研究.遥感学报,27(4): 871-880
Wang Z X,Zou J H,Lin M S,Lin W M,Zhang Y G,Li X Z,Feng Q and He Y J. 2023. Development of a geophysical model function for HY-2 satellite microwave scatterometer wind retrievals. National Remote Sensing Bulletin, 27(4):871-880
地球物理模式函数GMF(Geophysical Model Function)在星载微波散射计海面风场反演中具有关键作用。本文以C波段MetOp/ASCAT散射计风场数据为参考数据,通过改进现有Ku波段NSCAT-4 GMF中后向散射系数对海面风速和风向的依赖关系,以及增加海表温度(SST)因子项,构建了适用于HY-2卫星微波散射计海面风场反演的NSCAT-5.HY-2 GMF。研究结果表明,相比NSCAT-4 GMF,采用NSCAT-5.HY-2 GMF反演得到的HY-2散射计海面风速与ASCAT散射计风速的一致性提高了约11%,特别是风速反演误差不再依赖于SST变化、不再呈现显著经向分布特点。本论文研究结果对进一步提升国内外其他Ku波段星载微波散射计数据的海面风场遥感应用具有重要参考价值。
The Geophysical Model Function (GMF) is indispensable in space-born scatterometer wind retrieval data processing because it is the main factor that dominates the error characteristics of retrieved winds. In this study
a new Ku-band GMF (named NSCAT-5.HY-2)
which includes Sea Surface Temperature (SST) dependence
is developed for improved HY-2 satellite scatterometer (HSCAT) wind retrieval. Based on the existing NSCAT-4 GMF
the dependence of σ0 on wind speed and direction will be refined
and that of σ0 on SST is then added. The sea surface winds from the C-band advanced scatterometer (ASCAT) onboard the MetOp-B and C satellites are of high quality and have no dependence on SST. Accordingly
the ASCAT winds are used as reference for developing the NSCAT-5.HY-2 GMF. HY-2C and HY-2D are in non-sun-synchronous orbits with a 66.0° inclination
and their equator crossing times shift each orbit. The HY-2C or HY-2D scatterometer represents a unique opportunity to acquire closely collocated HSCAT and ASCAT scatterometer winds at different times of the day. In this study
the wind vector cells between HSCAT and ASCAT are matched by limiting the spatial distance within km and time differences within 45 min. The close collocations of HSCAT and ASCAT winds allow accurate attribution of the different correlated residual geophysical effects of wind speed bias and distribution
SST
sea state
rain
wind variability
and geographical sampling biases. Here
we explore the opportunity of close collocations of HSCAT-C and ASCAT and develop an SST-dependent Ku-band GMF for HY-2 scatterometers. The wind speed corrections as a function of wind speed can be calculated by using the cumulative distribution function matching technique
which aligns the Probability Density Function (PDF) of HSCAT wind speeds with the referenced PDF. During the wind direction modulations
five terms of the Fourier series are used
and the harmonic coefficients are derived utilizing ASCAT wind direction as reference. The variations of σ0 as a function of SST are given as a polynomial expansion for each given wind speed
and the polynomial coefficients are obtained from the observed and simulated radar cross-sections using closely collocated ASCAT winds of either vertical or horizontal polarizations. The validation of the new HSCAT wind products retrieved using NSCAT-5.HY-2 GMF shows clear improvements over those obtained with NSCAT-4 GMF. The consistency between HSCAT and ASCAT winds is much improved by at least 10%
and wind speed differences no longer depend on SST.
海面风场遥感海洋二号微波散射计ASCAT散射计地球物理模式函数海表温度
remote sensing of sea surface wind vectorsHY-2 microwave scatterometerASCAT scatterometergeophysical model functionsea surface temperature
Gohil B S, Sikhakolli R and Gangwar R K. 2013. Development of geophysical model functions for Oceansat-2 scatterometer. IEEE Geoscience and Remote Sensing Letters, 10(2): 377-380 [DOI: 10.1109/LGRS.2012.2207369http://dx.doi.org/10.1109/LGRS.2012.2207369]
Jiang X W, He X Q, Lin M S, Gong F, Ye X M and Pan D L. 2019. Progresses on ocean satellite remote sensing application in China. Acta Oceanologica Sinica, 41(10): 113-124
蒋兴伟, 何贤强, 林明森, 龚芳, 叶小敏, 潘德炉. 2019. 中国海洋卫星遥感应用进展. 海洋学报, 41(10): 113-124 [DOI: 10.3969/j.issn.0253-4193.2019.10.008http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.008]
Jiang X W, Lin M S and Zhang Y G. 2016. Progress and prospect of Chinese ocean satellites. Journal of Remote Sensing, 20(5): 1185-1198
蒋兴伟, 林明森, 张有广. 2016. 中国海洋卫星及应用进展. 遥感学报, 20(5): 1185-1198 [DOI: 10.11834/jrs.20166153http://dx.doi.org/10.11834/jrs.20166153]
Liu J Q, Jiang X W and Lin M S. 2021. Past, current status and suggestions of Chinese oceanographic satellites. Satellite Application, (9): 14-18
刘建强, 蒋兴伟, 林明森. 2021. 我国海洋卫星发展历程、现状与建议. 卫星应用, (9): 14-18 [DOI: 10.3969/j.issn.1674-9030.2021.09.006http://dx.doi.org/10.3969/j.issn.1674-9030.2021.09.006]
Liu W T. 2002. Progress in scatterometer application. Journal of Oceanography, 58(1): 121-136 [DOI: 10.1023/A:1015832919110http://dx.doi.org/10.1023/A:1015832919110]
Ricciardulli L and Wentz F J. 2015. A scatterometer geophysical model function for climate-quality winds: QuikSCAT Ku-2011. Journal of Atmospheric and Oceanic Technology, 32(10): 1829-1846 [DOI: 10.1175/JTECH-D-15-0008.1http://dx.doi.org/10.1175/JTECH-D-15-0008.1]
Stoffelen A, Verspeek J A, Vogelzang J and Verhoef A. 2017. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5): 2123-2134 [DOI: 10.1109/JSTARS.2017.2681806http://dx.doi.org/10.1109/JSTARS.2017.2681806]
Verhoef A, Portabella M and Stoffelen A. 2012. High-resolution ASCAT scatterometer winds near the coast. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2481-2487 [DOI: 10.1109/TGRS.2011.2175001http://dx.doi.org/10.1109/TGRS.2011.2175001]
Vogelzang J and Stoffelen A. 2017. ASCAT ultrahigh-resolution wind products on optimized grids. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5): 2332-2339 [DOI: 10.1109/JSTARS.2016.2623861http://dx.doi.org/10.1109/JSTARS.2016.2623861]
Wang Z X, Stoffelen A, Fois F, Verhoef A, Zhao C F, Lin M S and Chen G. 2017a. SST dependence of Ku- and C-band backscatter measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5): 2135-2146 [DOI: 10.1109/JSTARS.2016.2600749http://dx.doi.org/10.1109/JSTARS.2016.2600749]
Wang Z X, Stoffelen A, Zhang B, He Y J, Lin W M and Li X Z. 2019. Inconsistencies in scatterometer wind products based on ASCAT and OSCAT-2 collocations. Remote Sensing of Environment, 225: 207-216 [DOI: 10.1016/j.rse.2019.03.005http://dx.doi.org/10.1016/j.rse.2019.03.005]
Wang Z X, Stoffelen A, Zhao C F, Vogelzang J, Verhoef A, Verspeek J, Lin M S and Chen G. 2017b. An SST-dependent Ku-band geophysical model function for RapidScat. Journal of Geophysical Research: Oceans, 122(4): 3461-3480 [DOI: 10.1002/2016JC012619http://dx.doi.org/10.1002/2016JC012619]
Wang Z X, Zou J H, Zhang Y G, Stoffelen A, Lin W M, He Y J, Feng Q, Zhang Y, Mu B and Lin M S. 2021. Intercalibration of backscatter measurements among Ku-band scatterometers onboard the Chinese HY-2 satellite constellation. Remote Sensing, 13(23): 4783 [DOI: 10.3390/rs13234783http://dx.doi.org/10.3390/rs13234783]
Wentz F J and Smith D K. 1999. A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. Journal of Geophysical Research: Oceans, 104(C5): 11499-11514 [DOI: 10.1029/98JC02148http://dx.doi.org/10.1029/98JC02148]
Zhang Y, Mu B, Lin M S and Song Q T. 2021. An evaluation of the Chinese HY-2B satellite’s microwave scatterometer instrument. IEEE Transactions on Geoscience and Remote Sensing, 59(6): 4513-4521 [DOI: 10.1109/TGRS.2020.3008405http://dx.doi.org/10.1109/TGRS.2020.3008405]
Zhao C F, Xu R and Zhao K. 2019. Research of polar sea ice detection methods based on HY-2A/SCAT. Periodical of Ocean University of China, 49(10): 140-149
赵朝方, 徐锐, 赵可. 2019. 基于HY-2A/SCAT数据极地海冰检测方法研究. 中国海洋大学学报(自然科学版), 49(10): 140-149 [DOI: 10.16441/j.cnki.hdxb.20190275http://dx.doi.org/10.16441/j.cnki.hdxb.20190275]
Zhao K, Zhao C F and Chen G. 2021. Evaluation of Chinese scatterometer ocean surface wind data: preliminary analysis. Earth and Space Science, 8(7): e2020EA001482 [DOI: 10.1029/2020EA001482http://dx.doi.org/10.1029/2020EA001482]
Zou J H, Lin M S, Zhang Y, Mu B, Guo M H and Cui S X. 2017. Operational regrouping algorithm for HSCAT. Journal of Remote Sensing, 21(6): 825-834
邹巨洪, 林明森, 张毅, 穆博, 郭茂华, 崔松雪. 2017. 海洋二号卫星微波散射计面元匹配. 遥感学报, 21(6): 825-834 [DOI: 10.11834/jrs.20176424http://dx.doi.org/10.11834/jrs.20176424]
相关作者
相关机构