利用NPP/VIIRS微光数据反演夜间气溶胶光学厚度
Nighttime aerosol optical depth retrievals from VIIRS day/night band data
- 2022年26卷第3期 页码:493-504
纸质出版日期: 2022-03-07
DOI: 10.11834/jrs.20229104
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-03-07 ,
扫 描 看 全 文
姜梦蝶,陈林,何玉青,胡秀清,刘明奇,张鹏.2022.利用NPP/VIIRS微光数据反演夜间气溶胶光学厚度.遥感学报,26(3): 493-504
Jiang M D,Chen L,He Y Q,Hu X Q,Liu M Q and Zhang P. 2022. Nighttime aerosol optical depth retrievals from VIIRS day/night band data. National Remote Sensing Bulletin, 26(3):493-504
大气气溶胶具有气候环境和健康效应,且具有明显的时空和昼夜变化特征。因此探测夜间气溶胶光学厚度(AOD)具有重要的意义。NPP/VIIRS上的昼夜通道DNB(Day Night Band)为夜间反演AOD提供了有效的数据。基于大气辐射传输理论对夜间AOD进行反演,首先,利用“背景合成法”获取夜间城市灯光真实辐射值;然后,利用改进的“消光法”反演夜间AOD。选取华北地区作为研究对象,获得了2016-03—2017-02新月日期的夜间城市灯光真实值,选择其中的2016年7月和10月的2次污染天气过程,反演了夜间AOD分布。通过北京、天津和郑州的太阳光度计地基观测结果和北京市环境质量监测站空气质量指数(AQI)对反演结果进行验证,结果表明反演结果和观测结果有较好的一致性,展示了卫星微光数据在夜间城市污染空间分布监测中的应用潜力。
Aerosol has an extensive impact on Earth’s climate and ecosystems and thus harmful to human health. The distribution of atmospheric aerosols has diurnal variation
and nighttime aerosol concentrations are higher than those during the day. Therefore
the accurate monitoring of AOD at night is significant but challenging. The Visible/Infrared Imager/Radiometer Suite (VIIRS) of Suomi National Polar-orbiting Partnership has a Day Night Band (DNB)
which can observe the city light overnight. The artificial night light observed by the DNB of VIIRS reflects the extinction effect of the atmosphere and it is helpful in obtaining the nighttime AOD.
To monitor the nighttime AOD
this study obtained the nighttime AOD on the basis of the theory of atmospheric radiation transmission. First
moonless and cloudless DNB data were selected
and the artificial lights during the crescent period were obtained by multi-day DNB data fusion. Second
the nighttime AOD was retrieved based on the extinction effect of aerosol on artificial lights. Finally
the obtained AOD is compared with the AOD from the CE318 and AQI indices from the environmental quality monitoring station to verify the feasibility of the retrieval method.
This study focused on the nighttime AOD in North China from March 2016 to February 2017. The artificial lights of North China from four seasons were obtained
indicating that the major cities
especially the JingJinJi urban agglomeration
are very prominent in the artificial lights distribution map
and the traffic network between cities is clearly visible. Meanwhile
the nighttime AOD distribution during two heavily polluted weather processes in July and October 2016 was retrieved. The retrieval results indicate that the nighttime aerosols in North China are mainly distributed in the JingJinJi region and the provincial capital
which have developed industries and a dense population. Moreover
the retrieved and observed AODs are consistent
with an agreement index of up to 0.962
indicating that the retrieval study achieved good results.
This study demonstrates the potential of satellite twilight data in monitoring the spatial distribution of urban pollution at night. The distribution characteristics of nighttime urban lights and aerosols are also provided
enriching the understanding of the temporal and spatial distribution of aerosols at night.
夜间气溶胶光学厚度NPP VIIRS DNB城市灯光遥感反演
nighttime aerosoloptical depthNPP VIIRS DNBcity lightsremote sensing retrieval
Che H, Zhang X Y, Xia X, Goloub P, Holben B, Zhao H, Wang Y, Zhang X C, Wang H, Blarel L, Damiri B, Zhang R, Deng X, Ma Y, Wang T, Geng F, Qi B, Zhu J, Yu J, Chen Q and Shi G. 2015. Ground-based aerosol climatology of china: aerosol optical depths from the china aerosol remote sensing network (CARSNET) 2002-2013. Atmospheric Chemistry and Physics, 15(13): 7619-7652 [DOI: 10.5194/acp-15-7619-2015http://dx.doi.org/10.5194/acp-15-7619-2015]
Chen C, Li Z Q, Hou W Z, Li D H and Zhang Y H. 2015. Dynamic model in retrieving aerosol optical depth from polarimetric measurements of PARASOL. Journal of Remote Sensing, 19(1): 25-33
陈澄, 李正强, 侯伟真, 李东辉, 张玉环. 2015. 动态气溶胶模型的PARASOL多角度偏振卫星气溶胶光学厚度反演算法. 遥感学报, 19(1): 25-33 [DOI: 10.11834/jrs.20154043http://dx.doi.org/10.11834/jrs.20154043]
Gao L, Zhang L Y, Li J, Chen L, Sun L and Li X J. 2014. Retrieval of atmospheric aerosol optical depth over land from AVHRR. Journal of Applied Meteorological Science, 25(1): 42-51
高玲, 张里阳, 李俊, 陈林, 孙凌, 李晓静. 2014. 利用AVHRR数据反演陆地气溶胶光学厚度. 应用气象学报, 25(1): 42-51 [DOI: 10.11898/1001-7313.20140105http://dx.doi.org/10.11898/1001-7313.20140105]
Ge B Y, Yang L K, Chen X F, Li Z Q, Mei X D and Liu L. 2018. Study on aerosol optical depth retrieval over land from Himawari-8 data based on dark target method. Journal of Remote Sensing, 22(1): 38-50
葛邦宇, 杨磊库, 陈兴峰, 李正强, 梅笑冬, 刘李. 2018. 暗目标法的Himawari-8静止卫星数据气溶胶反演. 遥感学报, 22(1): 38-50 [DOI: 10.11834/jrs.20187033http://dx.doi.org/10.11834/jrs.20187033]
Johnson R S, Zhang J, Hyer E J, Miller S D and Reid J S. 2013. Preliminary investigations toward nighttime aerosol optical depth. Atmospheric Measurement Techniques Discussions, 6(5): 1245-1255[DOI: 10.5194/amt-6-1245-2013http://dx.doi.org/10.5194/amt-6-1245-2013]
Kikuchi M, Murakami H, Suzuki K, Nagao T M and Higurashi A. 2018. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from himawari-8 geostationary satellite. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3442-3455[DOI: 10.1109/TGRS.2018.2800060http://dx.doi.org/10.1109/TGRS.2018.2800060]
Li C C, Mao J T, Liu Q H, Chen J Z, Yuan Z B, Liu X Y, Zhu A H and Liu G Q. 2003. Study of distribution and the seasonal variation characteristic of aerosol optical thickness using MODIS in the east of China. Chinese Science Bulletin, 48(19): 2094-2100
李成才, 毛节泰, 刘启汉, 陈介中, 袁自冰, 刘晓阳, 朱爱华, 刘桂青. 2003. 利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征. 科学通报, 48(19): 2094-2100 [DOI: 10.1360/csb2003-48-19-2094http://dx.doi.org/10.1360/csb2003-48-19-2094]
Li D H, Li Z Q, Lv Y, Zhang Y, Li K T and. Xu H. 2015. Determination of nocturnal aerosol properties from a combination of lunar photometer and lidar observations//Proceedings of SPIE 9640, Remote Sensing of Clouds and the Atmosphere XX. Toulouse, France: SPIE: 96400W[DOI: 10.1117/12.2194918http://dx.doi.org/10.1117/12.2194918]
Li X J, Liu Y J, Qiu H and Zhang Y X. 2003. Retrieval method for optical thickness of aerosols over Beijing and its vicinity by using the MODIS data. Acta Meteorologica Sinica, 61(5):581-592
李晓静, 刘玉洁, 邱红, 张玉香,刘李. 2003. 利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究. 气象学报, 61(5):581-592 [DOI: 10.11676/qxxb2003.058http://dx.doi.org/10.11676/qxxb2003.058]
Li Z Q, Xie Y S, Zhang Y, Li L, Xu H, Li K T and Li D H. 2019. Advance in the remote sensing of atmospheric aerosol composition. Journal of Remote Sensing, 23(3): 359-373
李正强, 谢一凇, 张莹, 李雷, 许华, 李凯涛, 李东辉. 2019. 大气气溶胶成分遥感研究进展. 遥感学报, 23(3): 359-373 [DOI: 10.11834/jrs.20198185http://dx.doi.org/10.11834/jrs.20198185]
Li Z Q, Xu H, Li K T, Li D H, Xie Y S, Li L, Zhang Y, Gu X F, Zhao W, Tian Q J, Deng R R, Su X L, Huang B, Qiao Y L, Cui W Y, Hu Y, Gong C L, Wang Y Q, Wang X F, Wang J P, Du W B, Pan Z Q, Li Z Z and Bu D. 2018. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: an overview of sun–sky radiometer observation Network (SONET) measurements. Bulletin of the American Meteorological Society, 99(4): 739-755 [DOI: 10.1175/bams-d-17-0133.1http://dx.doi.org/10.1175/bams-d-17-0133.1]
McHardy T M, Zhang J, Reid J S, Miller S D, Hyer E J and Kuehn R E. 2015. An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band. Atmospheric Measurement Techniques, 8(11): 4773-4783[DOI: 10.5194/amt-8-4773-2015http://dx.doi.org/10.5194/amt-8-4773-2015]
Su C L, Su L, Chen L F, Jia S L, Liu C and Yu C. 2015. Retrieval of aerosol optical depth using NPP VIIRS data. Journal of Remote Sensing, 19(6): 977-982
苏城林, 苏林, 陈良富, 贾松林, 刘聪, 余超. 2015. NPP VIIRS数据反演气溶胶光学厚度. 遥感学报, 19(6): 977-982 [DOI: 10.11834/jrs.20155051http://dx.doi.org/10.11834/jrs.20155051]
Wang W S. 2007. Coefficient of variation—A simple and useful indicator to measure the degree of dispersion. China Statistics, (6): 41-42
王文森. 2007. 变异系数——一个衡量离散程度简单而有用的统计指标. 中国统计, (6): 41-42 [DOI: 10.3969/j.issn.1002-4557.2007.06.025]
Xia L, Mao K B, Sun Z W, Ma Y and Zhao F. 2014. Method for detecting cloud at night from VIIRS data based on DNB. Remote Sensing for Land and Resources, 26(3): 74-79
夏浪, 毛克彪, 孙知文, 马莹, 赵芬. 2014. 基于DNB验证的VIIRS夜间云检测方法. 国土资源遥感, 26(3): 74-79 [DOI: 10.6046/gtzyyg.2014.03.12http://dx.doi.org/10.6046/gtzyyg.2014.03.12]
Yan S M and Wu G. 2015. Increase in haze pollutions in china due to nocturnal emissions. Guangxi Sciences, 22(6): 675-680
严少敏, 吴光. 2015. 夜间废气排放加重中国雾霾污染. 广西科学, 22(6): 675-680 [DOI: 10.3969/j.issn.1005-9164.2015.06.019http://dx.doi.org/10.3969/j.issn.1005-9164.2015.06.019]
Yu Y, Hu X Q, Min M, Xu T F, He Y Q, Chen L and Xu R H. 2018. NPP/Visible infrared image radiometer suite low-light image fusion algorithm for city lights in mid-eastern China. Laser and Optoelectronics Progress, 55(10): 102804
余越, 胡秀清, 闵敏, 许廷发, 何玉青, 陈林, 徐榕焓. 2018. NPP/VIIRS微光图像融合中国中东部城市灯光算法. 激光与光电子学进展, 55(10): 102804 [DOI: 10.3788/LOP55.102804http://dx.doi.org/10.3788/LOP55.102804]
Zhang J, Reid J S, Miller S D and Turk F J. 2008. Strategy for studying nocturnal aerosol optical depth using artificial lights. International Journal of Remote Sensing, 29(16): 4599-4613[DOI: 10.1080/01431160802020528http://dx.doi.org/10.1080/01431160802020528]
Zhao X R, Shi H Q, Yang P L, Zhang L, Fang X and Liang K. 2017. Inversion algorithm of PM2.5 air quality based on nighttime light data from NPP-VIIRS. Journal of Remote Sensing, 21(2): 291-299
赵笑然, 石汉青, 杨平吕, 张雷, 方荀, 梁快. 2017. NPP卫星VIIRS微光资料反演夜间PM2.5质量浓度. 遥感学报, 21(2): 291-299 [DOI: 10.11834/jrs.20176162http://dx.doi.org/10.11834/jrs.20176162]
相关作者
相关机构